

Properties of Groupoid Dynamical Systems and Associated Crossed Product C^* -algebras

Scott M. LaLonde
Advisor: Dana Williams

Department of Mathematics, Dartmouth College

Outline of Proof

The rest of the proof can now be summed up by the following

 $(A
times_{lpha} G) \otimes_{\max} B \stackrel{\sim}{\longrightarrow} (A \otimes_{\max} B)
times_{lpha \otimes \mathrm{id}} G$

 $(A \rtimes_{\alpha,r} G) \otimes_{\sigma} B \xrightarrow{\sim} (A \otimes_{\sigma} B) \rtimes_{\alpha \otimes \mathrm{id},r} G$

Since A is nuclear and G is amenable, the right side is an

isomorphism (in fact, the identity map). Therefore, the left

 $(A \rtimes_{\alpha,r} G) \otimes_{\sigma} B = (A \rtimes_{\alpha} G) \otimes_{\sigma} B,$

and it can be checked that this map is just κ . It follows that

We've glossed over many technical hurdles that result from

working with groupoids, but the proof comes down to veri-

commutative diagram:

 $A \rtimes_{\alpha} G$ is nuclear.

side is also an isomorphism. But

fying certain facts about this diagram.

Overview

The groupoid crossed product directly generalizes the idea of a crossed product C^* -algebra, which arises when a locally compact group acts on a C^* -algebra. A great deal is known about these older objects, and one can ask whether certain results generalize to the groupoid case. One major result, due to Philip Green, says that if A is nuclear and G is amenable, the crossed product $A \rtimes G$ is nuclear. We present the analogue for groupoids here. We also discuss a weaker property of C^* -algebras, called exactness.

Groupoid Dynamical Systems

Basics

Informally, a **groupoid** is a set G with a partially defined multiplication operation and an inversion map $G \to G$:

$$(x,y)\mapsto xy, \quad x\mapsto x^{-1}.$$

The **unit space** consists of all the elements that behave like identities:

$$G^{(0)} = \{ u \in G : u = u^{-1} = u^2 \}.$$

There are **range** and **source** maps $r, s : G \to G^{(0)}$:

$$r(x) = xx^{-1}, s(x) = x^{-1}x,$$

We often view the groupoid as fibred over $G^{(0)}$ by r or s:

$$G^{u} = r^{-1}(u), \quad G_{u} = s^{-1}(u).$$

One can think of a groupoid as a group in which the product is only partially defined. Indeed, any group is an example of a groupoid. A less trivial example would be a bundle of groups.

Groupoid Actions

A groupoid G can act on a set X, provided that X is fibred over $G^{(0)}$ - i.e., if there is a surjection $r_X : X \to G^{(0)}$. The action is much like a group action, except it is only partially defined: if $x \in G$ and $z \in X$, then $x \cdot z$ is defined exactly when $s(x) = r_X(z)$.

Dynamical Systems

Let G be a locally compact Hausdorff groupoid. For G to act on a C^* -algebra A, we need A to be fibred over $G^{(0)}$. We require that A be a $C_0(G^{(0)})$ -algebra; that is, there is a bundle \mathcal{A} of C^* -algebras over $G^{(0)}$, and A can be viewed as a section algebra of \mathcal{A} . An **action** of G on A is just a family of isomorphisms

$$\alpha = \{\alpha_x\}_{x \in G}, \quad \alpha_x : \mathcal{A}_{s(x)} \to \mathcal{A}_{r(x)}.$$

The triple (A, G, α) is called a **groupoid dynamical system**.

Crossed Products

The Full Crossed Product

Given a groupoid dynamical system (A, G, α) , one can build a new C^* -algebra that encodes information about the system. We start by forming the pullback bundle

$$r^*\mathcal{A} \to G$$

and we consider the space of continuous compactly supported sections

$$\Gamma_c(G, r^*\mathcal{A}).$$

We assume that G carries a **Haar system** - a family of measures which plays the role of the Haar measure on a locally compact group. Using these measures, it's possible to define a convolution-like product and an involution which make $\Gamma_c(G, r^*A)$ into a *-algebra. We can define a norm on it by considering an appropriate collection of *-representations of $\Gamma_c(G, r^*A)$ on Hilbert space. The completion is a C^* -algebra,

$$A \rtimes_{\alpha} G$$
,

called the **crossed product** of A by G.

The groupoid crossed product directly generalizes the idea of a crossed product by a group (which in turn generalizes group C^* -algebras). Indeed, if G is locally compact group, then the groupoid crossed product associated to G agrees with the usual one.

