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Abstract

The subject of this thesis is the numerical solution of the inverse obstacle scat-
tering problem governed by the Helmholtz equation in two dimensions. The
problem is to determine the shape of an obstacle from scattering measurements
corresponding to time-harmonic plane incident waves. The inverse obstacle
problem, as many other inverse problems, is nonlinear and ill-posed.

As it is well known, a nonlinear problem
F{I) = u,

can be effectively solved with an iterative method, such as Newton’s method,
provided that we start with a good initial guess. The highly nonlinear and oscil-
latory nature of the inverse scattering problem makes the initial guess extremely
difficult to obtain.

In this work, we present a continuation method to reliably solve the inverse
obstacle problem numerically without the need of a good initial guess.

The continuation method starts at the lowest wavenumber for which the
scattering data is available, and at which the inverse problem is nearly linear.
We first solve this nearly linear problem to obtain an approximate solution.

Then, the continuation method recursively refines the approximate solution I'

vii



obtained at wavenumber k£ by solving the linearized equation
F'(D)6r = u — F(D),

at wavenumber k + 6k. This upward march in wavenumber ends at the highest
wavenumber at which the scattering measurement is available.

Our numerical experiments show that the scheme is stable and convergent
for obstacles difficult to reconstruct: shapes with complex features and concav-
ities. Various numerical and technical issues related to the implementation of
the continuation method, such as regularization of ill-possedness and efficient
frequency stepping have been systematically investigated and resolved in this

work.
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Chapter 1

Introduction

The inverse obstacle scattering problem treated in this work is to determine
the shape of an scattering obstacle from measurements of the far field pattern
corresponding to one or more time-harmonic acoustic waves incident upon the
obstacle.

The development of methods for the numerical solution of inverse scattering
problems started approximately 20 years ago, and although it currently is an
area of intense activity, its mathematical theory is still being constructed. The
classical problem treated here is important since the methods employed for its
numerical solution can often be generalized to other inverse scattering problems.

The inverse problem is nonlinear and ill-posed. It is known that if a solution
exists it is unique, but it does not depend continuously on the data in any rea-
sonable norm, see for instance [5, 8] and [9]. For this reason, regularization is
necessary for the numerical approximation of the solution. The Fréchet differen-
tiability of the operator that models the corresponding direct problem provides
the prerequisites for the development of iterative methods, such as Newton’s

method.



1.1 Existing Work on the Inverse Obstacle Scat-
tering Problem

Among the most frequently studied inversion methods are schemes based on
regularized Newton’s iteration for the inverse obstacle problem in two dimen-
sions; see for example Kirsch [20, 21], Kress [28, 29, 30|, Kress and Rundell [31],
Murch, Tan and Wall [36], Roger [39], Tobocman [43], and Wang and Chen [44].
Other closely related problems have been approached via a regularized Newton
method, Monk [34] offers an implementation with a sound-hard obstacle, and
in [35] addresses the problem where the scatterer is an open arc. Kress and
Rundell [32] consider the problem of recovering both the shape and impedance
of a two-dimensional obstacle. Researchers have worked on the analysis of con-
vergence of regularized Newton methods; see [16, 17], Jin [19] and Potthast
[38]. Apparently Newton-type methods represent a practical choice for the in-
verse scattering problem. Although further research is necessary to improve its
efficiency.

Another class of iterative methods are derived from the Landweber itera-
tion, for which the Fréchet derivative is approximated numerically. Implemen-
tations in 2D of the Landweber iteration have been given by Hanke, Hettlich and
Scherzer [13] for sound-soft obstacles, and by Hettlich for sound-hard obstacles
in [14] and the transmission problem in [15].

Kirsch and Kress introduced a numerical method to solve the inverse obsta-
cle scattering problem called Method of approximation of the scattered field in
the papers [23, 24, 25]. This method solves the inverse obstacle scattering prob-

lem in two stages: in the first part the far field is converted back to the scattered



field near the obstacle, the second part deals with the problem of locating the
obstacle boundary as the zeroes of the total field, that is, of the sum of incident
and scattered waves. Colton and Monk introduced a method of superposition
of incident fields also called Dual space method in [10, 11, 12]. Similar to the
method of approximation of the scattered field by Kirsch and Kress, the method
of superposition of incident fields reconstructs the scattered field in a neighbor-
hood of the obstacle in the first part, and determines to obstacle boundary as
the zeroes of the total field in the second part.

One of the most popular methods, the linear sampling method, for inverse
obstacle problem is introduced by Colton and Kirsch [7] in 1996. This method
may be regarded as a modification of the dual space method. The following is a
concise description of the method taken from [7]: In the linear sampling method
it is assumed that the far field pattern u(p,0) is known for all observation
angles ¢ and plane waves with incident angle 0 for all ¢,0 € [—m,x|. From this
information, the support of the obstacle is determined by solving the integral
equation

/ Uoo (0, 0)g(0)df = e Peosteme) o e [—7 7],

where k is the wavenumber and yy = p(cosa,sina) is on a rectangular grid
containing the scatterer. The support is found by noting that ||g||L2(pix s un-
bounded as yy approached the boundary of the scattering obstacle from inside the
scatterer. An extensive description of the linear sampling method is presented
in the book Surveys of Solution Methods for Inverse Problems by Colton et al
[6].

There are recent reports with variants of the linear sampling method. Kirsch

and Ritter [26] present a linear sampling method for inverse scattering from an



open arc. Cakoni, Colton and Monk [4] studied direct and inverse scatter-
ing problems for partially coated obstacles using the linear sampling method.
Brandfass, Lanterman and Warnick [1] compare the linear sampling method
with linearized tomographic inverse scattering algorithms. Tacchino, Coyle and
Piana [42] offer a computational and numerical validation of the linear sam-
pling method with four different regularization algorithms. Cakoni and Colton
[3] give a mathematical justification of the linear sampling method.

One of the main drawbacks of the linear sampling method is its computa-
tional cost. Suppose n points are sufficient to discretize the obstacle boundary.
To determine these points, we need O(n) parameters from the far field data.
In the linear sampling method O(n?) data parameters are used. At the same
time, O(n?) points inside and outside the obstacle must be tested in the linear
sampling method to determine the shape of the obstacle, with each test costing
O(n?) flops in the back substitution for a linear system of equations. Clearly,
the computational cost cannot be reduced below O(n*).

Santosa [40] proposed a level-set method for the numerical solution of inverse
problems involving obstacles. Litman, Lesselier and Santosa [33] developed a
method for the retrieval of the scattering obstacle in the inverse transmission
problem. Burguer [2] proposed a level-set algorithm based on the method of
asymptotic regularization.

In most methods described before the linear sampling and level-set meth-
ods, curves in the solution space are assumed to be star-shaped, that is, the
presentation is restricted to cases of domains D such that its boundary 0D can

be represented in a parametric form

z =r(%)z, (1.1)



where Z denotes a point in the unit circle Q and r € C*(Q) is a positive function,

see [9].

1.2 Our Approach

In this work we introduce a method of continuation for the numerical solution
to the inverse obstacle scattering problem. The inverse problem can be stated

as a nonlinear operator equation

F(T;d; k) = u(d; k), (1.2)

where I is the boundary of the scattering obstacle, d and k are the wavenum-

ber and direction of the incident wave respectively, u(d; k) is the scattering data.

The continuation method starts at the lowest wavenumber for which the scat-

tering data is available, and at which the inverse problem is nearly linear to

obtain an approximate solution I'y. Then, the continuation method recursively

refines the approximate solution I';, obtained at wavenumber k;, by solving the
linearized equation
oF

a—P(FZ, d; k1+1)5F, = U(d, kz’—|—1) — F(FZ, d; kk—|—1) (13)

at wavenumber k;,; and updating the approximate curve by I';;; = I';+0T;.
This upward march in wavenumber ends at the highest wavenumber at which
the scattering measurement is available. In each iteration the relative residual
of the far field pattern corresponding to approximate and exact solutions is
required to become smaller than a tolerance value. If this condition is not

satisfied the iteration is repeated with smaller wavenumber step-size.



