
Dartmouth College
Hanover, NH

HONORS THESIS

Paula X. Chen

Neural Spike Sorting Algorithms
for Overlapping Spikes

Department of Mathematics

Professor Alexander H. Barnett, advisor
Submitted in partial fulfillment of a Bachelor of Arts in Mathematics

May 2017

Acknowledgments

I extend my deepest gratitude to my advisor, Professor Alexander H. Barnett, for his
endless expertise, guidance, and patience. His flexibility and constant communication
demonstrate his dedication to teaching and that collaboration is not bounded by state
(or at times, international) lines. Needless to say, without him, this thesis would not
have been completed. Additionally, I thank my family for their lifelong support and
for inspiring me to be passionate about math, even when it wasn’t my strong suit; my
friends for enduring a year of me geeking out about formatting, MATLAB, and math-
related stories that probablyweren’t as amusing as I found them to be; and theKaminsky
Family Fund Award for allowing me to travel to the Simons Foundation in New York
and get a taste of life working in the math industry.

i

Title: Neural Spike Sorting Algorithms for Overlapping Spikes

Author: Paula X. Chen

Department: Department of Mathematics, Dartmouth College

Thesis Advisor: Alexander H. Barnett, Associate Professor of Mathematics

Abstract: One of the key, unsolved problems in spike sorting is that of overlapping
spikes. This project explores different variants of greedy algorithms for spike sort-
ing to address this problem. In particular, this project defines simple greedy, forward-
backward greedy, and greedy with pairs algorithms for sorting overlapping spikes. Us-
ing toy models, we ultimately show that greedy with pairs is the most promising of
the introduced algorithms and represents a reasonable compromise between sorting ac-
curacy and computational efficiency. We also test our algorithms on real signals and
discuss the issues in assessing sorting accuracy when no ground truth is available for
comparison.

Keywords: spike sorting, overlapping spikes, greedy algorithms

ii

List of Symbols and Abbreviations

Symbol/
Abbreviation Description

k number of known spike types
ns number of time shifts
N number of time samples per clip
T firing time, center of the spike
t any sample time within a clip
η noise level, 1/SNR

SNR signal-to-noise ratio
H N -component noise vector, ∼ N (0, η2IN)
fi N -component vector, known (synthetic) spike shape i
gi N -component vector, real spike shape i
γi probability of fi appearing in a clip/

expected firing rate of neuron i
y N -component signal vector
λi penalty for detecting spike shape i

iii

Contents

Acknowledgments i

Abstract ii

List of Symbols and Abbreviations iii

1 Introduction 1
1.1 Model Assumptions and Simplifications 2
1.2 Error Analysis . 3

2 Basic Spike Detection 5

3 The Greedy Algorithm for Spike Sorting 9
3.1 Defining the Simple Forward Greedy Algorithm 9
3.2 Brute-Force Fitting . 10
3.3 Decision Boundaries in the Two-Spike Case 10
3.4 Results (No Time Shifts) . 14

4 The Forward-Backward Greedy Algorithm 16
4.1 The Backward Greedy Algorithm . 17

4.1.1 Decision Boundaries in the Two-Spike Case 18
4.2 Defining the Forward-Backward Greedy Algorithm 19
4.3 Results . 21

5 Time-Shifted Spikes 23
5.1 Brute-Force Fitting with Time Shifts 23
5.2 The Forward Greedy Algorithm with Pairs 24
5.3 Results for Time-Shifted Spikes . 24
5.4 Penalty for Detecting Multiple Spikes 26
5.5 Results with Penalty . 28

6 Real Data 31
6.1 Sorting Synthesized Clips using Real Spike Shapes 32
6.2 Sorting Real Clips . 34

v

6.2.1 Results: Comparing to Patch Clamp Recordings 34
6.2.2 Results: Comparative Algorithm Performance 35

7 Further Work 37

8 Conclusions 38

References 40

vi

Chapter 1

Introduction

In order to understand how the brain works, we begin by studying the firing of individual
neurons. The most common method for measuring neural firing is direct electrical
recording, which uses electrodes to record the voltage patterns of nearby neurons [1].
Each neuron yields a characteristic electrical signal, known as a spike. Thus, spike
sorting, the grouping of spikes by shape, can be used to match measured signals to
their generating neurons. More precisely, spike sorting extracts the firing times and
corresponding neuron labels of noisy electrophysiological recordings. In practice, spike
sorting has been used to study retinal function as well as learning and memory in the
hippocampus.

One of the major problems in spike sorting is that of overlapping spikes. When nearby
neurons fire at similar times, their corresponding spike signals overlap. If two nearby
spikes consistently fire synchronously, wewould suspect that such neurons are function-
ally related. The primary challenges of overlapping spikes are that one, it can be difficult
to determine whether a signal is the result of overlapping spikes or some unique single
spike; and two, once a single-spike explanation is ruled out, there is no clear method
for determining which spikes are present [6].

Additionally, the problem very quickly becomes computationally-intensive. Given k
spike types, there are 2k possible combinations. But the firing times of the overlapping
spikes are not necessarily known. Thus, in testing ns time shifts, the problem difficulty
increases to maximally O(2kns). It is clear that in addressing overlapping spikes with
time shifts, we need a method that is not only accurate, but efficient, as well.

The outline for our project is as follows. Before we actually sort spikes, we first address
the question of how to determine whether or not a clip contains a spike. Once we
answer that question, we then develop algorithms for sorting spikes. First, we develop
a basic greedy algorithm for spike sorting and compare its performance to a brute-force
method, which represents the globally optimal fit. We then show that while the greedy
algorithm is markedly more efficient than brute-force fitting, it is not as accurate as
brute-force fitting, especially when time shifts are introduced. After discussing a few
modifications and variants, we ultimately propose that the greedy algorithm with pairs

1

0 5 10 15 20
−1

0

1

2

Sample Time

S
ig

n
a

l
A

m
p

lit
u

d
e

0 5 10 15 20
−2

−1

0

1

2

Sample Time

S
ig

n
a

l
A

m
p

lit
u

d
e

With Noise

Without Noise

Figure 1.1: Sample clip containing overlapping spikes with and without normally-
distributed iid noise (η = 0.4 or η = 0, respectively). This sample depicts the overlap
of spikes f1 (T = 9) and f4 (T = 5).

is a viable solution for sorting overlapping spikes with time shifts. Finally, we test our
algorithms on real spikes and discuss how to assess sorting accuracy in the absence of
a ground truth.

1.1 Model Assumptions and Simplifications
In practice, signals are recorded using multichannel (i.e. multielectrode) arrays. For
simplicity, we consider only one channel of data at a time. We also reduce the signal
to clips, or small time windows of length N . Clips are assumed to be chosen (by algo-
rithms not discussed here) such that suspected spikes are more or less centered within
the clip. We define the center of the spike to be the firing time T of the spike. Note that
we use T specifically to denote the firing time, and t to denote any sample time within
a clip.

