MATH 101: ALGEBRA 1
MIDTERM EXAM SOLUTIONS

Problem 1. Let G be a group. Indicate if the following statements are true or false. If true, give a proof;
if false, give an explicit counterexample.

(a) f HLH' A G and G/H ~ G/H', then H ~ H'.

(b) If H,H' <G and H ~ H', then G/H ~ G/H'.

(¢) If K, K’ are groups and G x K ~ G x K', then K ~ K'.

Solution. Part (a) is false. Take G = Z/47 x 7Z./27Z, H = ((0,1)) ~ Z/2Z and H' = {(2,0)) ~ Z/2Z. Then
G/H ~ 7JAZ and G/H' ~ 7.)2Z x Z./2Z.
Part (b) is also false. Take G = Z and H = Z and H' = 2Z ~ Z; then G/H = {1} # Z/2Z ~ G/H'.
Part (c) is also also false. Take G to be a countable product of copies of Z/2Z, and K = Z/27Z and
K' =7/27 x Z/2Z. Then K # K’', but G ~ G x K ~ G x K’ are all isomorphic. (It turns out that if
G, K, K’ are finite, then the result becomes true, but this is not easy to prove.)

Problem 2. Let R be a Euclidean domain with norm N.
(a) Let
m=min({N(a) : a € R,a # 0}).

Show that every nonzero a € R with N(a) = m is a unit in R.

(b) Deduce that a nonzero element of norm zero in R is a unit; show by an example that the converse
of this statement is false.

(c) Let F be a field and let R = F[[z]]. Show that R is Euclidean. What does part (a) tell you about
R*? What are the irreducibles in R, up to associates?

Solution. Let a be a nonzero element of norm m. Then we can write 1 = ga + r with r = 0 or N(r) <
N(a) = m. We cannot have the latter, since m is the smallest such, hence r = 0 so 1 = ga and hence a € R*,
which proves (a). For (b), if there is an element of norm zero then m = 0 so by (a) every nonzero element
of norm zero is a unit. The converse of this statement is false, namely, that every unit has norm zero: the
ring Z[i] is a Euclidean domain and a € Z[i] is a unit with respect to the complex norm if and only it has
norm 1.

Finally, part (¢). For a = a,2™ + --- € F[[z]] with a,, # 0, we define the norm N(a) = n > 0. Then
R is Euclidean under this norm as follows. Let «,8 € R with § # 0. If N(a) < N(5), then we can
write & = 08 + . Otherwise N(a) > N(f), and we claim S | a, i.e., a = (a/8)a + 0 with a/f € F][]].
Indeed, write a = 2N (@ ag(z) and g = NP By(x) with Bo(x) = by + ... and by # 0; we showed in class
that Bo(z) € F[[z]]* by solving linear equations, so a/B = 2" ™ag(x)Bo(z)~! € F[[z]]. Therefore F[[z]]
is Euclidean under this norm. Then part (a) reminds us that R* = F[[z]]* consists of the elements with
nonzero constant term, reading off the definition of the norm. The only irreducible, up to associates, is x.
Indeed, we know that F[[z]] is a UFD so irreducibles are the same as primes, and F[[z]]/(z) ~ F so z is
irreducible; and any a(z) = 2V (@ ag(z) # 0 with ag(z) € F[[z]]* is then a factorization of a(z) as a power
of the irreducible z (times a unit).

Problem 3. Let F' be a field and let V' = Mataxs(F') be the F-vector space of 2 x 3-matrices.

(a) The group GLo(F') acts on V by left multiplication. For M, M’ € V|, the relation M ~ M’ if and
only if M’ = AM for some A € GLy(F') defines an equivalence relation on V.
What are the equivalence classes (i.e., the orbits of the action)?
(b) Show that this action GLa(F) O V induces an injective group homomorphism

¢ : GLo(F) < Autp(V).
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(¢) Under the isomorphism Autg(V) ~ GLg(F') given by the basis of matrix units, describe ¢ explicitly.

Solution. For (a), a matrix A € GLy(F) acts on the left by row operations. So every M € V can be put into
reduced row echelon form by this action. By linear algebra, the reduced row echelon form is unique. The
possible forms (choosing pivots) are

1 0 =« 1 % 0 1 % % 01 0 0 1 =« 0 0 1 0 0 O
0 1 x/’\0 0 1/°’\0 0 0/’\0 O 1)’\0 O 0/’\0 O O0/)’\0 O O
where * denotes an arbitrary element of F'.
For (b), we get a map ¢ : GLy(F) — Endp (V) because matrix multiplication map is F-linear:
AM +cM')y = AM + cAM'  for all A € GLy(F), M,M' € V,and c € F.
The map is a homomorphism because this holds for matrix multiplication:
$(AB)(M) = (AB)M = A(B(M)) = (¢(A) 0 ¢(B))(M)

for all A, B € GLy(F) and M € V. In a group action, we always have the image landing in the symmetric
group on the set (acting bijectively), and indeed the inverse to A is A~!, so the image lands in Autp(V).
(1) (1) 8) to see that AM = M implies A = 1.

For (c), taking the basis e11, €1, €12, €22, €13, €23, and noting that matrix multiplication acts independently
on column vectors, we compute that ¢(A) is the block diagonal matrix with three copies of A down the
diagonal, for each A € GLo(F).

Finally, the map is injective: take M = (

Problem 4. For the purposes of this exercise, we say that an isomorphism of F-vector spaces is natural if
it does not depend on a choice of basis.

Let F be a field and let V, W be finite-dimensional vector spaces over F'. Show that there is a (well-defined)
natural isomorphism of F-vector spaces

¢:V* @p W = Homp(V, W).

Solution. To start, note that

so there certainly is an isomorphism. By this dimension count, it is enough to exhibit a natural injective
F-linear map.

There is really only one thing we could write down: given a simple tensor f ® w € V* @ W, we define
d(f @ w) € Homp(V,W) by ¢(f @ w)(v) = f(v)w, and we extend the map to a sum of simple tensors by
linearity. The map ¢(f ® w) is indeed F-linear, since

P(f @w)(v+c') = flv+ e )w= fv)w+cf(V)w=d(f ®w)(v) + co(f @ w)(v').
To show tjat ¢ is well-defined, we observe first that
O((f +cf) @w)(v) = (f +cf))w = fL)w + cf (V)w = ¢(f @ w)(v) + cd(f @ w)(v)
forall f,f'eV* ce F,veV,and we W, so we conclude that
O((f +cf) @w) = o(f @ w) + cp(f' @ w).

In a similar fashion, one can show that

¢(f @ (w+ cw')) = ¢(f @ w) + cd(f @w').
and immediately we see that the map ¢ is F-linear.
To show that ¢ is injective, we may choose a basis vy,...,v, of V and wy,...,w,, of W. Let v} be the
dual basis of V*. Then v] ® w; is an F-basis of V* @ W. Let , ; ¢;jv] ® w; € ker ¢. Then for all v € V,

we have
¢(Z Cijv; @ wj) (0) =D cjoi(w; = (Z Cij”f(”))%‘ =0.
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Since the w; are linearly independent, we have ), ¢;;vf(v) = 0 for all j and all v € V, which means
>, cijvf = 0; but the v} are linearly independent, so ¢;; = 0 for all 4, j.
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