There are various important technical issues related to the application of the
continuation method to the inverse obstacle problem that had to be resolved in

this work.

1. Ill-posedness. The linearized problem is well known to inherit the ill-
posedness of the original, nonlinear problem, and thus requires regulariza-
tion. An important question is whether a regularization procedure suitable
for the linearized problem is also appropriate for the nonlinear problem

which is successively approximated by these linearized problems.

2. Number of incident waves. For an obstacle whose boundary is not ex-
tremely convoluted, we may assume that the arclength of the boundary
(in 2D) is comparable to circumference of the circumscribing circle. There-
fore, we expect to recover the boundary with limited number of incident
waves; as few as a single incident wave, because the number of parame-
ters contained in a scattered wave is proportional to the arclength of that
circle. For convoluted boundaries, such as those of concave obstacles, the
above argument may fail. For a general obstacle, the number of incident
waves and directions of these waves, sufficient for a stable inversion, need

to be understood.

3. Concave obstacles. The inverse obstacle problem becomes more difficult as
the boundary becomes more concave and convoluted. Very few methods
succeed in reconstructing these complex shapes, partly due to the underly-
ing physical process and partly due to numerical treatment. There seems

to be no systematic, reliable inversion procedure for concave obstacles.

4. Frequency stepping. The step size in k£ depends strongly on the nature of



the obstacle. From the computational efficiency viewpoint, we desire to
make the step size as large as possible, which conflicts with the conver-
gence requirement. An automatic way to choose the step size to guarantee

convergence and maximize efficiency is needed.

5. Tools building. One of the long existing impeding factors to the systematic
study of the inverse obstacle problem is the lack of proper numerical tools.
For example, to understand the behavior and difficulties involved in con-
cave obstacles, one should have a convenient computer code to generate

and process arbitrary simple closed curves.

The practicality of the continuation method is validated in this work numer-
ically. The examples offered show that a broad class of smooth obstacles whose
boundary is a simple closed curve can be retrieved with the use of the continu-
ation method in a stable manner. To the knowledge of the author no previous
research work on the solution of the inverse obstacle scattering problem reports
the retrieval of non-convex obstacles with two significant digits. The technical

issues mentioned above have been properly addressed.



Chapter 2

Background: Acoustic Scattering

In this chapter we summarize a few essential results of the mathematical de-
scription of acoustic scattering by an impenetrable obstacle. A more complete
derivation and discussion on these results appear in [8, 9], and [22]. The di-
rect acoustic scattering problem which determines the inverse problem treated
in this work is specified in Section 2.1. Next, in Section 2.2 there is a brief
discussion on the mapping defined, for a fixed incident wave, from the obstacle
boundary into the far field pattern of the scattered wave. The inverse acoustic
scattering problem treated in this work is specified in Section 2.3. Finally, the
Nystrom method for the numerical evaluation of integral operators with weakly

singular kernels is included in Section 2.4.

2.1 The Direct Acoustic Scattering Problem

Let us consider the propagation of acoustic waves in a two dimensional ho-
mogeneous medium with speed of sound c. A linearized theory describes this

wave motion in the most appropriate manner. There is a velocity potential



U = U(z,t) from which the velocity field is obtained by

v =grad U, (2.1)
and the pressure p by
oU
= ——— 2.2
P=Po=—"5" (2.2)

where py denotes the pressure in the undisturbed medium. The velocity

potential satisfies the linear wave equation

o’ ,
For time-harmonic acoustic waves of the form u(z,t) = u(zx)exp ™!, with

frequency w > 0, the space dependent part satisfies the Helmholtz equation

Au + k*u =0, (2.4)

where the wavenumber is given by k¥ = w/c. In this work setting, incident
waves u’ are assumed to be plane waves of the form u'(x,t) = e'k=d=w1 or
uf(z) = e*®4 where d denotes an unit vector giving the direction of propagation
of the wave. There is an obstacle D of compact support with boundary I'. The
direct scattering problem consists in determining the total field v = v’ + u®
as a solution to the Helmholtz equation in the exterior domain R?> — D with
boundary condition v = 0 on I', where u* is the scattered wave (the pressure of
the acoustic wave is prescribed on the obstacle boundary). In order to guarantee

uniqueness of solutions the scattered wave is required to satisfy the Sommerfeld

radiation condition



lim /7 (‘9” —ikqf) =0, =]z, (2.5)

r—00 or
uniformly in all directions & = H;_H This radiation condition also implies that
solutions are outgoing waves. Solutions to the Helmholtz equation satisfying the
radiation condition are referred to as radiating solutions. The direct scattering

problem is

Au+ku = 0 inR® - D, (2.6)
v = 0 onl, (2.7)
u(z) = ™44 ut(z), (2.8)
: ou* o\ _
Tlgg\/? ( 5 iku ) = 0, r=]|z|. (2.9)

(2.10)

For smooth boundaries, the well-posed nature of the direct problem can
be proved in an elegant manner by reformulating the problem with an inte-
gral equation approach. See for instance, [8] or [9] for details on the following
discussion:

For integrable functions ¢ the single-layer and double-layer acoustic poten-

tials are defined as

ue) = [ O pl)dsty), v e R T, (2.11)
and
v(z) = A a5%3(1’/?)<p(y)ds(y), reR? T, (2.12)

10



where ®(z,y) = iHé”(kHac —9y||), = # y is the fundamental solution of the
Helmholtz equation (that is, the Hankel function of order zero of the first kind).
Both u(z) and v(z) are radiating solutions of the Helmholtz equation. For
continuous functions ¢, the behavior of the acoustic potentials at the boundary

is described by the following theorem, see [9]

Theorem 2.1.1 Let T be of class C% and let ¢ be continuous. Then the single-

layer potential u with density function ¢ is continuous throughout R? and

[tlloogz < Cll@lloo,r (2.13)

for some constant C depending on I'. On the boundary we have

ua) = [@@etanist), e (2.14)
@ = [ Bt e, cer, @19
where
Ou :
3 x) = hli)lilo v(z) - gradu(z £+ hv(x)) (2.16)

is to be understood in the sense of uniform convergence on I' and where the
integrals exist as improper integrals. The double-layer potential v with density
function ¢ can be continuously extended from D to D and from R —D to R? —D

with limiting values

vs@) = [ LY o0yasy) + o@), zer, (2.17)

where

11



vy = hlgilov(x + hv(z)) (2.18)

and where the integral exists as an improper integral. Furthermore,

[0lloo,p < Clllloor  [0]loor2—p < Clllloor, (2.19)

for some constant C depending on I" and

lim {g—Z(.@ + () — %(x _ hu(m))} —0, zel, (220

h—+0

uniformly on T.

Definition 2.1.1 For z € I we define the linear operators S, K and K as:

S = 2 [ B e)s), (221)
K@) = 2 [ 5 pt)ast), (2.2
K@@ = 2 [ 8 owisy), (2.23)

From the limit values of the acoustic potentials at I" it follows that a com-

bined potential of the form

w(z) = S (K(g)(x) ~ kS(g)(x)), 7€ T, (2.24)

solves the exterior Dirichlet problem provided that the density function ¢ is

a solution of the integral equation

¢ — Kp—1ikSp=—2u' onT. (2.25)

12



It is known that Operators S and K are compact, and using Riesz-Fredholm
theory it is readily established that I + K —ikS : C(I') — C(I') is bijective and
the inverse (I + K —ikS)~ ! : C(T') — C(T') is bounded. The first part implies
that a solution to the direct problem exists and is unique; the second implies
that a solution depends continuously on the boundary data in the maximum

norm.