In practice, the number of spike types k is an unknown value. Here, we assume that
we have k known spike type templates. Unless otherwise stated, we run our algorithms
on synthetic spikes (Figure 1.2). These spike shapes are generated as either Gaussians
or Gaussian derivatives. In general, assuming a Gaussian distribution is a reasonable
and commonly used approach for spike sorting algorithms [6]; notably, this assumption
also allows for simpler probabilistic analysis and models for the data. In practice, these
spike type templates are extracted as the mean voltage waveforms.

Additionally, we also assume iid, Gaussian noise. Noise vectors H are generated such
thatH ∼ N (0, η2IN) and are additive to the true spike shapes. Realistically, we would
not expect noise to be iid and uncorrelated since background noise generally consists
of the signals of spikes further away from the electrodes [6]. We make this assumption
in order to allow for Bayesian among other probabilistic models, noting that this as-
sumption is not uncommon among others using similar approaches [3, 4]. In practice,

2

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

f
1
 (γ

1
 = 0.5)

f
2
 (γ

2
 = 0.3)

f
3
 (γ

3
 = 0.1)

f
4
 (γ

4
 = 0.05)

Figure 1.2: Synthetic spike types used.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

actual spikes

correct
(sensitivity)

wrong

miss
(type II)

detected spikes

correct
(precision)

wrong

false positive
(type I)

Figure 1.3: Sample error fraction bars.

noise levels can be extrapolated using band pass (i.e. amplitude) filtering or from clips
determined to contain no spikes. Since we use spike amplitudes that are maximally 1
and minimally −1, we interpret the noise level η as corresponding to 1/SNR, where
SNR is the the signal-to-noise level. Note that this interpretation is also only possible
when noise is assumed to be Gaussian.

Neurons vary in firing rates, usually ranging from from 1 to 100 Hz. We use expected
firing rates that range from γ = 0.5 (i.e. a frequently firing neuron) to γ = 0.05 (i.e. an
infrequently firing neuron) in order to model these variations. This γ parameter could
also be easily extrapolated experimentally.

Neural firing includes a refractory period; after a neuron has fired, there is a short period
of time during which the neuron cannot fire again. Refractory periods usually last about
2 ms. Typically, samples are recorded at a rate of 10-30 kHz. Thus, a refractory period
of 2 ms is equivalent to approximately 20-60 time samples. Since we use N = 20, we
can assume that no spike type can appear more than once per clip.

1.2 Error Analysis
As a measure of algorithm performance, we use error fractions for actual and detected
spikes (Figure 1.3). For both actual and detected spikes, we interpret the correct rates
to be the fraction of spikes that are both present and detected correctly. The fraction of
actual spikes that is correct is also referred to as the sensitivity; the fraction of detected
spikes that is correct is also referred to as the precision. For both actual and detected
spikes, the wrong rates represent spikes that are present but are incorrectly identified.
The miss rate (type II error) represents the fraction of actual spikes that are not detected.
The false positive rate (type I error) represents the fraction of detected spikes that are
not actually present.

We represent these error fractions via bar graphs (see Figure 1.3). For all experiments
using our synthesized spike types, the error bars of these bar graphs represent the stan-
dard deviation of 5 trials of 200 runs each. We calculate the standard deviation s as

3

follows:

s =

√∑5
i=1(xi − x̄)2

5
,

where the xi’s represent the observed values and x̄ is the mean value. Note that we
divide by

√
5, instead of

√
4, since our estimation of the sample standard deviation

involves all 1000 samples used.

4

Chapter 2

Basic Spike Detection

In this chapter, we consider the detection of single spikes. Namely, we need to be able
to distinguish between 0 and any known spike f given iid, Gaussian noise. Thus, (in
this chapter only) we use the following error matrix:

Table 2.1: Error Matrix for Single Spike Detection

Consider a signal vector y. In this binary case, our generative model for y is given by

y =

{
0 + H for 0 spikes
f + H for 1 spike,

where H ∼ N (0, η2IN) is a random noise vector. Since the elements of H are iid and
normally distributed, we have that

p(H) =
N∏
j=1

1√
2πη2

e
−
H2
j

2η2 =
1√
2πη2

e
− ‖H‖

2

2η2 .

Thus, with the addition of noise, signals containing no spike form a Gaussian blob
centered at 0, and signals containing f form a Gaussian blob centered at f (Figure 2.1).
We then determine whether or not y contains a spike using linear classifiers. We do this
by setting a threshold Ω and defining a detection vector (i.e. linear classifier) ω, such

5

−5 0 5
−5

0

5

0

f

0
f

Figure 2.1: Gaussian blobs of signals containing either 0 or f plus iid, Gaussian noise.
The dotted line represents the decision hyperplane.

−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(Ψ) →

(no spike)

← p(Ψ)

(1 spike)

Ω
o

p
t

Ψ < Ω
opt

Ψ ≥ Ω
opt

Ψ

p
d
f

Figure 2.2: Diagram of spike detection via linear classifiers.

that if ωTy ≥ Ω, then we conclude that f is present; if ωTy < Ω, then we conclude that
no spike is present. We refer to Ψ = ωTy as the detection parameter.

Proposition 1. ω = cf is the optimal detection vector.

Proof. Note that the detection parameter can be written as

Ψ = ωTy =

{
ωTH for 0 spikes
ωT (f + H) for 1 spike.

Thus, the expected value of Ψ is

E(Ψ) =

{
E(ωTH) = 0 for 0 spikes
E(ωT f + ωTH) = E(ωT f) + E(ωTH) = ωT f for 1 spike.

6

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

True Negative
False Positive (Type I)
Missed (Type II)
Correct

(a) Ω = 0.8

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

True Negative
False Positive (Type I)
Missed (Type II)
Correct

(b) Ω = Ωopt ≈ 1.2660

Figure 2.3: Error fractions for detecting spikes using linear classifiers. Error fractions
are calculated as the column-normalized values of Table 2.1. The solid lines represent
the theoretical curves.

The variance of Ψ is

V (Ψ) =

{
V (ωTH) = ω2

1η
2 + · · ·+ ω2

Nη
2 = ‖ω‖2η2 for 0 spikes

V (ωT f) + V (ωTH) = 0 + ‖ω‖2η2 = ‖ω‖2η2 for 1 spike.

Let σ = ‖ω‖η. Then, the pdf for Ψ is

p(Ψ) =

 1√
2πσ2

e−
Ψ2

2σ2 for 0 spikes
1√
2πσ2

e−
(Ψ−ωT f)2

2σ2 for 1 spike.

Note that the pdf for the 0-spike case overlaps with that for the 1-spike case at Ψopt =
1
2
ωT f . The optimalω shouldminimize this overlap, i.e. maximizeΨopt = 1

2
ωT f (Figure

2.2).

Using Lagrange multipliers and the constraint ‖ω‖2 = 1, we have the following system
of equations

∇Ψopt = λ∇‖ω‖2

‖ω‖2 = 1.

Solving this system of equations, we get that ω = 1
4λ
f , where λ = ± 4

‖f‖ . By defining
c = ‖f‖

16
, we get the desired result.

Note that the above proof also shows that the optimal threshold is

Ωopt = Ψopt =
1

2
ωT f =

1

2
‖f‖.

