Sample solutions to questions for analysis preliminary exam

Problem 1. Let A C R be an open set and let f: A — R be a function. Give three criteria
(e-0, open sets, sequences) for f to be continuous on A. Show that two of these definitions are
equivalent.

Solution. We claim that the following are equivalent:

1. For all a € A and for all € > 0, there exists § > 0 such that |[vr —a| < § and € A implies

|f(z) = fla)] <&
2. For all open sets V C R, the inverse image f~(V) C A is open; and
3. For all a, — a € A, we have f(a,) — f(a) € R.

First, (1) = (2). Let V C R be open, and let a € U := f~1(V). Since V is open there is an open
interval Be(f(a)) = (f(a) — €, f(a) +€) CV of f(a), so by (1) we have f(Bs(a)) C Be(f(a)) C V;
thus Bs(a) C f~1(B(f(a))) C U is an open neighborhood of a contained in U, so U is open.

Second, (2) = (3). Let € > 0. By (2), we have U := f~1(B.(a)) open, so there exists an open
neighborhood Bj(a) C U. Since a, — a, there exists N € Z>( such that a, € Bs(a) for n > N.
Putting these together, we have f(a,) € Bc(a) for n > N, which is (3).

Finally, (3) = (1), which we prove by the contrapositive. By the negation of (1), we find that
exists a € A and € > 0 such that for all § = 1/n > 0 (with n € Z~¢), there exists a,, € A such that
an € Be(0) but |f(an) — f(a)] > e. Thus the sequence a,, — a, but f(a,) /4 f(a), as desired.

Problem 2. Prove that for all x > 0 we have the inequality
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Solution. By Taylor’s theorem with Lagrange’s form of the remainder, letting f(x) = sinx we have
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for some 0 < ¢ < x, where f®)(z) = (sinz)” = —cosz so f®)(¢) < 1. The inequality follows.

To do it “by hand”, let f(z) := x — 23/6. Then f'(z) = 1 — 22/2 and so f is decreasing for
x > +/2, hence for z > 3 we have f(z) < f(3) = —3/2 < —1 < sinz. For 0 < z < 3, consider the
Taylor series
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it has terms of alternating sign, and since
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for n > 1, so we may apply the zig-zag criterion in the alternating series test: we have
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since the next term is positive.



Problem 3. Show that if the uniformly continuous functions f,: R — R for n > 1 converge
uniformly to f: R — R, then f is uniformly continuous.

Solution. Let € > 0. Since f, — f uniformly, there exists NV € Z>; such that for all z € R we
have |fn(x) — f(x)| < €/3. Moreover, since the functions fx are uniformly continuous, there exists
d > 0 such that for all z,y € R with | — y| < 0 we have |fxn(z) — fn(y)| < €/3. Therefore

(@) = F@] < @) = fa@)| + 1ful@) = Fa)] + 1) = F@) < 5+ 5+ 5 =

the first by uniform convergence at z, the second by uniform continuity of fy, and the third by
uniform convergence at y. Thus f is uniformly continuous.

Problem 4. Let (X, d) be a compact metric space and f: X — X be a continuous function such
that if = # y, then d(f(x), f(y)) < d(x,y). Show that f has a unique fixed point.

Solution. Consider the function
qg: X — RZO
x— g(x) =d(z, f(z)).

The map ¢ is continuous, since d and f are continuous; since X is compact, by the extreme value
theorem ¢ attains its minimum at some point x. Let y := f(z). If 2 # y, then

9(y) = d(y, f(y)) = d(f(x), f(f(2))) < d(z, f(z)) = g(x);

this contradicts that the minimum of g is obtained at z. Thus x = y = f(z), so « is a fixed point. To
show uniqueness, suppose ¥’ € X has f(2') = 2/. If 2/ # x, then d(x,2") = d(f(x), f(2')) < d(z,2'),
a contradiction. So 2’ = x, and the fixed point is unique.