2.2 The Far Field Mapping

With the use of the Sommerfeld radiating condition, it is possible to extend the
Green’s representation formula for radiating solutions u®(z) of the Helmholtz

equation in the exterior of D

S _ S 8(1) (.T, y) 8us (y) 2 B
u(x)—/r{u w5 - @(x,y)}ds(y), TeR —D. (2.26)

From equation (2.26), the asymptotic of the Hankel function

2 . 1
HWY(z) = (] =¢ilznm/2-m/4) {1 +0 (—) } , 2 — 00, (2.27)
Tz z
and the expansion
2 2 - 1
lz =yl = Vil = 22 -y + [lyll> = ||| = & -y + O =k (2.28)

it is derived that a radiating solution u® to the Helmholtz equation has an

asymptotic behavior of the form

ciklal]

z) = = {uoo(:ﬁ)—f—O(ﬁ)}, ]| — oo, (2.29)

13




uniformly in all directions & = 7. The function Uso(Z), defined on the
unit circle, is referred to as the far field pattern of the radiating solution u®(x).
For a fixed incident wave u’, the mapping from the boundary of the scattering

obstacle into the far field pattern

F(T) = us(2), (2.30)

is called the far field mapping. Let us denote the unit circle by €2. The far
field mapping is known to be continuous and Fréchet differentiable from C* ()
into L?(1Q2).

We like to mention the following result from Chapter 2 of [18]

Definition 2.2.1 Let J : X — Y be a linear operator defined between to
normed spaces X and Y. J(y) is Fréchet differentiable at yo, if there ezists

a continuous linear functional DJ(yy) such that

J(y + h) = J(yo) + DJ(yo)h + o([| ), (2.31)

for all h in the normed space X.

Definition 2.2.1 is used in Section 3.1 to describe the continuation method

to approximately solve the inverse obstacle scattering problem.

2.3 The Inverse Acoustic Scattering Problem

Given the far field pattern u., corresponding to one or more incoming plane
waves u’, the inverse scattering problem is to determine the shape of the scat-
tering obstacle. This inverse problem is difficult because it is both nonlinear and

ill-posed. The obstacle boundary can be described by a function in C° whereas

14



the far field pattern is an analytic function of the direction angle. Thus, a
solution of equation (2.30) does not necessarily exist for prescribed data uq.
Furthermore, if a solution exists, it usually does not depend continuously on
Us. In the practice of numerically solving this inverse problem, ill-posedness
will give rise to instability and non-uniqueness, and nonlinearity will give rise
to local solutions when equation (2.30) is tackled via standard nonlinear solvers
such as the gradient method, Newton’s method, and the like.

The continuity and differentiability of the far field mapping operator F' pro-
vide the prerequisites to solve the inverse problem equation (2.30) iteratively.
On the other hand, the ill-posed nature of the equation affects its numerical
treatment. It is necessary to use a method that allows to approximate the so-
lution in a stable manner, or a reqularized method. We discuss our approach to

regularization in the next chapter.

2.4 The Nystrom Method for Boundary Inte-
gral Equations

Nystrom is the most practical method for the numerical solution of integral
equations of the second kind in the one dimensional case, since only one evalu-
ation of the kernel function is required in the evaluation of each of the matrix
elements of the linear system. Also, Nystrom method is stable in the sense that
it preserves the condition number of the discretized integral equation, see [27].

To implement the Nystrom Method for the solution of the obstacle scattering

problem, we begin with 27-periodic parametric representation of the boundary

15



curve of the form

z(t) = (x1(t), z2(t)), 0<t<2rm (2.32)

counterclockwise oriented and satisfying ||z’ (¢)|| > 0 for all . Then S(¢)(z),

K(¢)(z), K (¢)(z) can be written in the following form

S(p)(xz) = OWM(t,T)QO(T)dT, (2.33)
K(o)(z) = /0 "Lt P, (2.34)
K (0)(z) = /O "L () o(r)dr, (2.35)

where we have set ¢(t) = ¢(z(t)) and the kernels are given by

Mt7) = SHP () - 2Dl O]

2
i ! ) z(t) —x(T
L) = S ) Gl - o) e = HOD,
: ik, oo HY (k||lz(t) — x(n)]) |12 ()]

lz(@) =zl =" @l
where (z'(t))* = (=5(t),z}(t)). The kernels M, L and L' have logarithmic

singularities. For their numerical treatment they are split into

t —_
M(t,7) = M(t,7)In(4sin’ T) + Ms(t,7)
t —_
L(t,7) = Li(t,7)In(4sin? T) + Lo(t,7)
! 7 t - !
L'(t,r) = Lt ) Indsin? 1)+ Ly(t, )

16



where

Mi(t,7) = —%JO(/?Hx(t)—»’C(T)||)||$'(T)||,

My(t,7) = M(t,7) — In(dsin® “= )M, (¢, 7),

L) = (@) ) = o) =20
Lo(t,7) = L(t,7) — In(dsin®> =)L (t, 7),

L) = (@) o) oy 2= 2O G,

! ! t_ !
Ly(t,7) = L'(t,7)—In(4sin2 —)L\(t,7).

The kernels M,, My, Ly, Lo, L'1 and L'2 are analytic. The diagonal terms are

given by
My(t,t) = {% - % - % 1n(%llfb"(t)IIQ)} [EXOIE (2.36)
Lo(tt) = %W (2.37)
Ly(t,t) = Ly(t,t). (2.38)

The Nystrom method consists of the straightforward approximation of the in-

tegrals by quadrature formulas
2n—1

/0 " In(4sin? © ; Dy~ 3" RO f(t), 0<t<2r (2.39)

J=0

Q

at the set of equidistant knots ¢t; = mj/n, j =0, ...,2n — 1; with the quadrature

weights given by

—_

n—

n 27 1 T .
RM(t) = =Y —cos(m(t — 4))) = 5 cos(n(t —1;)), §= 0,20~ 1,
m=1
(2.40)
and the trapezoidal rule

2 T 2n—1
| @i =13 s (241

0 =0



It is essential to split the logarithmic singularities in a way that the kernels

M, Ly, L}, My, Ly, L, preserve their 2r-periodicity.

18



Chapter 3

Method of Continuation in the

k-Space

In this chapter the continuation method and its implementation are explained.
A description of the method is presented in section 3.1. In section 3.2, a rep-
resentation of the domain derivative of the far field mapping OF /0T in terms
of the operators S, K and K is given in equations (3.14) and (3.31); this so-
called domain derivative is the core step of the perturbational calculation. The
corresponding representation of 0F /0T, using a combined potential approach,
is given in the appendix. In section 3.3 is the discretization of 0F/0I" using the
Nystrom method. A simple approach to regularization is offered in section 3.4,
with an approximate solution to a linear system via a pseudo-inverse of a matrix

with large condition number, based on its singular value decomposition.
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3.1 The Continuation Method

Let us consider the far field mapping equation for a plane wave u® = %4 with
wavenumber £ and incident direction d; the mapping goes from the obstacle

boundary T into the far field pattern of the scattered wave u(Z; d; k)

F(T;d; k) = ueo(Z; d; k). (3.1)

If we perturb the boundary curve I', represented as x, along its normal

direction v(z) by an small amount dv(z) to a boundary curve T, represented as

Z =z 4 ov(z)v(z), it is possible to linearize equation 3.1 around the boundary

curve I' with the use of the domain derivative OF/OI'(', k) to obtain, to the
second order of ||dv||?,

g—i(f; d; k)ov = ue (25 d; k) — F (T d; k). (3.2)

Assuming that scattering data is available for each wavenumber k;, with £y =
O0ko < ki = ko + 0k1 < ... < k4 = ky—1 + 0ky, the method of continuation starts
at the lowest wavenumber ky for which the data is available, and for which the
problem is nearly linear. In this first step we determine three real or two complex
parameters, obtaining an approximate solution curve I'y, represented as z, (a
circle or an ellipse). This is accomplished by an optimization process. Then,
an approximate solution curve I';, obtained with wavenumber £;, is recursively
refined by solving the linearized equation 3.2 at wavenumber k., and updating
the approximate solution curve I';, represented as z;, to I';,;, represented as
Tjs1 = T + 6v(z;)v(z;).

The following is a summary of one step of the continuation method:

20



e For given approximate boundary curve z; and incident field u’(d; k;41),
calculate the far field mapping domain derivative at a set of equidistant

observation points ;,

e Solve the linearized equation (3.2) to find dv(z;), using far field pat-
tern data produced by the target obstacle boundary I' and incident field
uz(d’ kj-f—l)a

e Update the approximate boundary curve x4 = z; + dv(z;)v(z;),

e Calculate the far filed pattern relative error
Err = |luco(d; kj1) — F(ds kjur; Tjn) |/ [|uco(ds ki) |, (3.3)

e If Err is acceptable increase wavenumber to k; o = k;y1 + 0k, else set

wavenumber equal to k; 1o = ki1 + 0k/2.