7

This application of linear classifiers demonstrates that spike detection is essentially just
a maximum likelihood problem.

Figure 2.3 shows the error fractions for detecting spikes using the linear classifier ω = f
and various thresholds. The theoretical curves are calculated as follows:

True Negative =
1

2
+

1

2
erf
(

Ω

σ
√

2

)
, False Positive =

1

2
− 1

2
erf
(

Ω

σ
√

2

)

Missed =
1

2
+

1

2
erf
(

Ω− Ωopt

σ
√

2

)
, Correct =

1

2
− 1

2
erf
(

Ω− Ωopt

σ
√

2

)
.

As expected, the experimental error fractions match the theoretical values. Note that as
SNR = 1/η approaches 0, all the error fractions approach 1/2. This result corresponds
to the fact that when noise levels are very high, spike detection is essentially equivalent
to the flip of a coin. We also note that as η = 1/SNR approaches 0, the correct and
true negative rates approach 1, while the false positive and miss rates approach 0. This
result corresponds to the fact that as noise levels approach 0, spike detection performs
increasingly more accurately.

8

Chapter 3

The Greedy Algorithm for Spike Sorting

The greedy algorithm is a well-established method for solving computationally expen-
sive (i.e. NP-hard or exponentially-hard) problems. The greedy algorithm approxi-
mates the globally optimal solution by making the locally optimal choice at each step.
The greedy algorithm is unidirectional, meaning that it cannot undo any of its past
choices. Thus, if the locally optimal choices lead the wrong path, the greedy algorithm
will fail to find the globally optimal solution.

In this chapter, we establish a simple forward greedy algorithm for spike sorting. For
comparison, we also create a brute-force algorithm, which takes an exhaustive ap-
proach, to represent globally optimal fitting. In the following chapters, we introduce
variations of greedy aimed at improving the algorithm accuracy. Note that in this chap-
ter, we define and test our algorithms on spikes without time shifts.

3.1 Defining the Simple Forward Greedy Algorithm

We define the simple forward greedy algorithm as beginning with no spikes detected
and then detecting optimal spikes, one-by-one. Note that we specifically use the term
"forward" to distinguish this algorithm from a later variant (namely, the backward
greedy algorithm). Throughout the remainder of this paper, we will use the terms "sim-
ple greedy", "simple forward greedy", and "forward greedy" interchangeably to refer to
the algorithm we define here.

Consider a signal vector y. Let f1, f2, ..., fk represent k known spike shapes, and let F
be an index set for the set of detected spikes. Then, we define the optimal spike to be
the spike shape fI that minimizes the least squared residual. This spike is given by the
index

I = argmin
i∈{1,2,...,k}−F

‖y − fi‖22, (3.1)

provided that

9

‖y − fI‖|2 ≤ ‖y‖2 (3.2)

Thus, if the above condition is satisfied, we accept (detect) spike shape fI as present in
the signal vector, we update the signal vector (y = y − fI), and the algorithm contin-
ues. Conversely, if fI fails to satisfy this condition, then we conclude that there is no
optimal spike, and the algorithm terminates. Pseudocode for simple greedy is outlined
in Algorithm 1 below. The computational effort for simple greedy is O(k).

3.2 Brute-Force Fitting
Throughout this paper, we define brute-force fitting algorithms as testing every possible
combination of spikes. We consider the results of brute-force fitting to represent the
globally optimal solution. Because brute-force fitting takes an exhaustive approach, it
is notably inefficient. Without time shifts, the brute-force algorithm always requires 2k

steps. Thus, we consider an ideal algorithm as matching the accuracy of brute-force
fitting but significantly more efficient.

3.3 Decision Boundaries in the Two-Spike Case
Consider the k = 2 case. Let y be the signal vector, and f1, f2 be the two known spike
shapes. Then, we can predict the performance of the simple forward greedy algorithm
by deriving the decision boundaries for the four possible spike combinations: 0, f1, f2,
and f1+2. These decision boundaries exist in RN and represent the regions of points
closest to each combination.

Lemma 2. If ‖f1 − f2‖ ≤ ‖f1 + f2‖, then the simple forward greedy algorithm yields
the globally optimal solution.

Algorithm 1: Simple Forward Greedy
Inputs : y = input signal vector, f1, ..., fk = known spike types
Output : F = indices of detected spikes

s = 0;
while s = 0 do

I = argmin
i∈{1,...,k}−F

‖y − fi‖2 # detecting spike type I minimizes LSE;

δf = ‖y‖2 − ‖y − fI‖2 # improvement;

if δf ≥ 0 then
F← F ∪ {I};
y← y − fI ;

else
s = 1;

end
end

10

Proof. Simple forward greedy fitting begins with no spikes detected. To prove the
desired result, we consider two cases.

Case 1: ‖y− f1‖2 < ‖y− f2‖2

In this case, we clearly have that

1 = argmin
i∈{1,2}

||y − fi||22 .

Therefore, the first step of greedy fitting detects spike type f1 (Figure 3.1a). Next, the
algorithm decides whether or not to add f2, which creates a decision boundary between
f1 and f1 + f2 (Figure 3.1b).

Case 2: ‖y− f1‖2 > ‖y− f2‖2

In this case, we clearly have that

2 = argmin
i∈{1,2}

||y − fi||22 .

Therefore, the first step of fitting detects spike type f2 (Figure 3.2a). Next, the algorithm
decides whether or not to add f1, which creates a decision boundary between f2 and
f1 + f2 (Figure 3.2b).

Combining the decision boundaries we found in Cases 1 and 2, we see that we recover
those for brute-force fitting, i.e. those for globally optimal fitting (Figure 3.3).

(a) Detect f1 (b) Detect f1 + f2 (c) Final Boundaries

Figure 3.1: Decision Boundaries for Simple Greedy in Case 1: ‖y− f1‖2 < ‖y− f2‖2.

(a) Detect f2 (b) Detect f2 (c) Final Boundaries

Figure 3.2: Decision Boundaries for Simple Greedy in Case 2: ‖y− f1‖2 > ‖y− f2‖2.

11

(a) Brute-Force Fitting (Theoretical) (b) Simple Forward Greedy (Theoretical)

−5 0 5
−5

0

5

Brute−Force Fitting
−5 0 5

−5

0

5

Simple Forward Greedy

f
1

f
2

f
1+2

0
f
1

f
2

f
1+2

0

(c) Experimental Decision Boundaries

Figure 3.3: Decision boundaries for simple greedy if ‖f1 − f2‖ ≤ ‖f1 + f2‖ (condition
for Lemma 2). Note that the decision boundaries are the same for both algorithms.

(a) Brute-Force Fitting (Theoretical) (b) Simple Forward Greedy (Theoretical)

−5 0 5
−5

0

5

Brute−Force Fitting

−5 0 5
−5

0

5

Simple Forward Greedy

f
1

0 f
1

f
1+3f

3
f
3

f
1+3

0

(c) Experimental Decision Boundaries

Figure 3.4: Decision boundaries for simple greedy if ‖f1 − f2‖ > ‖f1 + f2‖ (condition
for Lemma 3). Note that the decision boundaries differ between algorithms.

