
Homework Assignment #5

Due Wednesday, March 3rd.

1. In this problem, X will be a separable Banach space. Let B∗ be the closed unit ball in
X∗. We want to work out a solution to E 2.5.3 in the text. Work out your own solution, or
follow the guidelines below.

(a) Show that a subset of separable metric space is separable so that we can find a countable
dense subset { dk }

∞

k=1
of the unit sphere S = {x ∈ X : ‖x‖ = 1 } in X. (Hint: a

separable metric space is second countable.)

ANS: The hint gives it away. A separable metric space is always second countable: if {xn} is a
countable dense set, then the collection of balls {B 1

m
(xn) : n,m ≥ 1 } form a countable basis. But any

subset of a second countable space is clearly second countable in the relative topology. Now observe
that any second countable space is separable: just take a point in each basic open set. Since we have
assumed that H is separable, it follows that S is separable.

(b) For each k, show that mk(ϕ) := |ϕ(dk)| is a seminorm on X∗ such that mk(ϕ) ≤ 1 on
B∗.

ANS: Note that mk is just the seminorm associated to ι(dk) ∈ X∗∗. It is bounded by 1 on B∗ since
dk has norm 1.

(c) Show that a net {ϕj } in B∗ converges to ϕ ∈ B∗ in the weak-∗ topology if and only
if mk(ϕj − ϕ) → 0 for all k.

ANS: Note that mk(ϕj − ϕ) → 0 exactly when ϕj(dk) → ϕ(dk). Thus, if ϕj → ϕ in the weak-∗
topology, then mk(ϕj − ϕ) → 0 for all k.

Conversely, suppose that mk(ϕj − ϕ) → 0 for all k. This simply means that ϕj(dk) → ϕ(dk) for all
k. Of course this means ϕj(αdk) → ϕ(αdk) for any α ∈ F. Let x ∈ X. If x = 0, then ϕj(x) → ϕ(x)
trivially. Otherwise, let α = ‖x‖. Then given ǫ > 0 there is a k such that ‖x − αdk‖ < ǫ/3. Then
we can choose j0 such that j ≥ j0 implies that |ϕj(αdk) − ϕ(αdk)| < ǫ/3. Then since ϕj and ϕ have
norm at most one, j ≥ j0 implies that

|ϕj(x) − ϕ(x)| ≤ |ϕj(x) − ϕj(αdk)| + |ϕj(αdk) − ϕ(αdk)| + |ϕ(αdk) − ϕ(x)|

< ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

Since x ∈ X was arbitrary, ϕj → ϕ in the weak-∗ topology.
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(d) For each ϕ, ψ ∈ B∗, define

ρ(ϕ, ψ) :=
∞

∑

n=1

mn(ϕ− ψ)

2n
.

Show that ρ is a metric on B∗.

ANS: Note that mn(ϕ−ψ) ≤ 2, so the sum always converges to a nonnegative number. Therefore, to
see that ρ is metric, it suffices to see that it is definite, symmetric and satisfies the triangle inequality.

If ρ(ϕ,ψ) = 0, then ϕ and ψ agree on {dk}, and therefore on {αdk : k ≥ 1 and α ∈ F }. Since the
latter set is dense in X, ϕ = ψ. Since mk(ϕ− ψ) = mk(ψ − ϕ), we also have ρ(ϕ,ψ) = ρ(ψ,ϕ). And
if ζ ∈ B∗, then we have mk(ϕ−ψ) ≤ mk(ϕ− ζ)+mk(ζ−ψ) (since mk is a seminorm). It now follows
easily that ρ(ϕ,ψ) ≤ ρ(ϕ, ζ) + ρ(ζ, ψ).

(e) Show that a net {ϕj } in B∗ converges to ϕ ∈ B∗ in the weak-∗ topology if and only if
ρ(ϕj, ϕ) → 0. Conclude that the topology induced by ρ on B∗ is the weak-∗ topology;
that is, conclude that the weak-∗ topology on B∗ is metrizable.

ANS: Suppose that ρ(ϕj , ϕ) → 0. Then it is easy to see that mk(ϕj − ϕ) → 0 for each k. Then by
part (c), ϕj → ϕ in the weak-∗ topology.

Conversely, suppose that ϕj → ϕ in the weak-∗ topology. Then by part (c) again, mk(ϕj − ϕ) → 0
for each k. Let ǫ > 0 be given. There is a N such that

∞
∑

n=N−1

1

2n
<
ǫ

2
. (1)

Then, since each mk(ϕ− ψ) is bounded by 2,

∞
∑

n=N

mn(ϕj − ϕ)

2n
≤

∞
∑

n=N−1

1

2n
<
ǫ

2
for all j. (2)

Now we can find j0 such that j ≥ j0 implies that

mn(ϕj − ϕ) <
ǫ

2
for all n < N .

