. An elementn of an R-module M is called a torsion element if there exists a nonzermw R with
rm = 0.

(@) If R is an integral domain, show that the torsion elements form a submeodt(l&/) of M.
Also, show thatV/ /tor(M) has no nonzero torsion elements (i.e. it is torsion free).
(b) Show that ifR is not an integral domain, then the torsion elements need not form a submodule.

. An R-module is callegimpleif it is not the zero module and if it has no proper submodule.

(a) Prove that any simple module is isomorphid@\/, where) is a maximal left ideal.

(b) ProveSchur's Lemmalety: M — M’ be a homomorphism of simple modules. Then either
Is zero, or else it is an isomorphism.

(c) Prove thaEndy(M) is a division ring if M is simple.
. LetR be aring. Consider the rindy/,,(R) of n x n matrices with entries itR.
(a) Show that any two-sided ideal 81, (R) is of the form,, (1), all n x n matrices with entries

in I, for some two-sided idedl of R.

(b) Conclude that, ifR is a simple ring, meaning that it has no nontrivial proper two-sided ideals,
then the ringM,,(R) is also simple.

(c) If Ris adivision ring, is the rind/,,(R) simple?

. For any index sét’ and R-modulesN, M,, t € T, show that there are group isomorphisms

Homp (@D M;, N) ~ [ [ Homp(M,, N)

teT teT

and
Homp(N, [[ M;) ~ [ [ Homp(N, M,).

teT teT

. How many group homomorphisris' 12Z € Z/27. — 7./30Z are there?

. An objectA in a categoryC is called an initial object if, for every object in C, there is a unique
morphismA — X. Similarly, an object? is called a terminal object, if for every obje&tin C, there
is a unique morphisnX’ — 7.

(a) Prove that initial and terminal objects, if they exist, are unique up to unique isomorphism.

(b) In the category of rings (with # 0 and morphisms preserving 1), is there an initial object, a
terminal object?



10.

11.

12.

13.

14.

(c) Let A andB be objects in a categoty. LetD 45 be the category with objects all diagram<’in
of the form
A—C+—B

and morphisms all commuting diagrams of the form

A—C~—8B

N

Cl
with the obvious notion of composition. What is the initial objecfing if it exists?

Show that pushouts and pullbacks exist in the categoR+wiodules.

Assume that

x-t-y

g

. g
7z-1.p

is a pushout diagram in a categatylf f is an isomorphism, show thdtis also an isomorphism.

Show that there is a (hnoncommutative) riRgvith R ~ R & R, as R modules. Hint: Consider the
endomorphism ring of an infinite-dimensional vector space.

(The Yoneda Lemma) Let: C — &£ be a functor wher€ is the category of sets. Show that for
each objectA of C there is a bijection from the s&i( A) to the set of all natural transformations from
hom¢(A, —) to F.

Aretraction of arR-module map: M’ — M isanR-module map: M — M’suchthatoi = idy;.

Let .

0— M M- M —0
be a short exact sequence®modules. Ifi has a retraction, show thaf ~ M’ x M"”. What is the
analogous statement in the category of groups?

Give a very short proof of the following standard fact in linear algebrd:I%/ — W is a linear
transformation, the® ~ ker 7" @ im 7.

Show that = (a4,...,a,) € Z" extends to a basifv, vy, ...,v,} of Z™ if and only if thea; are
coprime, meaninga,) + - - - + (a,) = (1) as ideals irZ.

LetA — {4 7 2}

2 4 6
(@) If p: Z® — Z?* is the homomorphism whose matrix with respect to the standard basgs is

determine the structure of the gro#p/ im ¢ as the direct sum of cyclic groups. Find generators
(as few as possible) for this quotient group.
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20

21
22

23
24

(b) Determine all integer solutions to the system of equaﬂ@r{@

T

z

||

0
0

|

. Show that ifG is a subgroup of the fre&-moduleZ", then there are basds,, ..

.,a,} of G and

{b1,...,b,} of Z™ such that for each of the basis elementsf G, there is al; € Z with a; = d;b;.

. LetF be afield andd < F* afinite subgroup of the multiplicative group of units Bf Show that
H is cyclic. (Hint: Use the characterization of cyclic groups in terms of their exponents.)

torsion free.

(a) Show that the group of rationdls™ under addition is not a freE-module, even though it's

(b) Show that the torsiof-moduleQ™ /Z* is not an infinite direct sum of cyclic groups.

Homp(M, N) ~ @ Homg(T, (M), T,(N))

where the sum is over a finite nu

mber of primesf R.

(@) If M andN are finitely generated torsion modules over a PiDshow that

(b) Describe the structure of the abelian grddpmy(Z/nZ,7/mZ) as a direct sum of cyclic
groups (with as few summands as possible).

so, what are the possible eigenvalue§ @f

(b) Same question but assumé= T,
(c) T? = 0.

. How manyZ-bilinear maps are there froffi x Z to GG, where( is any finite abelian group? Describe

them explicitly.

(a) LetV be a finite-dimensional vector space over any field4f= 1d, canT be diagonalized? If

. Is it possible to define a multiplication which makes the additive gfd(ip into a ring?

. Show that, in general/ ®; N % M ®gr N, but that there is a surjection form one of these groups to
the other. Describe, in a specific example, a nontrivial element of the kernel of this homomorphism.

. Show that tensor products do not commute with products in general. Hint: Coﬁgigé{ ® Q.

. LetV be a finite-dimensional-vector space.

(a) Show that there is a linear transformatibnV’ @, V* — k defined byI'(v ® ¢) = ¢ (v).
(b) The contractiorl’ corresponds to a linear transformation End, (V') — k via the isomorphism

V ®, V* — Homy(V, V) = Endg(

What familiar linear map is?

V):

k