12

As a direct consequence of Lemma 2, if ‖f1− f2‖ ≤ ‖f1 + f2‖, then the simple forward
greedy algorithm and brute-force fitting will identify the same set of spike shapes.

Lemma 3. If ‖f1 − f2‖ > ‖f1 + f2‖, then there are input signals for which the simple
forward greedy algorithm does not yield the globally optimal solution.

Proof. We derive the decision boundaries for the simple forward greedy algorithm us-
ing the same method as in the proof for Lemma 2. However, the key difference is that
the condition ‖f1− f2‖ > ‖f1 + f2‖ results in an enlarged decision region for the origin
at the first step of fitting (Figure 3.4).

As a direct consequence of Lemma 3, if ‖f1− f2‖ > ‖f1 + f2‖, then the simple forward
greedy algorithm will yield a higher false negative (miss) rate than brute-force fitting.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Brute-Force Fitting

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Simple Forward Greedy

Figure 3.5: Error fractions for sorting spikes (no time shifts).

13

3.4 Results (No Time Shifts)

In this experiment, we used various combinations of the four synthesized spike shapes,
all centered at T = 10, as they are shown in Figure 1.2. Figure 3.5 shows the results
for 5× 200 runs per noise level tested.

In Figure 3.5, we see that brute-force fitting has a higher false positive rate and a lower
miss rate than simple greedy across all noise levels. Empirical investigation into these
results (i.e. looking at a limited number of clips for which either algorithm fails) sug-
gests that this discrepancy is due to brute-force detecting the combination f1+3 more
often than simple greedy when f1+3 yields the minimal least squares residual; because
simple greedy can only detect spikes one-by-one, there are cases in which it is unable

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

Actual Signal (η = 0.3)

Brute−Force Fitting

Simple Greedy

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample Time

A
b
s
o
lu

te
 R

e
s
id

u
a
l

Brute−Force Fitting

Simple Greedy

(a) Sample clip of simple greedy missing spikes f1+3. The actual signal consists of f1+2+3 with
noise (η = 0.3), which brute-force fitting correctly detects. Left: Actual and detected spike
signals. Right: Absolute residual between the detected and actual signals.

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

Actual Signal (η = 0.5)

Brute−Force Fitting

Simple Greedy

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample Time

A
b
s
o
lu

te
 R

e
s
id

u
a
l

Brute−Force Fitting

Simple Greedy

(b) Sample clip of brute-force overfitting noise to f1+3. The actual signal contains no spikes
(η = 0.5), which simple greedy correctly identifies. Left: Actual and detected spike signals.
Right: Absolute residual between the detected and actual signals.

Figure 3.6: Sample clips showing the difference in detection by Brute-Force Fitting vs.
the Simple Greedy Algorithm.

14

to detect the pair f1+3. We propose that this results as a consequence of Lemma 3, the
conditions for which f1 and f3 satisfy. For example, based on our empirical investiga-
tion, simple greedy seems more prone to incorrectly detecting 0 (instead of f1+3) at
higher noise levels than brute-force fitting. The false positive and miss rate patterns
then follow directly from these proposed trends. This suggests that in order to reduce
simple greedy’s missed rates, it may be helpful to have a greedy variant that also tests
pairs of spikes.

15

Chapter 4

The Forward-Backward Greedy Algorithm

As we discussed briefly at the beginning of Chapter 3, the greedy algorithm can some-
times commit to the wrong path and thus fail to find the globally optimal solution.
Consequently, it may be useful to have a variant of greedy that allows for some degree
of bidirectionality.

For this purpose, Zhang [8] introduces the forward-backward greedy algorithm, which
uses forward greedy steps to detect spikes and then adaptively applies backward greedy
steps to remove potentially incorrectly detected spikes. In particular, the forward-
backward greedy algorithm is designed to address the scenario shown in Figure 4.1
[8]. In this scenario, a signal vector y, which is actually a linear combination of f5 and
f6, is incorrectly fit to f7. Note this scenario resembles that in Figure 3.6a, in which sim-
ple greedy misses f1+3. According to Zhang [8], in this scenario, the forward-backward
algorithm should act as follows: (1) forward greedy steps first detect f7 and then detect
f5 and f6; (2) f7 is removed by a backward greedy step.

In this chapter, we show that the forward greedy algorithm as we have designed it (see
Algorithm 1) fails at step (1) since it is unable to detect both f7 and f5+6. Based on
outside literature [8], we then propose that continuous spike amplitude weighting may
be required in order to allow the forward-backward algorithm to work as proposed.

Figure 4.1: Model of the problem that the forward-backward algorithm is designed to
solve.

16

4.1 The Backward Greedy Algorithm
As it serves as one of the basis algorithms for the forward-backward greedy algorithm,
it is essential that we define the backward greedy algorithm. The backward greedy
algorithm begins with all spikes detected and then optimally removes spikes, one-by-
one (Algorithm 2).

Let F be an index set for the detected spike shapes. Then, the optimal spike to remove
is fI , where the index I is given by

I = argmin
i∈F

∣∣∣∣∣∣
∣∣∣∣∣∣y −

∑
j∈F−{i}

fj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

, (4.1)

provided that ∣∣∣∣∣∣
∣∣∣∣∣∣y −

∑
j∈F−{I}

fj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ‖y‖2. (4.2)

There are two notable consequences of the definition of the backward greedy algorithm.
First, the backward greedy algorithm only makes sense for sorting spikes without time
shifts; once time shifts are introduced, the concept of beginning with "all spikes de-
tected" has no clear, logical definition.

Secondly, on its own, the backward greedy algorithm is an impractical approach to spike
sorting. Just as for forward greedy, the computational effort for the backward greedy

Algorithm 2: Backward Greedy
Inputs : y = input signal vector, f1, ..., fk = known spike types
Output : F = indices of detected spikes

F = {1, . . . , k} # begin will all spike types found;
YF =

∑
j∈F fj # detected spike signal;

s = 0;
while s = 0 do

J = argmin
j∈F

‖YF − fj − y‖2 # removing type J minimizes LSE;

δb = ‖y‖2 − ‖YF − fJ − y‖2 # improvement;

if δb ≥ 0 then
F ← F − {J};
YF ← YF − fJ ;

else
s = 1;

end
end

17

algorithm is between O(k) and O(k2). However, in practice, backward greedy is more
likely to require O(k2) effort. Realistically, we expect that overlapping spikes contain
at most 2-3 spikes. Thus, if k is large, then more iterations will be required to remove
extraneous spikes (i.e. to implement backward greedy) than to add the necessary spikes
(i.e. to implement forward greedy).

4.1.1 Decision Boundaries in the Two-Spike Case
Using the samemethod as in §3.3, we derive decision boundaries to prove the following
two lemmas.

Lemma 4. If ‖f1 − f2‖ ≤ ‖f1 + f2‖, then the backward greedy algorithm yields the
globally optimal solution.

As a direct consequence of Lemmas 2 and 4, if ‖f1−f2‖ ≤ ‖f1+f2‖, then the backward
greedy algorithm, simple forward greedy algorithm, and brute-force fitting will identify
the same set of spike shapes.