Problem 5. Let U be a connected, open subset of R"™. Suppose f: U — R is a function that is
(p) = 0 vanish for all p € U. Prove that f is

differentiable on U and that all partial derivatives
N

constant. ‘

Solution. We first prove this in the special case where U is open convex. Let p,q € U and define

g:[0,1] = R by g(t) := f(z(t)), with x(t) = (z;(t)); == (1 —t)p+ tq € U for t € [0,1] since U is

convex. By the chain rule, for all ¢ € (0,1) we have

dg & 6f dl‘i
10 = G0 = 2 5, OG0 =0
because all partial derivatives vanish at all points in U. By the mean value theorem, there exists
¢ € (0,1) such that

but g(1) = f(q) and g(0) = f(p), so

and hence f(q) = f(p).
Finally, choose pg € U, and let W := {p € U : f(p) = f(po)}. Then W is closed (it is the

inverse image of f(p)) and nonempty. It is also open: if p € W, then in any open (convex) ball V'
of p in U, by the previous paragraph we have f(q) = f(p) = f(po) for all ¢ € V, hence V. C W.
Since U is connected, we conclude that W = U and f is constant.



Problem 6. Let f: Ryg — R-(¢ be a monotone, decreasing function defined on the positive real
numbers with

/Ooof(a:)dx < 00.

Show that

lim zf(z) =0.

T—r00
Solution. Since f is monotone decreasing, we obtain a lower bound on the integral using a Riemann
sum with right endpoints:

7;nf(n) </0 f(z)dz < cc.

Of course if a series of positive terms converges, then its terms tend to 0, so lim, o nf(n) = 0. Let
€ > 0. Then there exists X € Rs( such that whenever x > X, we have f(z) < €/2. Similarly, there
exists N € Z>¢ such that whenever n > N we have nf(n) < ¢/2. Thus whenever z > max(N, X),
letting n := || < x we have

zf(z) <zf(n)=(x—n+n)f(n) < f(n)+nf(n) <e/2+4+¢/2 <e.

Thus lim, . xf(x) = 0.

Problem 7. Suppose that X and Y are topological spaces with Y compact, and give X x Y the
product topology. Show that the projection map 7: X x Y — X is a closed map.

Solution. Let Z C X x Y be closed; we show that X \ 7(Z) is open. Let z € X have = ¢ 7(Z).
Then {z} x Y is contained in X x Y ~\ Z. By the tube lemma, one can find an open set V' C X
containing x such that V xY C X x Y \ Z. Thus V C X is in the complement of 7(Z), showing
X \7(Z) is open.

Here is a direct proof. Again, let Z C X x Y be closed, and let © ¢ n(Z). Then (z,y) €
(X xY)~\ZforallyeY. Since (X xY)\ Z is open, for each y € Y there exists an open subset
Uy x V, C (X xY)~ Z containing (z,y). The collection of open sets {V}},ey C Y form an open
cover. Since Y is compact, this reduces to an open cover with Y = J;_; V},. Let U := ﬂle Uy,
Then x € U. And if 2’ € U, then

I x{V,YCU, xV, C(XxY)Z
{ Yi Yi Yi

for all . Thus {2/} x Y C (X xY)\ Z, and so U C X \ 7(Z) is open, as claimed.

Problem 8. Give an example of a Hausdoff topological space X and an equivalence relation ~ on
X so that the topological space Y = X/ ~ is not Hausdorff.

Solution. We use the line with a doubled origin. Let X := {(z,i) € R : i € {1,2}}. Define an
equivalence relation on X by (x,i) ~ (2/,4') when x = 2/ # 0 and ¢ # i'. It is straightforward
to check that this is an equivalence relation, and the quotient Y := X/~ has equivalence classes
0.1)] = {(0,1}, [(0,2)] = {(0,2)}, and [(z,1)] = [(,2)] = {(z1),(x,2)} for = # 0. The
neighborhoods of (0,7) are open intervals in R x {i} containing 0, so any two neighborhoods of
[(0,1)] and [(0,2)] intersect.

Problem 9. Prove or disprove: the set Q of rational numbers is the intersection of a countable
family of open subsets of R.



Solution. The statement is false. We have

R\ Q= [](R~ {a}).

acQ

Suppose that Q =, G, with each G,, C R open. Since Q is dense in R, and Q C G,, we have G,,
open dense in R for all n. Thus

P=QNR~\Q)

is a countable intersection of open dense sets. This contradicts the Baire category theorem, which
says that any countable intersection of open dense sets is dense.



