- 1. An element m of an R-module M is called a torsion element if there exists a nonzero $r \in R$ with rm = 0.
 - (a) If R is an integral domain, show that the torsion elements form a submodule tor(M) of M. Also, show that M/tor(M) has no nonzero torsion elements (i.e. it is torsion free).
 - (b) Show that if R is not an integral domain, then the torsion elements need not form a submodule.
- 2. An R-module is called *simple* if it is not the zero module and if it has no proper submodule.
 - (a) Prove that any simple module is isomorphic to R/M, where M is a maximal left ideal.
 - (b) Prove *Schur's Lemma*: Let $\varphi \colon M \to M'$ be a homomorphism of simple modules. Then either φ is zero, or else it is an isomorphism.
 - (c) Prove that $\operatorname{End}_R(M)$ is a division ring if M is simple.
- 3. Let R be a ring. Consider the ring $M_n(R)$ of $n \times n$ matrices with entries in R.
 - (a) Show that any two-sided ideal of $M_n(R)$ is of the form $M_n(I)$, all $n \times n$ matrices with entries in I, for some two-sided ideal I of R.
 - (b) Conclude that, if R is a simple ring, meaning that it has no nontrivial proper two-sided ideals, then the ring $M_n(R)$ is also simple.
 - (c) If R is a division ring, is the ring $M_n(R)$ simple?
- 4. For any index set T and R-modules N, M_t , $t \in T$, show that there are group isomorphisms

$$\operatorname{Hom}_R(\bigoplus_{t\in T} M_t, N) \approx \prod_{t\in T} \operatorname{Hom}_R(M_t, N)$$

and

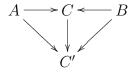
$$\operatorname{Hom}_R(N, \prod_{t \in T} M_t) \approx \prod_{t \in T} \operatorname{Hom}_R(N, M_t).$$

- 5. How many group homomorphisms $\mathbb{Z}/12\mathbb{Z} \bigoplus \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/30\mathbb{Z}$ are there?
- 6. An object A in a category C is called an initial object if, for every object X in C, there is a unique morphism $A \to X$. Similarly, an object Z is called a terminal object, if for every object X in C, there is a unique morphism $X \to Z$.
 - (a) Prove that initial and terminal objects, if they exist, are unique up to unique isomorphism.
 - (b) In the category of rings (with $1 \neq 0$ and morphisms preserving 1), is there an initial object, a terminal object?

(c) Let A and B be objects in a category C. Let \mathcal{D}_{AB} be the category with objects all diagrams in C of the form

$$A \longrightarrow C \longleftarrow B$$

and morphisms all commuting diagrams of the form



with the obvious notion of composition. What is the initial object in \mathcal{D}_{AB} if it exists?

- 7. Show that pushouts and pullbacks exist in the category of R-modules.
- 8. Assume that

$$\begin{array}{c|c}
X & \xrightarrow{f} Y \\
g & \bar{g} \\
\bar{g} & \bar{f} \\
Z & \xrightarrow{\bar{f}} P
\end{array}$$

is a pushout diagram in a category C. If f is an isomorphism, show that \bar{f} is also an isomorphism.

- 9. Show that there is a (noncommutative) ring R with $R \approx R \oplus R$, as R modules. Hint: Consider the endomorphism ring of an infinite-dimensional vector space.
- 10. (The Yoneda Lemma) Let $\mathcal{F} \colon \mathcal{C} \to \mathcal{E}$ be a functor where \mathcal{E} is the category of sets. Show that for each object A of \mathcal{C} there is a bijection from the set $\mathcal{F}(A)$ to the set of all natural transformations from $\hom_{\mathcal{C}}(A,-)$ to \mathcal{F} .
- 11. A retraction of an R-module map $i \colon M' \to M$ is an R-module map $r \colon M \to M'$ such that $r \circ i = id_{M'}$. Let

$$0 \longrightarrow M' \stackrel{i}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M'' \longrightarrow 0$$

be a short exact sequence of R-modules. If i has a retraction, show that $M \approx M' \times M''$. What is the analogous statement in the category of groups?