Lemma 5. If ‖f1− f2‖ > ‖f1 + f2‖, then there are input signals for which the backward
greedy algorithm does not yield the globally optimal solution.

As a direct consequence of Lemma 5, if ‖f1−f2‖ > ‖f1+f2‖, then the backward greedy
algorithm will yield a higher false positive rate than brute-force fitting.

(a) Brute-Force Fitting (Theoretical) (b) Backward Greedy (Theoretical)

−5 0 5
−5

0

5

Brute−Force Fitting

−5 0 5
−5

0

5

Backward Greedy

f
2

f
1

f
2f

1+2
f
1+2

f
1

0 0

(c) Experimental Decision Boundaries

Figure 4.2: Decision boundaries for backward greedy if ‖f1−f2‖ ≤ ‖f1+f2‖ (condition
for Lemma 4). Note that the decision boundaries are the same for both algorithms.

18

(a) Step 1 Boundaries (b) Detect f2 (c) Detect f1 (d) Overlay (b) and (c)

Figure 4.3: Deriving the decision boundaries for backward greedy if ‖f1− f2‖ > ‖f1 +
f2‖ (condition for Lemma 5).

(a) Brute-Force Fitting (Theoretical) (b) Backward Greedy (Theoretical)

−5 0 5
−5

0

5

Brute−Force Fitting

−5 0 5
−5

0

5

Backward Greedy

f
3

f
1+3

f
1

0 0

f
3

f
1+3

f
1

(c) Experimental Decision Boundaries

Figure 4.4: Decision boundaries for backward greedy if ‖f1−f2‖ > ‖f1+f2‖ (condition
for Lemma 5). Note that the decision boundaries differ between algorithms.

4.2 Defining the Forward-BackwardGreedyAlgorithm
The forward-backward greedy algorithm is implemented by using forward greedy steps
(see Algorithm 1) to detect spikes one-by-one and then adaptively applying backward
greedy steps (see Algorithm 2) to remove extraneously detected spikes. The optimal
spike in the forward steps are defined identically as in the simple forward greedy model.
Namely, the optimal spike to add is fI , where the index I is given by

I = argmin
i∈{1,2,...,k}−F

‖y − fi‖22, (4.3)

provided that

19

δ
(I)
f = ‖y‖2 − ‖y − fI‖|2 ≥ 0, (4.4)

where δ(I)f is the improvement in adding fI and F is the index set for the detected spike
shapes. Then, the optimal spike to remove in the backward steps is fJ , where the index
J is given by

J = argmin
i∈F

∣∣∣∣∣∣
∣∣∣∣∣∣y −

∑
j∈F−{i}

fj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

, (4.5)

Algorithm 3: Forward-Backward Greedy
Inputs : y = input signal vector, f1, ..., fk = known spike types
Output : F = indices of detected spikes

ν = 0.5 # max LSE increase in backward step;
n = 1 # number of found spikes + 1;
s = 0;
while s = 0 do

forward step (detect spikes)
I =argmini∈{1,...,k}‖y − fi‖2 # detecting type I minimizes LSE;
δf (n) = ‖y‖2 − ‖y − fI‖2 # improvement from forward step;

if δf (n) ≥ 0 then
accept spike
F ← F ∪ I;
y← y − fI ;
n← n+ 1;

else
s = 1;

end

backward step (remove extraneously detected spikes)
sb = 0;
while sb = 0 do

J =argminj∈F‖y + fj‖2 # removing type J has min LSE;
δb = ‖y + fJ‖2 − ‖y‖2 # error increase from removing type J ;

if δb ≤ ν · δf (n− 1) then
remove spike
F ← F − {J};
y← y + fJ ;
n← n− 1;

else
sb = 1;

end
end

end

20

provided that

δ
(J)
b =

∣∣∣∣∣∣
∣∣∣∣∣∣y −

∑
j∈F−{J}

fj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

− ‖y‖2 ≤ δ
(I)
f · ν, (4.6)

where δ(J)b is the increase in error from removing fJ and ν ≥ 0 is a parameter constrain-
ing the size of this increase. The efficiency of the forward-backward greedy algorithm
is proven by Zhang [8].

4.3 Results
In Figure 4.5, we see that there is no difference in sorting by the simple greedy algo-
rithm versus the forward-backward greedy algorithm. This is because the backward
steps of the forward-backward greedy algorithm are never implemented. In the exam-

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Simple Forward Greedy

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Forward-Backward Greedy

Figure 4.5: Error fractions for spike sorting by forward greedy versus forward-backward
greedy (no time shifts).

21

ple discussed at the beginning of this chapter (Figure 4.1), we showed that the desired
result of the forward greedy steps is to first detect f7 and then detect f5+6. The main
issue with this model is that this requires forward greedy to detect two spikes (f5+6) in
one step, whereas our forward greedy algorithm can only detect one spike per step.

Based on the outside literature [8], we propose that introducing a parameter β will solve
this issue, where β is a k-element vector of amplitude weights. In terms of our current
models, the elements of β only take on the values 0 or 1. Our proposed solution is to
allow the elements of β to take on values continuously on [0, 1]. Let F be a k × N
matrix, such that the ith row is the spike type fi. Then, our generative model for a signal
y is now given by

y = βF + H,

whereH is a noise vector. By allowing the values of β to vary continuously, we propose
that forward greedy will be able to overfit the data as desired. It is, however, a little
unclear what the practical interpretation of these continuous β values would be.

22

Chapter 5

Time-Shifted Spikes

Up until now, we have been using combinations of spikes centered at the same sample
time (T = 10). In reality, however, templates for known spike shapes may not nec-
essarily be perfectly centered. Furthermore, the time shifts for overlapping spikes are
generally unknown. Therefore, we introduce time shifts by allowing the firing times
of the spikes in the actual signal to be real-valued and lying within the interval [5, 15]
(assuming a clip length ofN = 20). Note that this interval does not span the entire clip
due to the nature of how clips are chosen; it would be unrealistic for a clip to contain
spikes that fell too far off either end.

In our sorting algorithms, we test discrete time shifts on the interval [3, 17] with a grid
spacing of ∆t = 2. Using this grid spacing, we consider detected shifts Tdet = Tact ±
1 as correctly fitted. Although using a finer grid spacing would yield more accurate
fitting, in practice, it is more important to identify the actual spike type than the exact
time shift; thus, we reason that in favor of algorithm efficiency, using ∆t = 2 is a
reasonable assumption.

In terms of implementation, our sorting algorithms treat each time shift as a separate
spike shape. Thus, given k spike types and ns time shifts, our algorithms effectively
operate on kns individual spike shapes. In this chapter, we see that time shifts not
only increase the computational difficulty of the problem, but also introduce additional
accuracy challenges.

5.1 Brute-Force Fitting with Time Shifts

Since we are treating each time shift as a separate spike shape, it may be tempting to say
that brute-force fitting now faces a 2kns-hard problem. However, because the refractory
period prevents the same spike type from appearing more than once in a clip, we can
disregard the combinations that include multiple time shifts of the same spike type.
Therefore, the effort for brute-force scales as O(nks). Once again, we take the results of
brute-force fitting to represent the globally optimal solution.

