Sample solutions to questions for algebra preliminary exam
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Problem 1. Let A be a real 2 x 2 matrix such that (2) is an eigenvector with eigenvalue 3 and

2
such that < 1) is an eigenvector with eigenvalue —2. Compute A~! applied to (;)

Solution. One way to proceed is to determine A via a “reverse diagonalization”

GG HED

then calculate A~', then apply it to the required vector.
A more elegant way is to note that if v is an eigenvector of A with eigenvalue A then v is an

eigenvector of A~! with eigenvalue A~!. Then we simply decompose <;) =3 <;) +2 <§) and

@) ()50 50 -()

Problem 2. Determine whether the surface in R? defined by

then apply

22+ y? 4+ 22— 2uy — 2uz —2yz =1
is a ellipsoid (an ellipse rotated about one of its axes) or a hyperboloid (a hyperbola rotated about
one of its axes).

Solution. Since the surface is defined by a quadratic equation, we can rewrite the equation as
X'AX =1, where

1 -1 -1 z
A=[-1 1 -1], X=|y
-1 -1 1 2

By the spectral theorem for symmetric operators on a real vector space, we can find an orthogonal
matrix ) (whose rows are an orthonormal basis of eigenvectors of A) and a diagonal matrix D
(whose diagonal elements are the eigenvalues) so that A = QDQ™!. Since Q! = Q?, the equation
becomes (Q'X)'D(Q'X) = 1, showing that Q' transforms the equation to “standard” diagonal
form. Since the charateristic polynomial of A is (up to a sign) 3 — 3t2 +4 = (¢t + 1)(t — 2)?, the
eigenvalues of A have sign —, +, +: since these are not all positive, the surface is a (one-sheeted)
hyperboloid.

Problem 3. Let n € Z>1, and let V be the vector space of real polynomials of degree at most n.
Consider the linear operator T': V' — V defined by T'(f)(x) = f(1 — z).

(a) Compute the determinant of 7.
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(b) Consider the bilinear form on V defined by (f,g) = / f(z)g(z)dz. Show that T is self-
0

adjoint with respect to this inner product.



(c) For n =2, find a basis of V' consisting of eigenvectors for 7.

Solution. For (a), the determinant of T can be calculated on any basis, so we can use 1, z, 22, ..., z".

Since (1—x)" = (—1)"z™+- - -+(—1)", the matrix of 7" with respect to this basis is upper-triangular,
with entries alternating in sign, e.g., for n = 2:

1 1 1
0 -1 -2
0 0 1

and hence the determinant of T is (—1)/"/2l =1, -1,-1,1,1,-1,—1,....
For (b), we compute

1 1
Cﬂﬁywiéfﬁ—wh@ﬂx—z;ﬂwﬂl—wmw4ﬁT@»

by employing the u-substitution v = 1 — z. Hence T is self-adjoint.

For (c), by looking at the matrix above, we know the eigenvalues of 7. So we are looking to
solve the equation f(1 —x) = +f(z). Clearly f(z) = 1 is an eigenvector with eigenvalue A = 1; the
other is f(z) = z(1 — 2) =  — 2. Finally, f(z) = 2 — (1 — x) = —1 + 2z is an eigenvector with
eigenvalue —1.

Problem 4. Let V be a finite-dimensional vector space and T: V' — V a linear operator satisfying
T2 =T.

(a) Show that the only possible eigenvalues of T are zero or one.
(b) If E) is the A-eigenspace, show that Fy = kerT" and E; is the image of T

(c) Show that T is diagonalizable.

Solution. For (a), one could observe that the minimal polynomial must divide x(z — 1), or missing
that try the direct approach. Suppose that T'(v) = Av for some nonzero v. Then

T(v) = T2(v) = T(T(v)) = T(A) = XT(v),

so that (A —1)T'(v) = 0, so either A = 1, or T has nontrivial kernel, so has eigenvalue 0.
For (b), by definition Ey = kerT. If v € Ey, then T'(v) = v, so v is in the image. Conversely, if
w is in the image of T, say w = T'(v), then

T(w) =T?(v) = T(v) = w,

sow € Ej.

For (c), this follows from the fact that the minimal polynomial is separable (has no repeated
roots), or directly: since dim Ey = nullity 7" and dim E; = rkT and E; N Ey = {0}, rank-nullity
says that V has a basis consisting of eigenvectors for T'.

Problem 5. Let V be a finite-dimensional vector space over a field F', let V* := Hompg(V, F) be
its dual space, and let B: V x V — F' be a nondegenerate bilinear form. Let W C V be a subspace

and
Wt :={veV:Bw) =0 foral weW}

Show that V/W+ ~ W*.