The Reduced Crossed Product

The full crossed product is relatively nice in theory, but it can be mysterious in practice. We can build a related object,

$$A \rtimes_{\alpha,r} G$$
,

called the **reduced crossed product**, which is slightly nicer. It is a quotient of $A \rtimes_{\alpha} G$: any faithful representation

$$\pi:A\to B(\mathcal{H})$$

on a Hilbert space \mathcal{H} induces a representation $\operatorname{Ind} \pi$ of $A \rtimes_{\alpha} G$, which may not be faithful. We then have

$$A \rtimes_{\alpha,r} G = A \rtimes_{\alpha} G / \ker(\operatorname{Ind} \pi).$$

This construction is independent of the choice of π .

Amenability

It would be nice if the full and reduced crossed products agreed. This isn't always the case, but there are conditions under which it is true.

Proposition 1 (Sims-Williams, 2012 [4]) If G is an amenable groupoid, then $A \rtimes_{\alpha} G = A \rtimes_{\alpha,r} G$.

There are several notions of amenability for groupoids; the form used here is measure-theoretic. Each is technical, and they all reduce to the usual definition of amenability when G is a group.

Exactness and Further Directions

A concept which is related to (though weaker than) nuclearity is **exactness**.

Definition A C^* -algebra A is **exact** if whenever

$$0 \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow 0$$

is a short exact sequence of C^* -algebras, the sequence

$$0{\longrightarrow}B\otimes_{\sigma}A{\longrightarrow}C\otimes_{\sigma}A{\longrightarrow}D\otimes_{\sigma}A{\longrightarrow}0$$

is also exact.

It is known [3] that if A is exact and G is an amenable group, then $A \rtimes_{\alpha} G$ is an exact C^* -algebra. I would like to prove the analogous result for groupoid crossed products.

Nuclearity and the Main Theorem

Nuclear C^* -algebras

Nuclearity is a very desirable condition for a C^* -algebra to have. In short, nuclear C^* -algebras behave well with respect to tensor products. If A and B are C^* -algebras, the algebraic tensor product

$$A \odot B$$

may carry more than one C^* -norm. Therefore, there are generally multiple ways to complete it into a tensor product C^* -algebra. Most people care about the two extremes:

$$A \otimes_{\max} B$$
 and $A \otimes_{\sigma} B$,

the maximal and minimal (or spatial) tensor products. If the various tensor products coincide, then the situation is very nice.

Definition A C^* -algebra A is called **nuclear** if

$$A \otimes_{\max} B = A \otimes_{\sigma} B$$

for every C^* -algebra B.

Most reasonably nice C^* -algebras (such as commutative ones) are nuclear.

Nuclearity for Crossed Products

It was shown by Philip Green in [2] that if A is a nuclear C^* -algebra and G is an amenable group, then $A \rtimes_{\alpha} G$ is nuclear. We present the analogue for groupoids here.

Theorem 1 (L., 2012) If (A, G, α) is a groupoid dynamical system with A nuclear and G amenable, then the crossed product $A \rtimes_{\alpha} G$ is nuclear.

The idea of the proof is similar to Green's original one for group crossed products.

group crossed products. • For any C^* -algebra B, there is a canonical surjection

$$\kappa: (A \rtimes_{\alpha} G) \otimes_{\max} B \to (A \rtimes_{\alpha} G) \otimes_{\sigma} B.$$

It suffices to show that κ is injective.

• The first step is to verify that

$$(A \rtimes_{\alpha} G) \otimes_{\max} B \cong (A \otimes_{\max} B) \rtimes_{\alpha \otimes \mathrm{id}} G$$

in a natural way. A similar result holds for reduced crossed products:

$$(A \rtimes_{\alpha,r} G) \otimes_{\sigma} B \cong (A \otimes_{\sigma} B) \rtimes_{\alpha \otimes \mathrm{id},r} G.$$

References

- [1] Geoff Goehle, *Groupoid crossed products*, Ph.D. thesis, Dartmouth College, May 2009.
- [2] Philip Green, The local structure of twisted covariance algebras, Acta Mathematica **140** (1978), 191–250.
- [3] Eberhard Kirchberg, Commutants of unitaries in UHF algebras and functorial properties of exactness, Journal für die Reine und Angewandte Mathematik **452** (1994), 39–77.
- [4] Aidan Sims and Dana P. Williams, Amenability for Fell bundles over groupoids, arXiv:1201.0792 [math.OA], January 2012.
- [5] Dana P. Williams, Crossed products of C*-algebras, Mathematical Surveys and Monographs, no. 134, American Mathematical Society, Providence, RI, 2007.