23

5.2 The Forward Greedy Algorithm with Pairs
Even without time shifts, our results hint that it may be advantageous not to restrict
greedy fitting to testing spikes one-by-one (§3.4). Thus, especially given that introduc-
ing time shifts effectively increases the number of spike shape templates, it becomes
beneficial to take a more exhaustive approach.

We define the forward greedy algorithm with pairs as a greedy algorithm that tests
every single spike and every pair of spikes. It then follows that the effort for greedy
with pairs is minimally O(k2n2

s) steps and maximally O(k3n2
s). With the exception

of this modification, greedy with pairs is implemented identically as simple greedy, as
demonstrated by the pseudocode outlined in Algorithm 4.

5.3 Results for Time-Shifted Spikes

This experiment uses k = 4 and ns = 8. As before, we use 5×200 runs per noise level
(Figure 5.1). With time shifts, we see that at low noise levels, simple greedy yields the
highest false positive rates, but at high noise levels, brute-force fitting yields the highest
false positive rates.

Across all noise levels, simple greedy has the most wrong and the most missed. Mean-
while, brute-force fitting and greedy with pairs have similar missed and wrong rates
across all η. This reflects the fact that simple greedy is the least exhaustive of the al-
gorithms and that the addition of testing pairs allows greedy with pairs to achieve (by
these measures) a more globally optimal fit.

Algorithm 4: Greedy with Pairs
Inputs : y = input signal vector, f1, ..., fk = known spike types
Output : F = indices of detected spikes

A = {1, . . . , k, {i, j}
i,j∈{1,...,k}

i 6=j

} # list of combinations to test;

s = 0;
while s = 0 do

I = argmin
i∈A

‖y − fi‖2 # index/indices of optimal spike/pair;

δf = ‖y‖2 − ‖y − fI‖2 # improvement;

if δf ≥ 0 then
Remove any element of A containing any element of I;
F← F ∪ {I};
y← y − fI ;

else
s = 1;

end
end

24

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Brute-Force Fitting

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Foward Greedy with Pairs

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(c) Simple Foward Greedy

Figure 5.1: Error fractions for sorting time-shifted spikes (no penalty).

The most notable difference between the results with time shifts (Figure 5.1) and those

25

Table 5.1: Runtime and Computational Effort Scaling per Algorithm. The experimental
runtimes represent those for 6000 runs (k = 4, ns = 8).

without time shifts (Figure 3.5) is that with time shifts, the false positive rates are
markedly higher. At η ≈ 0.2 − 0.3, the false positive rates increase drastically for
all three algorithms. This means that when the noise level is approximately 1/4 the
signal amplitude, the algorithms become highly prone to fitting noise with spikes. In
fact, with η = 0.5, we see that the false positive rates are as high as 0.6 with time shifts,
versus only around 0.2 without time shifts. Based on empirical investigations into the
incorrectly sorted clips, the results suggest that overfitting of the low firing spikes (i.e.
f4, γ4 = 0.05) significantly contributes to these inflated false positive rates. Clearly, we
want a way to counter these effects.

5.4 Penalty for Detecting Multiple Spikes
As we observed in Figure 5.1, the introduction of time shifts causes a significant in-
crease in false positive rates. This increase results from having ns different possible
ways to fit each spike type. Thus, the inclusion of ns time shifts effectively lowers the
significance level required to match a signal to any given spike. In order to counteract
this effect, we introduce a penalty for detecting spikes.

LetF be the index set for the detected spike types, resulting from any sorting algorithm.
Then, our generative model for y is given by

y =
∑
i∈F

fi + H,

where H ∼ N (0, η2IN) is a random noise vector. The likelihood that this model is
correct is given by

L(y|H) = c exp

(
−‖H‖

2
2

2η2

)
,

where c is a normalization factor. In Chapter 2, we used the maximum likelihood to
determine whether or not we detect a spike. In the following penalty derivation, we will
show that using the maximal posterior probability yields a more optimal detection.

Remark. The penalty will include a factor of ns as a Bonferroni correction. In our al-
gorithms, we assume that each spike type can possibly take on ns different time shifts.

26

Thus, we have a multiple comparisons problem. The Bonferroni correction compen-
sates for these multiple hypotheses by decreasing their significance level by a factor of
1
ns

each.

Lemma 6. The penalty for detecting spike shape i is given by

λi = 2η2 log
ns(1− γi)

γi
.

Derivation. Consider the detection of spike type fi. We detect fi if p(fi|y) is the max-
imal posterior probability such that

p(fi|y) ≥ p(0|y), (5.1)

where p(0|y) is the posterior probability that signal vector y contains no spike. Recall
that Bayes’ Theorem [2] states that

p(fi|y) =
L(y|fi)p(fi)

p(y)
.

Since the expected firing rate of spike type fi is γi, the prior probability p(fi) that fi is
present is equivalent to

p(fi) =
γi
ns

∏
j∈{1,2,...,k}

j 6=i

(1− γj). (5.2)

Thus, we can rewrite Inequality 5.4 as

k exp

(
−‖y − fi‖2

2η2

)(
γi
ns

) ∏
j∈{1,2,...,k}

j 6=i

(1− γj) ≥ k exp

(
−‖y‖

2

2η2

) ∏
j∈{1,2,...,k}

(1− γj),

where k = c/p(y). Cancelling like terms, we get that

exp

(
−‖y − fi‖2

2η2

)(
γi
ns

)
≥ exp

(
−‖y‖

2

2η2

)
(1− γi).

Taking the − log of both sides and then rearranging terms yields

‖y‖2 ≥ ‖y − fi‖2 + 2η2 log

(
ns(1− γi)

γi

)
.

Note that this is equivalent to Condition 3.2, but with the additional term

λi = 2η2 log

(
ns(1− γi)

γi

)
.

27

As a result of this derivation, the original conditions for the optimal spike fI (Equations
3.1, 3.2) are replaced by

I = argmin
i∈{1,2,...,k}−F

‖y − fi‖22 + λi, (5.3)

and

‖y − fI‖|2 + λI ≤ ‖y‖2. (5.4)

Note that if η = 0 or if ns(1 − γi) = γi, then this is the same as having no penalty
(λi = 0).

Figure 5.2 shows that the addition of the penalty does indeed reduce the false positive
rate, as intended. However, the addition of the penalty also causes a fairly significant
increase in the miss rates. This implies that there is a compromise to be made between
these two error types. In practice, it will be up to the user to determine which of these
error types is less desirable at higher noise levels.

5.5 Results with Penalty
Figure 5.3 shows that the addition of the penalty significantly reduces the false positive
rates, so that they are comparable to those without time shifts. As noted at the end of the
previous section, the addition of the penalty also causes an increase in the miss rates.

Generally speaking, simple greedy does not yield particularly accurate results. At low
noise levels, it still has high false positive rates relative to the other algorithms. Addi-
tionally, the miss rates for simple greedy are also higher than those for brute-force at
all noise levels. This confirms that we need an alternative to simple greedy, especially
when sorting time-shifted spikes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

No Penalty Penalty
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

No Penalty Penalty

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

Figure 5.2: Comparing error fractions with andwithout penalty. These results represent
those for simple greedy with and without penalty, using η = 0.4.