Now j ≥ j0 implies that

ρ(ϕj , ϕ) =

N−1
∑

n=1

mn(ϕj − ϕ)

2n
+

∞
∑

n=N

mn(ϕj − ϕ)

2n

<
(

N−1
∑

n=1

ǫ

2n+1

)

+
ǫ

2

<
ǫ

2
+
ǫ

2
= ǫ.
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Thus ρ(ϕj , ϕ) → 0.

We have established that the topology induced by ρ is the weak-∗ topology. In other words, the
restriction of the weak-∗ topology on the closed unit ball is metrizable.

(f) Conclude that X∗ is separable in the weak-∗ topology. (As Pedersen points out, a
compact metric space is totally bounded and therefore separable.)

ANS: Since a compact metric space is separable and since the closed unit ball B∗ is compact and
metrizable, it is separable. If n ≥ 1, then nB∗ is just the closed n ball and nB∗ is homeomorphic
to B∗. Hence nB∗ is separable. But X∗ =

⋃

nB∗. Since the countable union of countable sets is
countable, it follows that X∗ is separable.

2. Work E 2.5.6, but use the hint from the “revised edition” of the text.

3. Suppose that H is an inner product space. Show that |(x | y)| = ‖x‖‖y‖ if and only if
either x = αy or y = αx for some α ∈ F.

ANS: If y = αx, then |(x | y)| = |α|‖x‖ = ‖x‖‖αx‖ = ‖x‖‖y‖, and similarly when x = αy.
Now assume that |(x | y)| = ‖x‖‖y‖. If x = 0, then x = 0 · y. So we can assume that ‖x‖ 6= 0.

Let τ ∈ C by such that τ(x | y) = |(x | y)|. Then, following the proof of the Cauchy-Schwarz
inequality in our notes, for each λ ∈ R,

p(λ) := ‖λτx+ y‖2 = λ2‖x‖2 + 2λ|(x | y)| + ‖y‖2.

Since ‖x‖ 6= 0, p is real quadratic polynomial. By assumption, p has zero discriminant. Hence p has
a real root λ0. Then if α0 := τλ0, then ‖αx+ y‖ = 0 and y = −αx.

4. Suppose that W is a nontrivial subspace of a Hilbert space H. Define the orthogonal

projection of H onto W to be the map P : H → H by P (h) = w, where w is the closest
element in W to h. (Alternatively, P (h) = w where h = w+w⊥ with w ∈ W and w⊥ ∈W⊥.)

(a) Show that P is a bounded linear map with ‖P‖ = 1.

(b) Show that P = P 2 = P ∗.

(c) Conversely, if Q : H → H is a bounded linear map such that Q = Q∗ = Q2, then show
that Q is the orthogonal projection onto its range: W = Q(H).
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ANS: Let h, k ∈ H. Then h can be written uniquely as w + w⊥ with w ∈ W and w⊥ ∈ W⊥.
Similarly, k = u + u⊥. But then αh + k = (αw + u) + (αw⊥ + u⊥) and (αw + u) ∈ W while
(αw⊥ + u⊥) ∈ W⊥. Thus P (αh + k)αw + u = αP (h) + P (k), and P is linear. Since ‖h‖2 =
‖w‖2 + ‖w⊥‖2, we must have ‖h‖ ≥ ‖w‖. That is, ‖P (h)‖ ≤ ‖h‖, and ‖P‖ ≤ 1. Since W 6= {0},
there is a w ∈W . Since P (w) = w, it follows that ‖P‖ ≥ 1. Hence ‖P‖ = 1. This proves part (a).

Since P (h) ∈W , we clearly have P 2(h) := P
(

P (h)
)

= P (h), so P = P 2. On the other hand,

(

Ph | k
)

=
(

P (w + w⊥) | u+ u⊥
)

= (w | u+ u⊥) = (w | u) = (w + w⊥ | u) =
(

h | P (k)
)

.

Therefore P ∗ = P . This proves part (b).
For part (c), first observe that W is closed. Suppose that Qhj → h. Then Q2hj → Qh. Since

Q2hj = Qhj , and H is Hausdorff, Qh = h, and h ∈ W . Since W is closed, every h ∈ H can be
written uniquely as w + w⊥ as above. Since W = Q(H) and Q2 = Q, it follows that Q(w) = w for
all w ∈W . Thus for all k ∈ H,

(

Q(h) | k
)

=
(

w + w⊥ | Q(k)
)

=
(

w | Q(k)
)

=
(

Q(w) | k
)

= (w | k).

Since k is arbitrary in H, we conclude that Q(h) = w and therefore Q is the projection onto W .

5. Work problem E 3.1.9 in the text. (Remark: problem 1 implies that H is separable in the
weak topology. Here we also see that, despite this, an infinite-dimensional separable Hilbert
space fails to be either second countable or even first countable in the weak topology.)