Solution. The bilinear form B induces a map v — v* € V* where v*(z) = B(v,x) for x € V. Since
B is nondegenerate, this map is an isomorphism. If we further restrict to W, we obtain a map
V — W* by v — v*|yr. The kernel of this map is {v € V : B(v,w) =0 for all w € W} = W+. The
restriction map V* — W* is surjective, since V.= W @ W+ so given ¢ € W* we can extend by
zero on W+ to get ¢ € V*. Therefore V/W=+ ~ W*,

Problem 6. Let G :=7Z x Z and let H := ((2,3),(3,2)) C G be the subgroup generated by (2, 3)
and (3,2). Show that G/H is a cyclic group and compute its order.

Solution. There are several ways to do this depending on the experience of the student. The more
sophisticated way considers a Z-linear map T: Z? — Z? given with respect to standard bases by

the matrix A = <§ g) We are interested in the cokernel, Z?/T(Z?), which is unaffected by

0) from which it follows that

elementary row and column operations which reduces A to (0 5

G/H ~7,/5Z.

Taking a more pedestrian approach, it is clear that H is also given by H = ((1,—1), (0,5)), and
since G = Z2 has generators (1,—1),(0,1), it is again quick to deduce the quotient. Concretely,
G/H is the cyclic group generated by the coset (0,1) + H.

Problem 7. Let H = (0,7) C S4 be the subgroup of the symmetric group Sy generated by the
elements o := (12) and 7 := (34).

(a) Compute the order of H.
(b) Show that H is not a normal subgroup of Sy.

(¢) Compute the normalizer of H in Sy.

Solution. For (a), the 2-cycles have order 2 and disjoint cycles commute, so H is a group of order
4 isomorphic to Z/27 x Z]27.
For (b), we know that for any permutation p, and r-cycle (aj as - - - a,), that

plaraz, - ay)p~" = (p(ar) plaz), - play))-
Now observe that (1234)0(1234)~! = (23) ¢ H, so H is not normal in Sj.

We know that H < N := Ng,(H) < Sy, and since H is not normal, Ng,(H) # Ss. By Lagrange’s
theorem, we have 4 = #H | #N | 24, so #N = 4,8,12.

If we let S4 act on its subgroups by conjugation, then the orbit-stabilizer theorem says that
[S4: Ng,(H)] is equal to the number of conjugates of H. Since each group conjugate to H in Sy is
generated by a pair of disjoint transpositions, counting we find that there are three conjugates of
H, hence #N = 8, and it is easy to check that p = (1324) is in the normalizer, so N = Ng,(H) =
(0,7, p) is a dihedral group of order 8.

Problem 8. Let p be prime and let R be a ring (with 1) with #R = p?. Show R is commutative.

Solution. The ring R is in particular an abelian group, so either R ~ Z/p*Z or R ~ 7./pZ ® 7./ pZ
as abelian groups. In the first case, the multiplication law is unique, since 1 -1 = 1 so the rest
is determined by distributivity. In the second case, it is determined on the subring F, = Z/pZ
generated by 1; let € R be not in the span of 1: then R is commutative, because x commutes
with itself (and 1), so it commutes with every ax + b € R (with a,b € Z/pZ).
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Problem 9. Indicate whether each of the statements below is true or false. If true, briefly justify
the statement; if false, provide an explicit counterexample.

(a) Let I C Z[x] be a proper ideal satisfying (z) C I C Z[z]. Then I is a prime ideal.
(b) In a PID, nonzero prime ideals are maximal.

(
(

)
)
c) Let f(z) € Q[z] be irreducible. Then f is irreducible in Q[z, y].
d) If p € Z is a prime, (x> — p) is a maximal ideal in Z[z].

)

(e) 2623 + x + 64 is irreducible in Z[z].

Solution. Statement (a) is false: (x,4) is not prime.

Statement (b) is true: nonzero principal prime ideals in an integral domain are generated by
prime, hence irreducible elements, which in a PID generate maximal ideals.

Statement (c): true! Try to factor as polynomials in Q[z][y] and force the degree in y to be
zero, which brings the problem down to Q[z], and we know Qlz, y]* = Q[z]* = Q*.

For (d), we claim it is false. By Eisenstein’s criterion, we know that 23 — p is irreducible in
Q[x], and since primitive, is irreducible in Z[z]. In Q[z] this would generate a maximal ideal, but
not in Z[z], for example (x® — p,n) is strictly larger (and still proper) for any n > 2.

Finally (e) is true: it’s a cubic, so we might think about roots, but it is ugly enough not to
be tempted. And Eisenstein is out, so we think of reduction criteria. Mod 2 is of no value but in
(Z/37)[z] the polynomial is 223 + x + 1 which has no roots in Z/3Z (a field) so is irreducible there,
so must be irreducible in Z[z| (primitive).

Problem 10. Let R C C be a subring which is finite-dimensional as a Q-vector space. Show that
R is a field.

Solution. First, R is a domain, since it is a subring of C. We need to show all nonzero elements of
R have inverses. Let a € R be nonzero. Then the map R — R by x — ax is Q-linear and injective
because R is a domain. Therefore as a map of finite-dimensional Q-vector spaces this map is also
surjective, so there exists b € R such that ab = 1. Thus R is a field.