28

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Brute-Force Fitting

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Foward Greedy with Pairs

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(c) Simple Foward Greedy

Figure 5.3: Error fractions for sorting time-shifted spikes (with penalty).

Fortunately, across all error fractions, greedy with pairs outperforms simple greedy.

29

This shows that greedy with pairs is a more promising solution for sorting overlapping
spikes with time shifts than simple greedy. Compared to brute-force, greedy with pairs
performs similarly at lower noise levels (η ≤ 0.2), but has higher miss rates and lower
false positive rates at higher noise levels (η > 0.2). The former observation confirms
that greedy with pairs approximates the globally optimal solution pretty well; the latter
observation simply reiterates that there is a compromise to be made between the miss
and false positive rates.

30

Chapter 6

Real Data

In the previous chapter, we established that greedy with pairs shows promise in sorting
synthetic spikes. In order to fully justify its practicality, we need to assess its perfor-
mance using real data. In this chapter, we analyze one channel of data from Harris,
et al [3]. First, we assess the sortability of the real spike types by sorting synthetic
clips containing combinations of time shifts of the real spike shapes. Next, we run our
algorithms on real clips and discuss ways to assess algorithm accuracy.

To prepare the data for experimentation, we use band pass filtering to visualize the
spikes. From the filtered signal, we extract clips (N = 30) and extrapolate three tem-
plate spike types. Next, we normalize the data and templates by dividing by the maxi-
mum amplitude of the templates (Figure 6.1). This normalization ensures that the noise
level η can still be interpreted as 1/SNR. Since we obviously don’t have generating
functions for the templates, we can only test integral time shifts. Specifically, our algo-
rithms test time shifts on the interval [9, 21]with a grid spacing of∆t = 2. Additionally,
our algorithms assume that γi = 0.5 for i = 1, 2, 3.

0 5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

2

4

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

g
1

g
2

g
3

(a) Raw Templates

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

g
1

g
2

g
3

(b) Normalized by Amplitude

Figure 6.1: Templates for real spike types g1, g2, and g3.

31

Sample Time

C
lip

 N
u

m
b
e
r

5 10 15 20 25 30

500

1000

1500

2000

2500
−1.5

−1

−0.5

0

0.5

1

Figure 6.2: Color Map of the Real Clips

6.1 Sorting Synthesized Clips using Real Spike Shapes
We synthesize clips containing combinations of the real spike with time shifts on the
interval [11, 19] with a grid space of ∆t = 1. Note that this interval was chosen to
resemble those of the real clips (Figure 6.2).

Figure 6.4 shows the results for sorting these synthetic clips. Since the real clips are
filtered, the contribution of noise can be assumed to be relatively low. Thus, for our
synthetic clips, we focus on the results at low noise levels. At low noise levels, we

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

Sample Time

S
ig

n
a
l
A

m
p
lit

u
d
e

Actual Signal (η = 0)

Brute−Force Fitting

Simple Greedy

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Time

A
b
s
o
lu

te
 R

e
s
id

u
a
l

Brute−Force Fitting

Simple Greedy

Figure 6.3: Sample clip for which simple greedy and brute-force fail. The actual signal
contains g2 (T = 18) and g3 (T = 18) with η = 0. Simple greedy detects g1 (T = 19)
and g2 (T = 17). Brute-force detects g1 (T = 19), g2 (T = 19), and g3 (T = 17).

32

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Brute-Force Fitting

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Greedy with Pairs

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

η

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

η

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(c) Simple Forward Greedy

Figure 6.4: Error fractions for sorting real spike types with time shifts.

observe that brute-force fitting has the highest false positive rates and that simple greedy
yields the highest wrong rates.

33

As shown in Figure 6.3, it is observed that brute-force occasionally overfits signals.
Simple greedy, meanwhile, tends to incorrectly identify g3 as either g1 or g2 (with no
empirical tendency toward one type over the other).

In general, at low noise levels, the error fractions are comparable to those for our syn-
thetic spike shapes. Thus, we conclude that these spike shapes are reasonably sortable
and do not present a problem too difficult to solve.

6.2 Sorting Real Clips

Here, we sort the real clips fromHarris, et al [3]. Since we filtered the signal, we assume
that there is little to no noise within the clips. For comparison, we run the algorithms
first using η = 0 (i.e. no penalty) and then using η = 0.2 (i.e. with penalty). The latter
value was chosen by looking at the signal amplitude at the ends of the clips (see Figure
6.2). Note that these clips are suspected to contain relatively few overlapping spikes,
and hence, are probably not the ideal data set for our purposes.

The main challenge in sorting real clips is that there is no ground truth metric for mea-
suring algorithm accuracy. To address this problem, we take two approaches.

First, we look specifically at the detection of spike type g2. Here, we have an actual
ground truth for the presence of g2 in each clip, which was acquired via patch clamp
recordings. Patch clamp recordings are intracellular recordings in which electrodes
are attached to individual neurons [7]. Thus, we can take the results of patch clamp
recordings as the ground truth for a given spike type. These recordings, by nature, do
not allow us to determine the presence of overlapping spikes.

Second, we compare the results of our algorithms against those of another algorithm
called ISO-SPLIT [5]. It is important to note that ISO-SPLIT is unable to detect over-
lapping spikes.

6.2.1 Results: Comparing to Patch Clamp Recordings

Figure 6.5 shows how well our algorithms detect spike type g2. We note that using
η = 0 versus using η = 0.2 does not significantly affect the error fractions. Note that
there is no wrong rates as this analysis only considers the detection of g2 and disregards
the detection of all other spike types. Here, the false positive rates represent how often
the algorithms detect g2 when it is not actually present.

We see that all three algorithms overfit g2 at approximately the same rates. In §6.1, we
observed that brute-force has a tendency to overfit the data using these real spike types.
Thus, it is not surprising that we observe a relatively high false positive rate; what is
surprising, however, is that with penalty (η = 0.2), there is no significant effect on the
false positive rate for brute-force. In §6.1, we also observed that simple greedy tends
to misidentify g3 as g2 or g1. Thus, some of these misidentifications could contribute
to an inflated detection rate for g2.

34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Assuming η = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Assuming η = 0.2.

Figure 6.5: Algorithm accuracy in detecting real spike type g2. The ground truth is
determined via patch clamp recordings.

6.2.2 Results: Comparative Algorithm Performance

Since these results represent the comparative sorting performance by different algo-
rithms, we modify our interpretations of the error fractions accordingly. In particular,
the correct rates now represent spikes on which the algorithms agree. The wrong rates
represent spike identities on which the algorithms disagree. We interpret the miss rates
as ISO-SPLIT detecting a spike when our algorithms detect none. Finally, we interpret
the false positive rates as our algorithms detectingmore spikes in a clip than ISO-SPLIT.
Consequently, we expect that the false positive rates represent a combination of actual
false positives and overlapping spikes.

