
Theorem 1 (Folland Theorem 2.28). Suppose that f is a bounded real-valued
function on [a, b].

1. If f is Riemann integrable, then f is Lebesgue measurable (and therefore
integrable). Furthermore

R

∫ b

a

f =

∫
[a,b]

f(x) dm(x). (1)

(Henceforth, we will dispense with the notations in (1) and write simply∫ b

a
f(x)dx.)

2. Also, f is Riemann integrable if and only if the set of discontinuities
of f has measure zero.

Proof. Let P = { a = t0 < t1 < · · · < tn = b } be a partition of [a, b] and
define

lP :=
n∑

i=1

miI(ti−1,ti] and uP :=
n∑

i=1

MiI(ti−1,ti],

where

mi := inf{ f(x) : x ∈ [ti−1, ti] } and Mi := sup{ f(x) : x ∈ [ti−1, ti] }.

Notice that ∫
lP = L(f,P) and

∫
uP = U(f,P).

We can choose sequences of partitions {Qk } and {Rk } such that

lim
k

L(f,Qk) = R

∫ b

a

f and lim
k

U(f,Rk) = R

∫ b

a

f. (2)

Let Pk = { a = t0 < · · · < tn = b } be a partition which is refinement of the
partitions Qk and Rk as well as Pk−1, and which also has the property that
‖Pk‖ := max(ti − ti−1) < 1

k
. Since Pk is a refinement of both Qk and Rk,

(2) holds with Qk and Rk each replaced by Pk. Since Pk+1 is a refinement
of Pk, it follows that

lPk+1
≥ lPk

and uPk+1
≤ uPk

.
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Therefore we obtain bounded measurable functions l and u on [a, b] by

l := sup
k

lPk
= lim

k
lPk

and u := inf
k

uPk
= lim

k
uPk

.

Clearly
l ≤ f ≤ u.

Since bounded functions are Lebesque integrable on [a, b] and since u =
limk uPk

and l = limk lPk
, the Lebesgue Dominated Convergence Theorem

implies that ∫
l = R

∫ b

a

f and

∫
u = R

∫ b

a

f.

Now if f is Riemann integrable, the upper and lower integrals coincide
and we have ∫

(u − l) = 0.

Since u − l ≥ 0, this implies that l = f = u a.e. Since Lebesque measure is
complete, f is measurable, and

R

∫ b

a

f =

∫
f.

This proves the first part.
To prove the second assertion, first observe that if x ∈ [a, b] and if 0 <

δ < δ′, then

sup{ f(y) : |y − x| ≤ δ } ≤ sup{ f(y) : |y − x| ≤ δ′ }.

It follows that

lim
δ→0

sup{ f(y) : |y − x| ≤ δ } = inf
δ>0

sup{ f(y) : |y − x| ≤ δ }. (3)

Thus we get a well defined function H on [a, b] by setting H(x) equal to (3).
Similarly, we can define h on [a, b] by

h(x) := lim
δ→0

inf{ f(y) : |y − x| ≤ δ } = sup
δ>0

inf{ f(y) : |y − x| ≤ δ }. (4)

We clearly have h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b].
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Suppose that f is continuous at x. Then given ǫ > 0 there is a δ > 0 such
that whenever |y − x| ≤ δ we have |f(y) − f(x)| < ǫ. This is the same as

f(x) − ǫ < f(y) < f(x) + ǫ. (5)

It follows from (3) and (5) that H(x) < f(x) + ǫ. Since ǫ is arbitrary, we
must have H(x) ≤ f(x). Thus H(x) = f(x) in the event that f is continuous
at x. Similarly, combining (3) and (4) shows that h(x) > f(x) − ǫ for any
ǫ > 0. Thus forces h(x) = f(x) when f is continuous at x. In particular,
H(x) = h(x) if f is continuous at x.

Now suppose that H(x) = h(x). Note that the common value must be
f(x). Thus given ǫ > 0, there is — in view of (3) and (4) — a δ > 0 such
that

f(x) + ǫ = H(x) + ǫ > sup{ f(y) : |y − x| ≤ δ } and (6)

f(x) − ǫ = h(x) − ǫ < inf{ f(y) : |y − x| ≤ δ }. (7)

Thus if |y − x| < δ, then we have

f(x) − ǫ < f(y) < f(x) + ǫ or |f(y) − f(x)| < ǫ.

This shows that f is continuous at x if and only if H(x) = h(x).1

If P = { a = t0 < · · · < tn = b } is any partition of [a, b] and if x /∈ P,
then there is a δ > 0 such that { y : |y − x| ≤ δ } ∩ P = ∅. In particular,
{ y : |y − x| ≤ δ } ⊂ (ti−1, ti) for some i, and

Mi ≥ sup{ f(y) : |y − x| ≤ δ }.

It follows that uP(x) ≥ H(x) for all x /∈ P. Now let

N :=
⋃
k

Pk.

Then N is countable, and therefore has Lebesque measure 0. Furthermore if
x /∈ N , then

u(x) := inf uPk
(x) ≥ H(x).

On the other hand, given x /∈ N and ǫ > 0, there is a δ > 0 such that

H(x) + ǫ > sup{ f(y) : |y − x| ≤ δ }.

1This is the first of Folland’s suggested “Lemmas”.
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Pick k such that 1
k

< δ. Since x /∈ Pk, x ∈ (ti−1, ti) for some subinterval in
Pk. Since ‖Pk‖ < 1

k
, Mi ≤ sup{ f(y) : |y − x| ≤ δ } and

H(x) + ǫ > uPk
(x) ≥ u(x).

Since ǫ was arbitrary, we conclude that H(x) = u(x) for all x /∈ N . In
particular, H is measurable and

∫
H = R

∫ b

a

f.

A similar argument implies that h(x) = l(x) for all x /∈ N . Thus h is
measurable and2 ∫

h = R

∫ b

a

f.

Now if f is continuous almost everywhere, it follows that H = h a.e.
Thus the upper and lower Riemann integrals must be equal and f is Riemann
integrable. On the other hand, if f is Riemann integrable, the upper and
lower integrals are equal and

∫
(H − h) = 0.

Since H − h ≥ 0, we must have H = h a.e. It follows that f is continuous
almost everywhere.

2This is essentially Folland’s Lemma (b).
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