ANS: Suppose that {en : n ∈ N} be a orthonormal basis for H. Let T = {n
1

2 en}, and let C be the
weak closure of T in H. The first order of business is to see that 0 ∈ C. Suppose not.1 Then there
is a weak neighborhood U of 0 disjoint from T . Therefore there is an ǫ > 0 and x1, . . . , xk ∈ H such
that

U = {x ∈ H : |(x | xj)| < ǫ for j = 1, 2, . . . , k }.

Since U ∩ T = ∅, for each n ∈ N, we have

k
∑

j=1

|(n
1

2 en | xj)|
2 ≥ ǫ2.

Alternatively,
k

∑

j=1

|(en | xj)|
2 ≥

ǫ2

n
for all n ∈ N. (3)

On the other hand, by Parseval’s Identity,

k
∑

j=1

‖xj‖
2 =

k
∑

j=1

∞
∑

n=1

|(xj | en)|2

1Ok, this is tricky. Did you come to office hours to ask about it? Why not?
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which, the first sum is finite, is

=
∞
∑

n=1

k
∑

j=1

|(en|xj)|
2 ≥ ǫ2

∞
∑

n=1

1

n
= ∞

by (3). This is a contradiction. Therefore we conclude that 0 ∈ C as claimed.
If H were first countable in the weak topology, then we could find a sequence {yk}

∞
k=1

⊂ T such
that yk → 0 weakly. Let Φy be the linear functional on H corresponding to y:

Φy(x) := (x | y).

Recall that ‖Φy‖ = ‖y‖. Since convergent sequences2 are bounded, for each x ∈ H,

{ |Φyk
(x)| : k ∈ N }

is bounded. Therefore by the Principle of Uniform Boundedness, there is a M > 0 such that

‖yk‖ ≤M for all k ∈ N.

That is,
{yk}

∞
k=1 ⊂ {n

1

2 en : n ≤M2 }.

But then {yk} is never in the weak neighborhood of 0 given by

{ y ∈ H : |(y | en)| < 1 for all n = 1, 2, . . . ,M2 }.

Of course, this contradicts the assumption that yk → 0, so we can conclude that H is not (weakly)
first countable and therefore H can’t be metrizable in the weak topology.

6. Let H be a separable Hilbert space with orthonormal basis {en}
∞

n=1
. Show that en → 0

weakly. Find a sequence {ym}
∞

m=1
of convex combinations of the en such that ym → 0 in

norm. (This illustrates the result you proved in problem #11 on the previous homework
assignment.)

ANS: Fix x ∈ H. Then x =
∑∞

n=1
αnen, where αn = (x | en). Since ‖x‖2 =

∑∞

n=1
‖αn|

2, we must
have limn αn = 0. But then

lim
n

(en | x) = lim
n
ᾱn = 0,

and we have shown that en → 0 in the weak topology.
Fix any m0 ≥ 1. Let ym := 1

m

∑m0+m

k=m0+1
ek. Then ‖ym‖2 = 1

m2m = 1

m
. Therefore ym → 0 in

norm and each ym is a convex combination of {en}n≥m0
.

2This is the whole point here. A convergent net need not be bounded.
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7. Let T : H → H be a linear map. Show that T is bounded if and only if T is continuous
when H is given the weak topology. (In the latter case, Pedersen says that T is “weak–
weak” continuous. Since T is bounded exactly when it is continuous, a bounded map could
be considered to be a “norm–norm” continuous map.) In fact, show that if T is “norm–weak”
continuous — that is continuous as a map from H with the norm topology to H with the
weak topology — then T is bounded. (Hint: use the Closed Graph Theorem.)

ANS: Suppose that T is bounded. If xj → x weakly, then for any y ∈ H,

(Txj | y) = (xj | T ∗y) → (x | T ∗y) = (Tx | y).

Therefore Txj
→ Tx weakly and T must be weak-weak continuous.

Notice that since convergence in norm certainly implies weak convergence, a weak-weak contin-
uous map is always norm-weak continuous. Hence it suffices to see that a norm-weak continuous
operator is bounded. So assume that T is norm-weak continuous. We want to apply the Closed
Graph Theorem, so suppose that xn → x and that Txn → y in norm. By assumption, Txn → Tx
weakly. Since we also have Txn → y weakly and since the weak topology is Hausdorff, we must have
y = Tx. Thus T is bounded (by the Closed Graph Theorem).

8. Prove Lemma 88. Thus, if x, y ∈ H, then define θx,y to be the rank-one operator θx,y(z) =
(z | y)x. Also define Bf (H) = { θx,y : x, y ∈ H }. Then if T ∈ B(H),

(a) Tθx,y = θTx,y and θx,yT = θx,T ∗y,

(b) ‖θx,y‖ = ‖x‖‖y‖,

(c) θ∗x,y = θy,x,

(d) T ∈ Bf (H) if and only if dimT (H) <∞, and

(e) Bf (H) is a ∗-closed, two-sided ideal in B(H).
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