Figure 6.6 shows that our algorithms agree pretty well with ISO-SPLIT; notably, all the
correct rates are ≥ 0.8 and the wrong rates are approximately 0. For the most part, the
miss rates for all three algorithms are also approximately 0, meaning that our algorithms
and the outside algorithm generally agree on which clips are empty or nonempty. This
shows that our algorithms detect spikes reasonably well.

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(a) Assuming η = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
A

c
tu

a
l
S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
D

e
te

c
te

d
 S

p
ik

e
s

Brute−Force Greedy
with Pairs

Simple
Greedy

Correct
Wrong
Missed (Type II)

Correct
Wrong
False Pos. (Type I)

(b) Assuming η = 0.2.

Figure 6.6: Comparative algorithm performance in sorting real clips. Error fractions
are calculated using the results of ISO-SPLIT (an algorithm that cannot detect overlap-
ping spikes) as the ground truth.

The addition of the penalty (Figure 6.6b) reduces the false positive rates, as we expect.
In Figure 6.4, we observe that at η = 0, the false positive rates are∼ 0.1 for brute-force
and greedy with pairs, and ∼ 0.02 for simple greedy. At η = 0.2, the false positive
rates are∼ 0.05 for all three algorithms. Detracting these values from the false positive
rates in Figure 6.6 and taking into account the error bars, we consider the the remaining
false positive rates to be almost negligible. Thus, as we suspected, we conclude that
these clips contain few to no overlapping spikes.

36

Chapter 7

Further Work

Our first target for future work is to adjust the forward-backward greedy algorithm so
that it works as intended. Namely, we would introduce a real-valued β parameter, where
β is a vector of spike amplitude weights. Successful implementation of this β param-
eter would determine whether or not the forward-backward greedy algorithm is worth
pursuing as a spike sorting algorithm.

In general, it would be prudent to have more robust analyses of where our algorithms
fail within our toy models. Because of time constraints, we were only able to look at a
few sample clips to infer which spike types a given algorithmmisses or overfits. Ideally,
a less empirical approach would give us a better idea of what our algorithms can handle.

Our models are highly contingent on the assumptions that noise is iid Gaussian and that
spike shapes can be approximated using Gaussians. It would be interesting to imple-
ment our algorithms so that they can handle non-Gaussian data. Namely, we would like
to adjust our algorithms so that they are able to handle correlated, non-Gaussian noise
as well as non-Gaussian spike shapes.

Finally, the real data analyzed in this paper contained few (to no) overlapping spikes.
Ideally, we would like to run our algorithms on data with a higher frequency of over-
lapping spikes, as this would be the true test of the practicality of our algorithms. Ad-
ditionally, we would like to investigate better ways to analyze the accuracy in sorting
real clips, given that ground truth metrics for real overlapping spikes do not exist.

37

Chapter 8

Conclusions

Without time shifts, we showed that simple greedy is an efficient and relatively accurate
algorithm for spike sorting. However, by only allowing simple greedy to detect one
spike at a time, it can sometimes miss a more optimal spike combination. This suggests
a need for a more exhaustive algorithm. To this end, we explored the forward-backward
greedy algorithm and a greedy with pairs algorithm.

We found that in our current implementation, the forward-backward greedy algorithm
is identical to simple greedy. We proposed that introducing a parameter for amplitude
weights may fix this result, but due to time constraints, were unable to implement this
change here.

We then looked at a greedywith pairs algorithm. We observed that with the introduction
of time shifts, greedy with pairs generally outperforms simple greedy across all error
fraction measures. Additionally, we observed that greedy with pairs is less efficient
than simple greedy, but is not unreasonably less so. Namely, greedy with pairs is still
significantly more efficient than brute-force fitting. Thus, we conclude that greedy with
pairs represents a reasonable compromise between the accuracy of brute-force fitting
and the efficiency of simple greedy.

The inclusion of time shifts introduces a multiple comparisons problem. Thus, we ob-
served that with higher noise levels, the false positive rates for all three algorithms in-
creases drastically. The introduction of a penalty for spike detection effectively reduces
the false positive rates to those without time shifts. However, the penalty also increases
the miss rates at higher noise levels. This suggests that in practice, either these higher
noise levels represent problems that are too difficult to solve or that the user must choose
which error rate is less desirable and apply the penalty correspondingly.

Finally, we were not able to draw any significant conclusions from our results from sort-
ing real clips since we used a data set included very few overlapping spikes. However,
using the real data, we were able to determine that our algorithms perform reasonably
well in comparison to other established algorithms. We also determined that our algo-
rithms fairly accurately detect single spikes. However, perhaps a different data set will

38

yield more illuminating results as to our algorithms’ accuracy in sorting overlapping
spikes.

Code (in MATLAB) for all of the sorting algorithms discussed in this paper can be
found at https://github.com/pxchen95/overlappingspikes.git.

39

https://github.com/pxchen95/overlappingspikes.git

References

[1] A.H. Barnett, J. F.Magland, and L. F. Greengard. Validation of neural spike sorting
algorithms without ground-truth information. J. Neurosci. Methods, 264:65–77,
2016.

[2] C. M. Grinstead and J. L. Snell. Introduction to Probability. Amer. Math. Soc.,
2nd edition, 2006.

[3] K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsaki. Accuracy of
tetrode spike separation as determined by simultaneous intracellular and extracel-
lular measurements. J. Neurophysiol., 84:401–414, 2000.

[4] M. Lewicki. Bayesian modeling and classification of neural signals. Neural Comp.,
6:1005–1030, 1994.

[5] J. F. Magland and A. H. Barnett. Unimodal clustering using isotonic regression:
Iso-split. pages 1–23, 2016.

[6] R. Q. Quiroga. Spike sorting. Scholarpedia, 2(12):3583, 2007.

[7] H. G. Rey, C. Pedreira, and R. Q. Quiroga. Past, present and future of spike sorting
techniques. Brain Res. Bull., 119:106–117, 2015.

[8] T. Zhang. Adaptive Forward-Backward Greedy Algorithm for Learning Sparse
Representations. IEEE Trans. Inf. Theory, 57(7):4689–4708, 2011.

40

	Acknowledgments
	Abstract
	List of Symbols and Abbreviations
	Introduction
	Model Assumptions and Simplifications
	Error Analysis

	Basic Spike Detection
	The Greedy Algorithm for Spike Sorting
	Defining the Simple Forward Greedy Algorithm
	Brute-Force Fitting
	Decision Boundaries in the Two-Spike Case
	Results (No Time Shifts)

	The Forward-Backward Greedy Algorithm
	The Backward Greedy Algorithm
	Decision Boundaries in the Two-Spike Case

	Defining the Forward-Backward Greedy Algorithm
	Results

	Time-Shifted Spikes
	Brute-Force Fitting with Time Shifts
	The Forward Greedy Algorithm with Pairs
	Results for Time-Shifted Spikes
	Penalty for Detecting Multiple Spikes
	Results with Penalty

	Real Data
	Sorting Synthesized Clips using Real Spike Shapes
	Sorting Real Clips
	Results: Comparing to Patch Clamp Recordings
	Results: Comparative Algorithm Performance

	Further Work
	Conclusions
	References

