Theorem 1 (Folland Theorem 2.28). Suppose that f is a bounded real-valued
function on |a,b.

1. If f is Riemann integrable, then f is Lebesque measurable (and therefore
integrable). Furthermore

b
R / r= | J@m), 1)

(Henceforth, we will dispense with the notations in (1) and write simply
b
[ f(x)dz.)

2. Also, f is Riemann integrable if and only if the set of discontinuities
of f has measure zero.

Proof. Let P ={a =1ty <t; <--- <t, =b} be a partition of [a,b] and
define

l'P = Zmiﬂ(tiflvti} a’nd UP = Z Mi]l(tiflyti}’
=1

=1

where
my; = inf{ f(x) :x € [t;_1, 6]} and M, :=sup{ f(z) : x € [t;i_1, ;] }

Notice that
/lp = L(f,P) and /U'p =U(f,P).

We can choose sequences of partitions { Q } and { Ry, } such that

b —b
hglL(f,Qk):RZ f and n]gnU(f,Rk):R/af. (2)

Let P, ={a=ty<---<t, =0} be a partition which is refinement of the
partitions Q. and R; as well as Pi_1, and which also has the property that
1Pl == max(t; — t;1) < % Since Py is a refinement of both Q; and Ry,
(2) holds with Qy and Ry each replaced by Py. Since Pri; is a refinement
of Py, it follows that

lpk_H Z lpk and qu+1 S Up, -



Therefore we obtain bounded measurable functions [ and u on [a, b] by

[ :=suplp, = lilgn lp, and u:= i%f Up, = lillgn Up, -
k

Clearly
[<f<u

Since bounded functions are Lebesque integrable on [a,b] and since u =
limy, up, and | = limy lp,, the Lebesgue Dominated Convergence Theorem

implies that
b —b
/l:R/f and /u:R/ f

Now if f is Riemann integrable, the upper and lower integrals coincide

and we have
/(u —1)=0.

Since u — [ > 0, this implies that [ = f = u a.e. Since Lebesque measure is
complete, f is measurable, and

b
o[- [
This proves the first part.

To prove the second assertion, first observe that if z € [a,b] and if 0 <
o < ¢, then

sup{ f(y) : ly — x| <0} <sup{ f(y): |y —=z| <}

It follows that
limsup{ f(y) : [y —x[ <0} = infsup{ f(y) : [y —2[ < I }. (3)

Thus we get a well defined function H on [a, b] by setting H(x) equal to (3).
Similarly, we can define h on [a,b] by

(@) 1= limint{ £(s) : |y — 2| <8} =supinf{ f(u) : |y o <6} (4)

We clearly have h(x) < f(x) < H(zx) for all z € [a, b].



Suppose that f is continuous at x. Then given ¢ > 0 there is a o > 0 such
that whenever |y — x| < ¢ we have |f(y) — f(x)| < e. This is the same as

flz) —e< fly) < f(z) +e ()

It follows from (3) and (5) that H(z) < f(z) + e. Since € is arbitrary, we
must have H(x) < f(z). Thus H(x) = f(x) in the event that f is continuous
at x. Similarly, combining (3) and (4) shows that h(x) > f(x) — € for any
¢ > 0. Thus forces h(x) = f(z) when f is continuous at z. In particular,
H(z) = h(zx) if f is continuous at z.

Now suppose that H(z) = h(xz). Note that the common value must be
f(z). Thus given € > 0, there is — in view of (3) and (4) — a § > 0 such
that

f@)+e=H(z)+e>sup{ f(y): |y —2| <5} and (6)
f(x) —e=hx) —e<inf{ f(y) : [y —z[ <} (7)
Thus if |y — | < §, then we have
J() e < ) < @) +e or [Fl) — f@)] <

This shows that f is continuous at z if and only if H(x) = h(x).!

tP={a=ty< - <t,=">b}is any partition of [a,b] and if x ¢ P,
then there is a 6 > 0 such that {y : |y — x| < §} NP = 0. In particular,
{y:|ly—=x| <0} C (ti—1,t;) for some i, and

M; = sup{ f(y) : [y —z[ <0}

It follows that up(x) > H(x) for all x ¢ P. Now let
N = U'Pk
k

Then N is countable, and therefore has Lebesque measure 0. Furthermore if
x ¢ N, then
u(z) = infup, (z) > H(x).

On the other hand, given z ¢ N and € > 0, there is a 6 > 0 such that

H(z)+e>sup{ f(y) : ly—z[ <0}

! This is the first of Folland’s suggested “Lemmas”.
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Pick k such that + < 8. Since x ¢ Py, x € (t;_1,t;) for some subinterval in
Py Since [|[Pef| < 3, M; < sup{ f(y) : |y — 2| <} and

H(x)+ € > up,(x) > u(x).

Since € was arbitrary, we conclude that H(z) = u(z) for all x ¢ N. In
particular, H is measurable and

oo s

A similar argument implies that h(z) = [(x) for all x ¢ N. Thus h is

measurable and? ,
/ h=R / f

Now if f is continuous almost everywhere, it follows that H = h a.e.
Thus the upper and lower Riemann integrals must be equal and f is Riemann
integrable. On the other hand, if f is Riemann integrable, the upper and
lower integrals are equal and

/ (H—h)=0.

Since H — h > 0, we must have H = h a.e. It follows that f is continuous
almost everywhere. O

2This is essentially Folland’s Lemma (b).
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