Since the curve update dv; from all incident plane waves u’(d; k;1) should
be consistent, it is possible to use two or more incident plane waves u, u}, ...,
uf, with incident directions dy, dy, ..., d;, to obtain the curve update. For this

purpose the linear systems are stacked in the following way

g_?(dl; kji1; 1) Uoo(d1; kji1) — F(dy; kjia; T)
g_?(d% kji1;T5) 5 Uoo(d2; kji1) — F(d2; kjia; 1)
V= ’
I OF (dy; kjy1; 1) | | Uoo(di; K1) = Fdi; kjas Ty)

where 0F/0T(dy; kj11;T';) is the domain derivative of the far field mapping at

the boundary curve I'; for an incident wave with wavenumber k;; and direction

21



dyg; Uoo(dyg; kj+1) and F(dy; kj11; 1) are the far field pattern data and the far field
mapping evaluated at I'; respectively.

In the method of continuation, the natural choice for the data space is the
Hilbert space of square integrable functions on the unit sphere L?*(€2). It re-
mains an open problem to characterize the class of boundary curves that can
be retrieved solving the inverse obstacle scattering problem. In our numerical

experiments obstacle boundaries are simple closed curves of class C?(1).

3.2 The Domain Derivative of the Far Field
Mapping

Since S(¢)(z) is continuous in R?, u*(z) = £5(¢))(z) is a solution of the exterior

Dirichlet problem if

S()(z) = —2e*=¢ gz €T, (3.4)

or

/F Bz, y)o(y)ds(y) = —*4, zeT. (3.5)

Using the asymptotic (2.27) and the expansion (2.28) we find that the far

field mapping can be written as

ezkvr

V8&mk Jr

Let x = z(s) be a parameterization with respect to arc-length s € [0, L] of

e "o (y)ds(y). (3.6)

Uoo (%) = Soo()(2) =

the smooth simple closed curve I" in R%. Let 7(x) and v(z) be its tangent and
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outward normal vectors at the point z(s) respectively. Perturbing I' at each

point z € I' by an amount dv(x) in the normal direction gives

I={icR|i=x+dv(z)v(z), =T} (3.7)

Suppose further that T is a smooth simple closed curve in R? parameterized
by its arc-length § € [0, i]; consequently, there is a mapping n: I' — I defined

by the formula

n(x) =z + dv(z)v(z). (3.8)

For an element ds on I" with endpoints z(s) and z(s+0ds), the corresponding

element d3 in T is defined as the element with endpoints 1(z(s)) and n(z(s+ds)).

Lemma 3.2.1 Suppose I’ and T are two smooth simple closed curves, and k()
is the curvature of T at x(s) defined by k(x) = v(z(s))t - 7(z(s)). Suppose

further that T is close to and nearly parallel to T'; namely

d(ov)
ds

then, to the second order of k(x)év(z), 0V (z)

k(z)ov(r) < 1, () < 1, (3.9)

ds = (1 + k(z)ov(x))ds (3.10)

Now, let us assume that each point z(s) on the boundary I' is perturbed
along the normal direction to the point & = n(z). Assume further that the
perturbation is small enough to satisfy the conditions from equation (3.9), and

denote by @ the solution to the integral equation on T’
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[ oG Do) = e @11

Lemma 3.2.2 Suppose under the conditions of lemma (3.2.1) that for x € T’

3(x) = max{| s(x)ov(z) || 20 )} (3.12)
then
Spla) = §(@) — o(2) (3.13)

is of the order §(x). Furthermore, to the second order of 6(x), d¢(x) satisfies

the equation

S8+ kévp)(x)+K(6ve)(z)+6v(2) K (¢)(x) = —2ikv(z)-de* v (z) (3.14)

Proof
For points z, y € I', £ = n(z) and § = n(y) denote the corresponding points on

T'. To the second order of §(z), S(@)(%) can be rewritten as

S@)@) = / 8z, 5)3(7)d3(5) (3.15)
= /F‘P(n(m),n(y))[w(y)+590(y)][1+/€(y)5l/(y)]d8(y) (3.16)

Subtracting S(¢)(x) from S(¢)(z) leads to
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)(@) = 5(#)(2)

&

| 2(@), n(w))0ey) + wly)ov(y)e(y)lds(y) +

/ (s & (2, )] (y)ds(y)
= L+ 1.

(n(z), n(y))le(y) + dp(y) + k(y)ov(y)e(y)lds(y) —

(3.17)

(3.18)

(3.19)

Here, given that ®(n(x),n(y)) = ®(z,y) + O(|dv|), it follows that I; can be

written to the second order of §(x) as

L = / Bz, 3) () + £(1)6v()o(y)+ds(y)

_ %S(&p + kv (2).
On the other hand,
/[@ (2, y)]e(y)ds(y)
— /[cp — ®(n(z), y)]e(y)ds(y) +
/ (0 @ (@, y)le(y)ds(y)
= Ji+ Jo

Using theorem (2.1.1), it follows that to the second order of 6(x)
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Jio= [ [@n(z),n(y) — (n(z),y)]e(y)ds(y) (3.25)

_ %(K—I)((Swp)(x), (3.26)

and
B = [ 181(0).9) - @ )lew)asty (3.2)
= L) (K + D)(e)(x). (3.28)

The lemma follows immediately. B

The same perturbation analysis can be applied to the far field pattern. Let

fioo (&) be the far field pattern generated by the density function ¢ on I so that

oo 2) = / Boo(2, ) 3(5)d3(3), (3.29)

etkm

where ®oo(Z,7) = F=e

—ikZ-y

Lemma 3.2.3 Under the conditions of lemma (3.2.1), suppose the density
functions p € C(I') and @ € C(T') are solutions of the integral equations (3.5)
and (3.11) respectively. Suppose further that us, e € C®()), are the corre-

sponding far field patterns. Then

5”00(‘%) = aoo(i‘) - uoo(j) (330)

is of the order 6(x), and to the second order of 6(x)

Moo (Z) = Seo(—1kZ - VOV + d + KOVY)(T). (3.31)
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Proof
For points z, y € T', £ = n(z) and § = n(y) denote the corresponding points in

I as before. Now, to the second order of 8, us (%) can be written as

fne(3) = / Do, §)5(5)d3(3) (3.32)
= /F‘Poo(fﬁ,n(y))[w(y)+590(y)][1+f€(y)5V(y)]dS(y) (3.33)

subtracting o (%) from () leads to

() = (@) = [ (@) l0) + Gly) + r()50 ) 0)dsl0) ~
[ et wetuasty (3.34)
= [ Bl n)IB00) + ()00 ds(a)
[0l 1) ~ 0wl I w)ds(o) (3.35)

r

Here, given that @ (Z,7(y)) = Poo(Z,y) + O(|0v]), L1 can be written to the

second order of §(z) as

L = / Do (1) 00 (y) + ()00 (1) 0(y)]ds (1) (3.37)
= Sw(dp + Kdvp)(Z) (3.38)

Similarly, using example 3.3 from [18]

27



L = / [@oo (2, 1(y)) — Poo(, )]0 (9)ds(y) (3.39)

- / ik ()0 (y) o, 1) (y)ds(y) (3.40)
= Seo(—tkz - vévp)(Z). (3.41)

3.3 Discretization of the Far Field Mapping
Domain Derivative

To evaluate F'(I') it is necessary to solve the integral equations of the first
kind (3.14) and (3.31). First, equation (3.14) is solved in terms of dp(z) +
k(z)ov(z), and substituted into equation (3.31).