- 12. Give a very short proof of the following standard fact in linear algebra: If $T: V \to W$ is a linear transformation, then $V \approx \ker T \oplus \operatorname{im} T$.
- 13. Show that $v=(a_1,\ldots,a_n)\in\mathbb{Z}^n$ extends to a basis $\{v,v_2,\ldots,v_n\}$ of \mathbb{Z}^n if and only if the a_i are coprime, meaning $(a_1)+\cdots+(a_n)=(1)$ as ideals in \mathbb{Z} .
- 14. Let $A = \begin{bmatrix} 4 & 7 & 2 \\ 2 & 4 & 6 \end{bmatrix}$.
 - (a) If $\varphi \colon \mathbb{Z}^3 \to \mathbb{Z}^2$ is the homomorphism whose matrix with respect to the standard bases is A, determine the structure of the group $\mathbb{Z}^2 / \operatorname{im} \varphi$ as the direct sum of cyclic groups. Find generators (as few as possible) for this quotient group.

2

- (b) Determine all integer solutions to the system of equations $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- 15. Show that if G is a subgroup of the free \mathbb{Z} -module \mathbb{Z}^n , then there are bases $\{a_1, \ldots, a_k\}$ of G and $\{b_1, \ldots, b_n\}$ of \mathbb{Z}^n such that for each of the basis elements a_i of G, there is a $d_i \in \mathbb{Z}$ with $a_i = d_i b_i$.
- 16. Let F be a field and $H \leq F^{\times}$ a finite subgroup of the multiplicative group of units of F. Show that H is cyclic. (Hint: Use the characterization of cyclic groups in terms of their exponents.)
- 17. (a) Show that the group of rationals \mathbb{Q}^+ under addition is not a free \mathbb{Z} -module, even though it's torsion free.
 - (b) Show that the torsion \mathbb{Z} -module $\mathbb{Q}^+/\mathbb{Z}^+$ is not an infinite direct sum of cyclic groups.
- 18. (a) If M and N are finitely generated torsion modules over a PID R, show that

$$\operatorname{Hom}_R(M,N) \approx \bigoplus_p \operatorname{Hom}_R(T_p(M),T_p(N))$$

where the sum is over a finite number of primes p of R.

- (b) Describe the structure of the abelian group $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$ as a direct sum of cyclic groups (with as few summands as possible).
- 19. (a) Let V be a finite-dimensional vector space over any field. If $T^2 = \operatorname{Id}$, can T be diagonalized? If so, what are the possible eigenvalues of T?
 - (b) Same question but assume $T^2 = T$,
 - (c) $T^2 = 0$.
- 20. How many \mathbb{Z} -bilinear maps are there from $\mathbb{Z} \times \mathbb{Z}$ to G, where G is any finite abelian group? Describe them explicitly.
- 21. Is it possible to define a multiplication which makes the additive group \mathbb{Q}/\mathbb{Z} into a ring?
- 22. Show that, in general, $M \otimes_{\mathbb{Z}} N \not\approx M \otimes_R N$, but that there is a surjection form one of these groups to the other. Describe, in a specific example, a nontrivial element of the kernel of this homomorphism.
- 23. Show that tensor products do not commute with products in general. Hint: Consider $\prod_i \frac{\mathbb{Z}}{(2i)} \otimes \mathbb{Q}$.
- 24. Let V be a finite-dimensional k-vector space.
 - (a) Show that there is a linear transformation $T \colon V \otimes_k V^* \to k$ defined by $T(v \otimes \varphi) = \varphi(v)$.

3

(b) The contraction T corresponds to a linear transformation $\tau \colon \operatorname{End}_k(V) \to k$ via the isomorphism $V \otimes_k V^* \to \operatorname{Hom}_k(V,V) = \operatorname{End}_k(V)$:

$$V \otimes_k V^* \xrightarrow{\approx} \operatorname{End}_k(V)$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\tau}$$

$$\downarrow^{\tau}$$

What familiar linear map is τ ?