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What is Algebraic Geometry?

Solutions to sets of polynomial equations (algebraic sets).
Irreducible ones (varieties).
Defining a topology, functions on algebraic sets, local behavior,
dimension, smoothness, etc.
Sheaves, schemes, and beyond!
Focus today: plane curves.
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Two Curves

Figure: Two cubic curves.

3× 3 = 9

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Algebraic Geometry
Intersections
Bézout’s Theorem

Two Curves

Figure: Two cubic curves.

3× 3 = 9

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Algebraic Geometry
Intersections
Bézout’s Theorem

Another Example

Figure: A circle and a quartic curve.

2× 4 = 8
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Is this a counterexample?

Figure: Parallel lines.

Where do these
intersect?

“Intersecting at infinity”
Look at projective
space.
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Is this a counterexample?

Figure: A parabola and a line.

Where do these
intersect?

They don’t “intersect at
infinity.”
x2 = −1
=⇒ x = ±

√
−1.

Look at complex
projective space.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Algebraic Geometry
Intersections
Bézout’s Theorem

Is this a counterexample?

Figure: A parabola and a line.

Where do these
intersect?
They don’t “intersect at
infinity.”

x2 = −1
=⇒ x = ±

√
−1.

Look at complex
projective space.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Algebraic Geometry
Intersections
Bézout’s Theorem

Is this a counterexample?

Figure: A parabola and a line.

Where do these
intersect?
They don’t “intersect at
infinity.”
x2 = −1
=⇒ x = ±

√
−1.

Look at complex
projective space.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Algebraic Geometry
Intersections
Bézout’s Theorem

Is this a counterexample?

Figure: A parabola and a different
line.

Do these intersect only
once?

y = x2 = 0.
x2 has a double root at 0.
Count multiplicity.
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Bézout’s Theorem

Theorem (Bézout)

Let C1 and C2 be projective plane curves of degree d1 and d2,
respectively.

Suppose that C1 and C2 do not share a common
component. Then C1 and C2 intersect in exactly d1d2 points,
counted with multiplicity.
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The Projective Plane

We define an equivalence relation ∼ on C3 \ {0} by
(a1, b1, c1) ∼ (a2, b2, c2) if and only if (a1, b1, c1) = (λa2, λb2, λc2)
for some λ ∈ C∗. Write an equivalence class as [a : b : c], so that
[a : b : c] = [λa : λb : λc] for all λ ∈ C∗.

Definition
The projective plane is

P2 := P2(C) := (C3 \ {0})/ ∼ := {[x : y : z ] : (x , y , z) 6= 0}.
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Points on the projective plane

Note that the plane A2
C := C2 sits inside P2 as

{[a : b : 1] ∈ P2 : a, b ∈ C}.

Every other point looks like [a : b : 0] (points at infinity).
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Homogeneous Polynomials

Definition
A polynomial f (x , y , z) ∈ C[x , y , z ] is called homogeneous if every
term of f has the same degree. Denote by Sd the set of
homogeneous polynomials of degree d , and 0.

Examples
x + 3y − 2z
x2 + y2 − z2

zy2 − x3 − z2x − z3

If f is a homogeneous polynomial of degree d , then for any λ ∈ C,

f (λx , λy , λz) = λd f (x , y , z)

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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Projective Plane Curves

What are the zeros of a homogeneous polynomial?

If
(a, b, c) ∈ C3 \ {0} and f ∈ Sd , then

f (a, b, c) = 0 ⇐⇒ λd f (a, b, c) = 0 for all λ ∈ C∗

⇐⇒ f (λa, λb, λc) = 0 for all λ ∈ C∗.

Definition
A projective plane curve is a set of the form

V (f ) := {[a : b : c] ∈ P2 : f (a, b, c) = 0},

where f ∈ C[x , y , z ] is homogeneous and nonzero. The degree of f
is called the degree of the curve.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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An Example (Parallel Lines)

Examples
We have two parallel lines y = 2x + 1 and y = 2x − 1. Where do
they intersect?

First, homogenize to get y − 2x − z and
y − 2x + z . These intersect when

y − 2x − z = y − 2x + z = 0.

We get 2z = 0 =⇒ z = 0. If z = 0, then we have y = 2x . If
x = 0, then (x , y , z) = (0, 0, 0), which doesn’t give a point on the
projective plane. So x is nonzero, and the intersection is at
[x : 2x : 0] = [1 : 2 : 0].
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Functions on Projective Things

Suppose we want to define polynomial/rational functions on
P2. What about [a : b : c] 7→ a?

This is not well defined: [a : b : c] = [2a : 2b : 2c], but a 6= 2a
if a is nonzero.
In general, if f (x , y , z)/g(x , y , z) ∈ C(x , y , z) is a rational
function, f /g is not well-defined at a point [a : b : c] ∈ P2.
However, if f and g are both homogeneous of the same degree
d , then for any λ ∈ C∗,

f (λx , λy , λz)

g(λx , λy , λz)
=
λd f (x , y , z)

λdg(x , y , z)
=

f (x , y , z)

g(x , y , z)
.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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Function Field of P2

Definition

The function field, or the field of rational functions, of P2 is

k(P2) := {f /g : f , g ∈ Sd for some d ∈ Z≥0, g 6= 0}.

(This really is a field.)