Suppose the boundary curve is parameterized by z(t) : [0,27] — I, and
consider curve grid points z(t;) or z; with t; = mj/n for j =0, ...,2n— 1. Then
Nystrom method can be used to approximate the left hand side of equation

(3.14) in the following manner

2n—1

S(0¢ + kévp)(z Z[M1 ti t) R, + M2(tzat )N0e; + Kkdvips],

\ZJ

where M, (z(t;), z(t;)) = Mi(ti, t;), Ma(x(t;), 2(t;)) = Ma(ti, t;), Sp(z(t;)) =
6pj, k(x(t5)) = Ky, Sv(x(t;)) = 0vy, @(2(t;)) = ¢;- Thus

S(0p + kovy)(z) ~ Sij[dp; + Kiovip;], (3.42)

where S;; is a 2n by 2n matrix, and d¢;, k;0v;¢; are two 2n by 1 arrays.

Similarly,
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2n—1
K@vg)@) ~ (Lt t) R + - Lot 1))lovie;, (3.43)
=0

where A;; is a 2n by 2n matrix, and dv;, is a 2n by 1 array.

2n—1

ov(z)K Nay,Z[Ll t;, ;)R J|+ L Lot )]s (3.45)

The contribution from thls term to the linear system is a product of the

form B;;0v; where B;; is a 2n by 2n diagonal matrix with diagonal terms

Z [Ly(t;, ;)R |+ L Lot t));. (3.46)
7=0

Finally,

—2ikv(x) - de*™ () ~ —2iky; - de™*®i 45, (3.47)
also contributes to the linear system with the product of a diagonal matrix

Ci; and 0v;. The integral equation (3.14) is approximated by

Sij ((S(PJ + l'ij(SVjQOj) = (AZ] + Bij + Cij)(SI/j. (348)
Similarly, let 6, = = for | = 0,...,2m — 1, and let & = (cosf,sin6;) be
2m observation points for the far field pattern. Then the left hand side of

equation (3.31) is approximated term-wise in the following manner, first

ik 2m
Seo(—ikdy - v6UQ) (&) = M e* =D —ikz - v(r)ow (1) (7))l (7)||dT
ilc 2n—1

Q

\/8? Z zk$1 58] —kT - Vj(stQOj]”xjH’
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contributes to the linear system with a term E;;0v;. The second term is

Seo(0p + KOV)(21) = \;E?Wk 0 e 5g(r) 4 k()N () dr

ikm 20l

. ~ . . '
Z Eezkwl T [(SQDJ' + ﬁjéujgoj]”ﬁjna
Jj=0

(&

vV 8Tk

Q

which corresponds in the linear system to a term of the form D;;(0¢p; +

k;0vjp;). An approximating equation alike equation (3.48) is obtained

5uoo(i“l) = Eijél/j + DU((SQOJ + K,j(Sl/ngj). (349)

Using the pseudo-inverse with tolerance € of S;; equation (3.48) can be

rewritten as

S + kjovip; = (S)jilAij + Bij + Ciglov;, (3.50)

Substituting in equation (3.49) is obtained a discretized expression for the

domain derivative in terms of dv;

6uoo(il) ~ Eljdl/j + Dlj(S:—)JZ[A” + Bij + Cij]é-l/j. (351)

To approximate the density function at the curve grid points z; equation 3.4

to obtain

Sz’j(ﬁj =~ —26ikzi'd, (352)

or

(o) = —2(SH) e, (3.53)
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The corresponding expression for the approximated far field pattern is

Uso(T1) R (Soo)ij(9d); (3.54)

= —2(Su0)i;(SF) ietkmid, (3.55)

3.4 Regularization

We address the problem of regularizing equation (3.2) using a well known

pseudo-inverse for matrices with large condition number (see [37] or [41]).

Definition 3.4.1 Suppose that A = UXV* is the singular value decomposition
(SVD) of a matriz A (m byn), then we define the pseudo-inverse of A as

AF =VEtU*. (3.56)

The singular values o1, ...,0, in decreasing order are on the diagonal of
Y (m by n) and the reciprocals 1/o; on the diagonal of ¥t for 1 < j < r

for somer < m, r <n.

Definition 3.4.2 Suppose that A = UXV* is the singular value decomposition
(SVD) of a matriz A (m by n), then we define the pseudo-inverse of A with

tolerance € as

Af =VSHU* (3.57)

The singular values o1, ...,0, in decreasing order are on the diagonal of

Y (m by n) and the reciprocals 1/o; on the diagonal of £F for 1 < j < r
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Or41

for some r such that o

< e and = > €. The rest of the diagonal elements of

XF are equal to zero.

This pseudo-inverse allows to look for an “effective rank” of the matrix,
relative to the number of significant digits we are working with. Based on the
accuracy of the data, we decide on a tolerance € and count only the singular

values above it. We can formalize this discussion with the help of the following

Theorem 3.4.1 Suppose that A = UXV™ s the singular value decomposition
(SVD) of a matriz A (m byn) with rank k, then

A) For any 1 < r < k, the matriz A, (m byn) of rank r that minimizes

I|A — A,||2 is given by

A, = oyug v + ...opu ) (3.58)
and the minimum is ||[A — Ayll2 = 0y41.

B) For any € > 0, the matriz A, of minimum rank among all the matrices
A’ that satisfy ||A— A'||s < € is the same matriz from A), where 0,1 < €

and o, > €.

It is a well known fact that the minimum length least squares solution to a
linear system Az =bis xt = Atb = VEXTU*b. The following is a derivation of
a bound of the error of the approximate solution to the linear system using A;.

On one hand we have
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Azt —blls < ||Avat — Azt]fs + || Azt — bl (3.59)

< 1A = Allzllz" [l + 1Az = b]l2 (3.60)
= ortllatls + At = bl (3.61)

Similarly,
[AzT = bll2 < orallzTll2 + [ Arz™ = bll2, (3.62)

and both inequalities combined lead to

[ 1Az = bll2 = [|[Ar2™ = bl < oralla™lo. (3.63)

It turns out that, with all parameters fixed, both an early cutoff and a late
cutoff lead to a poor approximation; in the first case because many singular
values are dropped, in the second case because the condition number of the
approximating matrix A, approaches the actual condition number of the dis-

cretized equation (3.2) as we include more singular values.
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Chapter 4

Numerical Examples

In this chapter the method of continuation is presented in practice. Section 4.1
contains some remarks about the numerical experiments conducted along this
chapter with the method. In section 4.2 the results of a test of stability are
shown; the tests from [31] and [34] are used as a model in the design of our
test. Finally, in section 4.3 we include some examples of the reconstruction
of non-convex obstacles; examples are focused on the reconstruction of shapes

with big concavities, like the “bitten donut” shown in figure 4.38 in p. 85.

4.1 Numerical Experiments

Numerical experiments to solve the inverse problem use synthetic far field data,
which is obtained solving the direct problem with the method recommended
in [9]. In the direct problem, the number of grid points on the obstacle boundary
curve is equal to 256 in all experiments. In the inverse problem, the number of
grid points on the approximated boundary curve is calculated using a heuristic

rule of ten equidistant grid points per wavelength of the incident field; the
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number of observation points of the far field pattern is set equal to this same
number in both, the direct and inverse problems. Obstacles are probed using
several incoming plane waves as described in section 3.1. In each iteration the
relative error of the far field pattern is required to become smaller than 10% or
the iteration is repeated with the wavenumber step-size reduced by a factor of
0.5. The wavenumber step-size is split at most 10 times in this adaptive march.
For a stopping rule we use the relative residual

_ |lzi — Ziy1z2

Res = , (4.1)

|Ti1] 22

where z;, 7;,1 denote the approximated boundary curves obtained in the i
and (i + 1)*" iterations. Iterations are stopped when the relative residual Res
is less than a tolerance value € or the wavenumber is equal or greater than a
maximum value allowed k... In examples shown throughout this chapter we

used an initial curve to start the iteration.

4.2 Stability Test

A test for stability with respect to random errors added to the data is applied
to the method of continuation. The test consists of twin iterations with the real
and imaginary parts of the data multiplied by a factor of 1+ €R in one of them,

where 0 < € < 0.1 and R is a random number in the interval [—1,1].

