MATH 101: ALGEBRA I

 HOMEWORK, DAY \#15Problem JV15.A. Let R be a commutative ring. Let G be a monoid, written multiplicatively. Define the additive group

$$
R[G]:=\bigoplus_{g \in G} R=\left\{\alpha=\sum_{g \in G} a_{g}[g]: a_{g}=0 \text { for all but finitely many } g\right\}
$$

Define a product on $R[G]$ by $[g][h]=[g h]$, extending by distributivity. Then $R[G]$ is an $R-$ algebra, with multiplicative identity [1] (check this if you need to!) called the monoid algebra of G over R.
(a) The polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$ is a monoid ring: for what monoid?
(b) Let $G=S_{3}$ and $R=\mathbb{Z}$. Let

$$
\alpha=3\left(\begin{array}{ll}
1 & 2
\end{array}\right)-5\left(\begin{array}{ll}
2 & 3
\end{array}\right)+14\left(\begin{array}{ll}
1 & 2
\end{array}\right), \quad \beta=6(1)+2\left(\begin{array}{ll}
2 & 3
\end{array}\right)-7\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) .
$$

Compute $\alpha \beta$.
(c) Let $f: G \rightarrow G^{\prime}$ be a homomorphism of monoids. Show there exists a unique R algebra homomorphism $\phi: R[G] \rightarrow R\left[G^{\prime}\right]$ such that $\phi(g)=f(g)$ for all $g \in G$. (Recall an R-algebra is a ring A with an injective ring-homomorphism $\iota: R \hookrightarrow A$ such that $\iota(R) \subseteq Z(A)$; we usually drop ι and consider $R \subseteq A$. An R-algebra homomorphism $\phi: A \rightarrow A^{\prime}$ is a ring homomorphism such that $\left.\phi\right|_{R}=\operatorname{id}_{R}$.)