Examples

1
1
,

x

z
,

x3 + y3

x2y + y2z + z2x
.
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Outline
Introduction

Projective Plane Curves
Intersections

Projective Plane
Projective Plane Curves
Functions

Function Field of P2

Definition

The function field, or the field of rational functions, of P2 is

k(P2) := {f /g : f , g ∈ Sd for some d ∈ Z≥0, g 6= 0}.

(This really is a field.)

Examples

1
1
,

x

z
,

x3 + y3

x2y + y2z + z2x
.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Projective Plane
Projective Plane Curves
Functions

Function Field of P2

Definition

The function field, or the field of rational functions, of P2 is

k(P2) := {f /g : f , g ∈ Sd for some d ∈ Z≥0, g 6= 0}.

(This really is a field.)

Examples

1
1
,

x

z
,

x3 + y3

x2y + y2z + z2x
.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem



Outline
Introduction

Projective Plane Curves
Intersections

Projective Plane
Projective Plane Curves
Functions

Localization

When can we actually find the value of f /g at a point p ∈ P2?

We ask that g(p) 6= 0 (which is a well-defined thing to ask).

Definition

The local ring of P2 at p ∈ P2 is

OP2,p := {f /g : f , g ∈ Sd for some d ∈ Z≥0, g(p) 6= 0}.

(This really is a local ring.)

Examples

For p = [0 : 0 : 1], 0
1 ,

x
z ,

y
z ,

z
z ,

x2

x2+z2
∈ OP2,p.

x
y is NOT in OP2,p in this case.
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Examples

For p = [0 : 0 : 1], 0
1 ,

x
z ,

y
z ,

z
z ,

x2

x2+z2
∈ OP2,p.

x
y is NOT in OP2,p in this case.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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Defining Intersection Multiplicity

Let p = [a : b : c] ∈ P2. For simplicity, assume c 6= 0. Let C1 and
C2 be two plane curves defined by f and g , respectively.

We could replace f and g by f /zn and g/zm for appropriate n,m
so that f , g ∈ OP2,p.

Definition
The intersection multiplicity of C1 and C2 at p is

Ip(C1,C2) := dimCOP2,p/(f , g).

“Usually” this will be 0 or 1. We have

Ip(C1,C2) ≥ 1 ⇐⇒ p ∈ C1 ∩ C2.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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A Technical Detail

With p = [a : b : 1] ∈ A2 ⊂ P2 as above, we have an isomorphism

ϕ : OP2,p → C[x , y ]mp

h(x , y , z) 7→ h(x , y , 1)
H(x/z , y/z)←[ H(x , y)

where

mp := {H ∈ C[x , y ] : H(p) = 0} = (x − a, y − b) ⊂ C[x , y ]

is the maximal ideal corresponding to p. The forward map is
dehomogenization, and the inverse map is called homogenization.
This makes calculations slightly less cumbersome.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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A First Example

Examples

Suppose C1 := {f = x = 0} and C2 := {g = y = 0}. Let
p = [0 : 0 : 1].

Then

Ip(C1,C2) = dimCOP2,p/(x/z , y/z) = dimCC[x , y ]mp/(x , y).

We have a+ bx + cy + dx2 + exy + · · · ≡ a mod (x , y). So only
scalars, a 1-d vector space, so

Ip(C1,C2) = 1.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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A Non-Intersection

Examples

The curves defined by y − z and y + z (y = 1 and y = −1)
intersect, but not at p = [0 : 0 : 1] (so intersection multiplicity
should be 0).

Then the ideal (y − 1, y + 1) ⊂ C[x , y ]mp contains
y + 1− (y − 1) = 2 6∈ mp, a unit. So (y − 1, y + 1) = C[x , y ]mp is
the whole ring, so the quotient is {0} of dimension 0 over C, so

Ip(C1,C2) = 0.

In general, we see that if either f or g does not vanish at p, then
(f , g) = OP2,p, the quotient is trivial, and Ip(C1,C2) = 0.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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A Harder Example

Examples

Consider f = y − x2 and g = y (the parabola and the line). Let
u = x mod (f , g) and v = y mod (f , g).

Then

v = 0, u2 = 0,

so in C[x , y ]mp/(f , g), we are left with elements of the form

au + b

cu + d
,

with d 6= 0. But

au + b

cu + d
· −cu + d

−cu + d
=
−acu2 + (ad − bc)u + bd

d2 − c2u2 =
ad − bc

d2 u +
b

d
.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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A Harder Example (cont.)

Examples

So every element in C[x , y ]mp/(f , g) is of the form au + b for some
a, b ∈ C.

In fact, 1 and u are linearly independent over C: suppose
au + b = 0. Then ax + b ∈ (f , g), which is impossible (look at f
and g again). So Ip(C1,C2) = 2.

Figure: A parabola and a line.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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Total Number of Intersections

The total number of intersections between C1 and C2 can then be
counted as ∑

p∈P2
Ip(C1,C2).

This sum is finite as long as C1 and C2 don’t share a common
component.

Bézout’s Theorem
Let C1 and C2 be projective plane curves of degree d1 and d2,
respectively. Suppose that C1 and C2 do not share a common
component. Then ∑

p∈P2
Ip(C1,C2) = d1d2.

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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Thank You

Sorry there’s not time for a proof, but thank you for listening!
Questions?

Jacob Swenberg (Graduate Mentor: Richard Haburcak) Bézout’s Theorem
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