In the examples presented along this section we reconstruct the obstacle
shown in figure 4.1. The obstacle is probed using three incoming plane waves
with direction angles 7/3, = and 57/3. The stopping condition is: the relative

residual Res < 10~2 or the wavenumber k£ > 30. In examples 1 to 6 the size of
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Table 4.1: In this examples are tested several wavenumber step-sizes versus an

earlier and a later cutoff.

cutoff = 0.1 cutoff = 0.01

ok =2 example 1 example 2

0k =1 example 3 example 4

0k = 0.25 | example 5 example 6

the noise is equal to 1% and the initial curve is the unit circle centered at the
origin. The regularization cutoff and wavenumber step-size are chosen according
to table 4.1.

In examples 7 and 8 the circle that serve as initial curve was changed from
the unit circle centered at the origin. In these two examples the cutoff value is
equal to 107! and the size of the noise added to the data is equal to 1.5% and

2% respectively. The obstacle is still reconstructed within two significant digits.

From the results displayed in this set of examples we like to highlight the
following (by approximation we mean the approximated boundary curve ap-

proaching the scatterer boundary):

e In the current setting, two significant digits in the far field pattern data

are precise enough in order to reconstruct the obstacle boundary,

e To an earlier cutoff corresponds more stability; to a later cutoff corre-

sponds a faster approximation,

e To a greater wavenumber step-size corresponds a stronger boost in the

curve update. To a smaller wavenumber step-size corresponds more con-
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Figure 4.1: This figure shows the obstacle used for the stability test.
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trol over the far field relative error.

e It is always possible to continue the iterations in order to further improve
an approximation (although an approximation cannot be improved beyond

two or three significant digits in the current setting).

These observations motivate the subject of the next section, where obstacles

having a big concavity are probed.

4.2.1 Example 1

In figures 4.2 and 4.3 plots in the left column and the right column correspond to
unperturbed and perturbed data respectively'; the wavenumber of the iteration
is indicated in the bottom left of each plot. Notice that with an error in the
data of 1% the difference between two corresponding plots with unperturbed
and perturbed data can hardly be told by inspection. On the other hand, in
figure 4.5 it can be seen that the relative residual of later iterations is more
sensible to the introduced error. In figure 4.4 the initial curve, the target curve,
the best approximation achieved are depicted, as well as the corresponding curve

obtained with perturbed data as indicated in the legend inside the figure.

LAll figures having 6 sub-plots are organized in this way
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Figure 4.2: This figure depicts the target curve and the first three iterations,

the initial curve is also shown in the plot corresponding to the first iteration.
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Figure 4.3: This figure shows some intermediate iterations. Intuitively, we see
that iterations with smaller wavenumber “locate” the scatterer whereas itera-

tions with greater wavenumber “reconstruct” its fine details.
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Figure 4.4: In this figure are the initial curve, the target curve and the best
approximation achieved with unperturbed and perturbed data as indicated in

the legend in the figure.
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Figure 4.5: This figure shows the relative residual as a function of wavenumber
in semi-logarithmic scale. In later iterations the relative residual is more sensible

to the introduced error.
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4.2.2 Example 2

This is the same as Example 1, except that the cutoff has been changed from
107! to 1072, In figure 4.6 it can be seen that it was necessary to take a smaller
wavenumber step-size in the first and second iterations. In the previous example
only the first iteration required a smaller wavenumber step-size. In figure 4.7
it is apparent that the difference between target curve and best approximation
achieved is as tiny as in our previous example. In this example the relative
residual does not decrease below 102 in the chosen wavenumber interval, and
it is more sensitive to the introduced error compared to the case of cutoff = 101,

see figure 4.8.
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Figure 4.6: In the first iterations it may be necessary to take a smaller wavenum-

ber step-size.
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Figure 4.7: The difference between the target and reconstructed curve can

hardly be told by inspection.
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Figure 4.8: The relative residual as a function of wavenumber. In this case
the relative residual corresponding to perturbed data decreases more slowly

compared to example 1.
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4.2.3 Example 3

In this example the regularization cutoff value is 107! and the wavenumber
step-size is 1. Only in the first iteration a smaller wavenumber step-size is
necessary, see figure 4.9. The wavenumber relative residue decreases below 103

at wavenumber k = 26.25, see figure 4.11.
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Figure 4.9: In the first iteration it may be necessary to take a smaller wavenum-

ber step-size.
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Figure 4.10: The obstacle boundary is reconstructed within two significant dig-

its.
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Figure 4.11: The relative residual as a function of the wavenumber. The

wavenumber relative residue decreases below 10™3 at wavenumber k = 26.25.
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4.2.4 FExample 4

This is the same as example 3 except that the regularization cutoff value has
been changed from 107! to 1072, the wavenumber step-size is 1. The best
approximation achieved of the obstacle boundary curve is about the same as in
example 3, see figure 4.13. The wavenumber relative residual decreases below

1073 at wavenumber 29.75, see figure 4.14.
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Figure 4.12: In the considered examples the difference between iterations with

perturbed and unperturbed data is tiny.
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Figure 4.13: In this figure the target curve is depicted, as well as the initial
curve and the best approximation achieved with perturbed and unperturbed

data.
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Figure 4.14: The relative residual as a function of wavenumber. The wavenum-

ber relative residual decreases below 1072 at wavenumber 29.75.
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4.2.5 Example 5

In this and the next example is used a wavenumber step-size of 0.25, in this
example the cutoff value is 10~!. The relative residual does not decrease below
103 in the chosen wavenumber interval, see figure 4.17. This experiment is more
expensive since many iterations are required. But in figure 4.16 we see that the
reconstruction of the scattering obstacle with perturbed and unperturbed data

is as good as in previous examples.
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Figure 4.15: A smaller wavenumber step-size produces a smaller change in the

curve update.
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Figure 4.16: The best approximation achieved is as good as in previous exam-

ples.
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Figure 4.17: The relative residual does not decrease below 107® within the

chosen wavenumber interval.
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4.2.6 Example 6

Finally, in this example the wavenumber step-size is 0.25 and the regularization
cutoff value is 1072, As expected, the relative residual is bigger for the perturbed
data, and it does not decrease below 10 2 in the chosen wavenumber step-size,
see figure 4.20. Presumably a smaller wavenumber step-size produces smaller
curve updates for a given cutoff value, although in figure 4.19 we see that the

reconstruction of the obstacle boundary is as good as in previous examples.
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Figure 4.18: A smaller wavenumber step-size produces a smaller approximated

boundary curve update, like in example 5.
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Figure 4.19: Although the relative residual is bigger for perturbed data, the
best approximation achieved with unperturbed and perturbed data are not dis-

tinguishable by simple inspection.
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Figure 4.20: Among the considered examples, this is the case where the relative

residual is more sensitive to the error introduced.
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4.2.7 Example 7

This time the initial curve is the circle of radius 0.5 centered at (0.3, —2.5).
The initial curve chosen is a good initial guess for the iterations provided the
wavenumber step-size in the early iterations is small enough. In the first three
iterations smaller wavenumber step-sizes are required, see figure 4.21. The
wavenumber step-size is 1 and the regularization cutoff is 10~1. The relative

residual decreases below 1073 at wavenumber k = 25.69, see figure 4.23.
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Figure 4.21: The initial curve chosen is a good initial guess for the iterations,

wavenumber step-sizes are small in early iterations.
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Figure 4.22: This figure depicts the initial curve, the target curve and the best

approximation achieved with perturbed and unperturbed data.
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Figure 4.23: The relative residual decreases below 107% at wavenumber k =

25.69.
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4.2.8 Example 8

In this example the initial curve is the circle of radius 2 centered at (—0.15, —0.2).
In the first and second iterations smaller wavenumber step-sizes are required,
see figure 4.24. The relative residual does not decrease below 102 in the chosen
wavenumber interval, see figure 4.26. In figure 4.25 it can be seen that the circle

chosen as initial curve is not “close” to the obstacle boundary curve.
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Figure 4.24: This time the initial curve is not shown in the first three iterations.
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Figure 4.25: This figure depicts, as before, the initial curve, the target curve

and the best approximation achieved with perturbed and unperturbed data.
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Figure 4.26: Although the relative residual decreases considerably, it does not

decrease below 1072 in the chosen wavenumber interval.
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Table 4.2: Strongly concave obstacles are probed orienting a few waves around

the cavity opening.

number of waves direction angles
example 1 3 /4, m, Tr/4
example 2 4 /4,7, Tr/4,0
example 3 4 /4,7, Tr/4,0
example 4 4 /4,7, Tr /4,0
example 5 4 /4,7, Tr/4,0

4.3 Non-convex Obstacles

Examples in this section focus on obstacles having a concavity comparable to the
size of the obstacle itself. Obstacles are probed orienting a few waves around the
obstacle cavity opening. This is done so for the sake of illustrating the method
of continuation at work; no extra information about the obstacle boundary is
necessarily known a priori. Obstacle boundaries are reconstructed within two
significant digits.

In all examples the regularization cutoff value is 107!, except in example 2 where
the cutoff value is 8 * 1072; in all examples the wavenumber step-size is 1 and
the stopping condition is: the relative residual Res < 1073 or the wavenumber
k > 30; the initial curve is the unit circle centered at the origin. In table 4.2

the number of waves and the direction angles used in each case are shown.
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4.3.1 Example 1

Three waves per iteration are used to probe the object depicted in figure 4.27,
one has direction (1,0) and the other two are oriented around the cavity open-
ing with directions (—1/v/2,1/4/2) and (—1/v/2,—1/+/2). In figure 4.28 are
shown the approximated curves corresponding to the first four iterations; in the
first plot the circle that serves as initial curve is also shown. Notice that the
outer side of the curve has been almost reconstructed by the fourth iteration.
In figures 4.29 to 4.32 it is shown the transition from the interval where the
wavelength is greater than the obstacle cavity opening to the interval where
the wavelength is smaller. In figure 4.32 the approximated boundary curve is
already close to the obstacle boundary. In figure 4.36 the initial curve, the ob-
stacle boundary curve and the best approximation achieved are depicted. The
relative residual decrease below ¢ = 102 when the wavenumber is k = 19.625,
see figure 4.37. Although the obstacle used in this example has a big concavity
we can say that this is not a very complicated curve. In this example plots of

all iterations required to reconstruct the obstacle boundary are shown.
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Figure 4.27: Target boundary curve probed in example 1.
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Figure 4.28: Smaller wavenumber step-sizes are required as the wavelength of

incoming waves becomes comparable to the obstacle cavity opening.
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Figure 4.29: This and the next figure include iterations that correspond to the
transition from the interval where the wavelength is greater than the obstacle

cavity opening to the interval where the wavelength is smaller.
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Figure 4.30: When the wavelength is smaller than the cavity opening the approx-

imated boundary curve approaches also the inner side of the obstacle boundary.
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Figure 4.31: Iterations with a greater wavenumber reconstruct the fine details

of the obstacle boundary.
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Figure 4.32: In the iterations presented in this figure, the approximated bound-

ary curve is already close to the obstacle boundary.
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Figure 4.33: In the iterations presented in this figure, the approximated bound-

ary curve is almost completely reconstructed.
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Figure 4.34: Relative changes between consecutive iterations are tiny when the

stopping condition is close to being met.
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Figure 4.35: The final iterations of the approximation are depicted in this figure.
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Figure 4.36: This figure depicts the initial curve, the obstacle boundary curve
and the best approximation achieved. The obstacle boundary is reconstructed

within two significant digits.
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Figure 4.37: The relative residual as a function of wavenumber. The relative

residual becomes smaller than € = 1073 at k = 18.19625.
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4.3.2 Example 2

This time the target boundary curve is the domain depicted in figure 4.38. To
probe this figure and those considered in the remaining examples are used four
incoming waves per iteration, one has direction (1,0) and the other three are
oriented around the cavity opening with directions (—1//2,1/v/2), (=1,0) and
(=1/v/2,—1/+/2). Notice that the opening of the obstacle cavity is smaller than
the cavity inner part. This figure may be regarded as difficult to reconstruct.
Figures 4.39 and 4.41 represent the change from the interval where the wave-
length of the incoming waves is greater than the cavity opening to the interval
where the wavelength is smaller. In the iterations shown in figure 4.42 the ob-
stacle is finally reconstructed. In this experiment the relative residual does not

decrease below 1072 in the chosen wavenumber interval, see figure 4.44.
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Figure 4.38: Boundary curve probed in example 2. This figure may be regarded
as difficult to reconstruct since the cavity inner part is bigger than the cavity

opening.
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Figure 4.39: It is not necessary to take smaller wavenumber step-sizes until the

semi-wavelength is comparable to the cavity opening.
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Figure 4.40: When the semi-wavelength is about the same size of the cavity
opening the approximated boundary curve starts approaching the inner side of

the boundary curve.
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Figure 4.41: Iterations in this figure represent the transition from the interval
where the wavelength of incoming waves is greater than the cavity opening to

the interval where the wavelength is smaller.
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Figure 4.42: In iterations shown in this figure the obstacle is already recon-

structed.
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Figure 4.43: This figure depicts the initial curve, the obstacle boundary curve

and the best approximation achieved as indicated in the legend in the figure.
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Figure 4.44: The relative residual does not decrease below 1073 in the chosen

interval. However, the boundary curve is reconstructed within to significant

digits.
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4.3.3 Example 3

For this example a more complicated boundary curve is chosen, see figure 4.45.
This boundary curve and those considered in examples 4 and 5 are alike, except
that the the legs that form the obstacle cavity are more curved in the later
two cases. When the semi-wavelength is about the same size of the cavity
opening the approximated boundary curve starts approaching the inner part of
the obstacle boundary curve, see figure 4.48. In figure 4.50 the initial curve, the

target curve and the best approximation achieved are shown.
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Figure 4.45: Boundary curve probed in example 3. The aspect ratio of this

obstacle is bigger compared to the two previous examples.
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Figure 4.46: In the first iterations the approximated boundary curve approaches

the outer side of the obstacle boundary curve.
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Figure 4.47: When the semi-wavelength is about the same size of the cavity
opening the approximated boundary curve starts approaching the boundary

curve inner part.
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Figure 4.48: When the semi-wavelength is small enough the details of the bound-

ary inner part are reconstructed.
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Figure 4.49: In the iterations shown in this figure, the reconstruction of the

boundary curve is almost complete.
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Figure 4.50: The domain considered in this example is also reconstructed within

two significant digits.
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Figure 4.51: The relative residual does not decrease below 1072 in the chosen
wavenumber interval. But the obstacle is reconstructed within two significant

digits.
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4.3.4 Example 4

In this examples is probed the figure depicted in figure 4.52. This boundary
curve is alike the curve considered in the previous example, except that in the
current case the inner part of the curve boundary is slightly bigger than the
cavity opening. As expected, in the first iterations the approximated boundary
curve approaches the outer side of the obstacle boundary curve, see figure 4.53,
and the approximated boundary curve starts approaching the inner part of the
obstacle boundary curve, see figure 4.55 when the semi-wavelength is about the
same size of the cavity opening. In figure 4.57 are the initial curve, the target

curve and the best approximation achieved.
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Figure 4.52: Boundary curve probed in example 4. This obstacle is alike the
one used in example 3, except that the obstacle in the current example has a

smaller cavity opening.
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Figure 4.53: In the first iterations the approximated boundary curve approaches

the outer side of the obstacle boundary curve.

102



Figure 4.54: When the semi-wavelength is about the same size of the outer
opening the approximated boundary curve starts approaching the cavity inner

part.
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Figure 4.55: When the semi-wavelength is small enough the inner part of the

boundary curve is reconstructed.
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Figure 4.56: When the reconstruction is nearly complete the relative changes

between consecutive approximated curves are tiny.
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Figure 4.57: The domain chosen for this example is also reconstructed within

two significant digits.
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Figure 4.58: The relative residual does not decrease below 1073 in the chosen
wavenumber interval. But the obstacle is reconstructed within two significant

digits.
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4.3.5 Example 5

For this final example a more complicated boundary curve is chosen, see fig-
ure 4.59. As in previous examples the obstacle boundary curve is reconstructed
within two significant digits. In figure 4.64 are the initial curve, the target curve

and the best approximation achieved.
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Figure 4.59: Boundary curve probed in example 5. In this final example we

have slightly modified the obstacle shape used in the two previous examples.
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Figure 4.60: In the first iterations the approximated boundary curve approaches

the outer side of the obstacle boundary curve.
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Figure 4.61: When the semi-wavelength is about the same size of the outer
opening the approximated boundary curve starts approaching the cavity inner

part.

111



Figure 4.62: The fine details of the inner side of the boundary curve are recon-

structed when the wavelength is smaller than the cavity opening.
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Figure 4.63: When the reconstruction of the boundary curve is close to being

complete the relative change between consecutive approximated curves is tiny.
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Figure 4.64: The € shaped domain is also reconstructed within two significant

digits.
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Figure 4.65: The relative residual does not decrease below 1072 in the chosen
wavenumber interval. But the e shaped obstacle is reconstructed within two

significant digits.
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Chapter 5

Future Work

It is apparent that further research is needed on the method of continuation
introduced in this work. It is necessary to establish theoretical results on the
convergence of the method, as well as to develop other regularization schemes
in order to extend the continuation method to other closely related problems.
There are several extensions or variants of the solution of the problem that we

regard as important to investigate:

To adapt the continuation method to inverse obstacle scatter-
ing problem with Neumann boundary condition and the inverse
impedance problem. The integral equation representation of radiating so-
lutions to the Helmholtz equations is key for the representation of the far
field mapping in the present work. In the integral equation formulation of
the direct obstacle scattering problems with Neumann condition and the in-
verse impedance problem stronger singularities are obtained in the kernels of
the integral operators. It is necessary to implement appropriate quadratures for

its numerical treatment.

116



To adapt the method of continuation to the inverse transmission
problem. Another natural question to ask is whether the continuation method
can be extended to the inverse transmission problem. The question of practi-

cality in terms of computational cost should be addressed.

Reconstruction of multiple obstacles. The further development of nu-
merical tools to generate and process arbitrary simple closed curves is necessary
for the systematic study of the inverse obstacle scattering problem, with an

emphasis on the problem of the reconstruction of multiple obstacles.
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Appendix

Combined Potential
Representation of the Far Field
Pattern and the Domain
Derivative of the Far Field

Mapping

Let us define for convenience three operators for z € I’

K@ = 2 [ 250 o) (A1)

32G($+hl/($) y)
h=-+0 ( )ov(y)
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K, is bounded from C(I") to C(T'), whereas T, T' are bounded from C'(T) to
C(T). For real u # 0, let H : C(T') — C(I') be defined by the formula

H(p)(x) = 2 / Uz, y)o(y)ds(y), (A4)
where
\II(xa y) = aa%(xz;)y) - ik,uG(x, y)7 (A5)

and G(z,y) is the fundamental solution of the Helmholtz equation. Let u*(x) =
Jo ¥z, y)e(y)ds(y) for p(y) € C(T) and = ¢ T', then u*(x) is solution of the
direct scattering problem with incident field u(z) if and only if ¢ is solution of

the integral equation of the second kind

(I — H)(¢)(z) = —2u'(z), z€T, (A.6)
i, | U(z + hv(z), y)p(y)ds(y) = —u'. (A7)

The following well known result is required to represent the far field pattern in

terms of the combined potential.

Lemma A.0.1 Fory €T and x € R — D such that ||z|| > ||y||, it follows that

2 1

o2 iklall-r/a-ikay |1 4 o L A
1\ kel BEK 49

M — 1 Lei(k”mn—ﬂ/@—iki‘-y —Di-v L
ov(y) A\ k||| (=92 - v(y) [1 +O(”$”)] .(A.9)

The far field pattern can be expressed in terms of the combined potential by

@) = [ Vel y)olw)dst0), (A.10)
r
with kernel Uy, : Q x I' = C given by

W(ey) = e v(y) + ). (A11)
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Using the notation introduced in lemma 3.2.1 let us assume that at each point
z(s) the boundary is perturbed along the normal direction to the point Z = n(z)
on the perturbed curve I'. We further assume that the perturbation is small so
that conditions from equation 3.9 are satisfied. Let us denote by ¢ the solution
of the integral equation on T’

Jm ; U(2 + ho(2),5)¢(5)d5(5) = —u'(Z). (A.12)

Lemma A.0.2 Suppose under the conditions of lemma 3.2.2 that for x € T’

5(z) = max{| s(z)ov(a) || 2o (2) } (A13)
then
Sp(a) = 5() (o) (A14)

is of the order 6(x). Furthermore, to the second order of §(z), dp(x) satisfies
the equation

(I~ H)(5¢) () = (I — H)(wdvg)(a) — K (6207 (2)
ou’

+ (T = ikuK) (bve)(z) + (T — ikpK ) (p)(z) — 2 5, (Dov(2)-
(A.15)

Proof
For points z,y € T lets denote by Z = n(z) and § = n(y) the corresponding

points on I it follows from 3.9 that A.7 that can be rewritten as

Jm [ wn(a) ) E0()(1+ K@) W)ds) = ~v'n@)  (A16)

to the second order of d(x). Substracting A.7 from A.12, we obtain

Vig) = -5 (@), (A.17)



again to the second order of §(z), where

V(e) = lim { [+ ) 0)l50t0) + <)) )it

h—+0

(A.18)
+ [0+ (o)) - Do +v(a), y)]w(y)dé’(y)} |

The second integral in A.18 can be split into three parts

/F[\I’(n(fc) +hw(n(x)), n(y)) = ¥(x +hv(z), y)le(y)ds(y) = L + Lo + I3, (A.19)

where

L = / W) + ho(n(2)), 1)) — Tn(z) + hv(e), nw)ew)ds(),
L - / W) + hr(2), () — L((x) + (e, 9)]e(y)ds(y),

I = / W(n(z) + ho(a),y) — ¥(z + ho(z), 1)]e(y)ds(y).

It follows from the jump conditions of the acoustic potentials at the boundary

I" that, to the second order of 6(x)

o= K@), (A.20)
L = [T —ikp(K - I)](pdv)(z), (A.21)
I = [T —iku(K + D](p)(z)dv(x). (A.22)

The lemma follows immediately. B

The integral equation A.15 specifies the linear relation
(I — H)(6p)(x) =W (dv) (A.23)

between the perturbational variables év and d¢ where W : CY(T') — C(T) is
the linear operator defined by the right hand side of A.18. Since H is compact

I — H has a bounded inverse, thus A.23 can be solved to yield an expression for
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0 in terms of dv for given I" and ¢. The same perturbational analysis can be
applied to the far field pattern with the combined potential representation. Let

Ul be the far field pattern generated by the density function ¢ on I so that

i (2) = / o (£, 5)3(5) d5(5). (A.24)

Lemma A.0.3 Under the conditions of lemma 3.2.2 suppose that the density

functions ¢ € C(T') and ¢ € C(T') are the solutions of the integral equations A.7
and A.12 respectively. Suppose further that ueo, e € C(S2) are defined by A.10,

A.24 are the far field patterns corresponding respectively to the densities @, @.
Then

Moo (£) = Uoo (T) — Uoo(Z) (A.25)
is of the order of 0(x), and to the second order of 6(x)
Moo(Z) = Hoo(0p + kpdv) + Moo (6v) (A.26)

where the operators Hy, : C(T') — C(T') and My, : C'(T') — C(Q) are defined

by the formulae

Ho(w)@) = [ ¥ yu)is(),
N k oA N A dw — ik
My (w)(2) = Z/[@km-V(y)[m-V(y)+u]w(y)+$-T(y)E(y)]€ Yo(y)ds(y).

Proof
Denote by § = 75(y) the point on I' corresponding to y € I'. Subtracting A.10

from A.24 and combining the result with 3.9 we get

S () = /F‘I’(im(y))(l + K(y)ov(y)) (p(y) + dp(y))ds(y) —

/F (&, y)o)ds(y) + O(15v]%). (A.27)
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By straightforward differentiation with respect to s we obtain that to the second

order of §(z)

/F Voo (5, 1(9)) — U (2. )] (y)ds(y) = Mao(60). (A.28)

[ |
The substitution of A.15 into A.26 yields

Stoo (%) = Hoo (I — H)T'W (6v) + kpdv) + M. (A.29)
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