MATH 123 WINTER 2016
AUTOMORPHIC FORMS, REPRESENTATIONS AND C*-ALGEBRAS

DIARY

REFERENCES

[B] Automorphic forms and representations, by D. Bump.

(K] Introduction to the representation theory of groups, by E. Kowalski.
[

[

tfb2] Crossed products of C*-algebras, by D. P. Williams.
R] Functional analysis, by W. Rudin.

Other sources were used, including P. Garett’s vignettes and W. Casselman’s essays.

SYLLABUS

I. Overview of representation theory, automorphic forms and applications
- & lectures + 1 guest lecture

1. Group representations and harmonic analysis on homogeneous spaces
2. Selberg’s }l Conjecture
3. L-functions and applications

IT. Waveforms for cocompact lattices of SL(2,R) - 1/ lectures

4. Maass forms and the spectral problem, unbounded operators
5. Differential operators and Lie algebras

6. The Cartan decomposition and K-bi-invariant functions

7. Discreteness of the spectrum

ITI. Admissible and unitary representations of SL(2,R) - 7 lectures

8. Admissible (g, K')-modules

9. Irreducible (g, K)-modules for SL(2, R)

10. Unitarizability of admissible representations

12. The unitary dual of SL(2,R) and the solution of the spectral problem

IV. The noncommutative geometry point of view - 3 [ectures

11. Induced representations and Frobenius reciprocity for finite groups
13. Parabolic induction in the C*-algebraic framework and applications

Updated: March 7, 2016.


http://www.math.umn.edu/~garrett/m/mfms/
http://www.math.ubc.ca/~cass/research/essays.html

WEEK 1

Lecture 1. Topological groups: Haar measure(s), modular function.

Group representations: examples, unitary representations, continuous representations.
The left regular representation A¢ is unitary and continuous. Irreducible representations.
Case of the torus: T = {x,, , n € Z} with x,, acting on C,, = C for every n. The L*-theory
of Fourier series gives a decomposition of the regular representation into irreducibles:

RIS N
nez

References: [tfb?, §1.3] and [K, §3.3-3.4].

&

Lecture 2. Fourier transform: L*(R) ~ / C¢ d¢ as a unitary representation of R.
¢eR

General case of locally compact abelian groups: unirreps are one-dimensional, form a

locally compact group (the Pontrjagyn dual G) and Fourier theory yields:

[S¥)
12(G) ~ / C, dy.
X

e
Definition of unitary equivalence, the unitary dual of a locally compact group:

G, = {irreducible continuous unitary representations of G} /unitary equivalence.

—

Example: SO(3) = {H,, ¢ € N} where dim H, = 2¢ + 1. Summary of Peter-Weyl theory:
for G' compact, the regular representation decomposes as

22G) = Y dim(Ho) M,
we@
and the inversion formula reads
f= Zdim(?—[ﬂ) (Trmx f).
weé

General case of real reductive groups: Harish-Chandra proved the existence of (and de-
termined) a measure pu on G such that, for f € C.(G),

f = / (®cx ) dutr)

where each O, is a distribution on GG, generalizing the trace.
Case of SL(2,R)(Bargmann, 1947): the unitary dual consists of
- the discrete series;
- the principal series and the limits of discrete series;
- the complementary series and the trivial representation.
[PICTURE]
The concrete Plancherel formula for f € C.(SL(2,R)) is
+0c0 +oco
f= Z In| (O, * f)+;1 /oo (0, x f) vy tanh (%) dl/l—i-%/

neL —o©

(0., * [) vy coth (%) dvs.



Some representations (the complementary series) do not appear in the Plancherel formula.

The ones that do are called tempered and form a closed subspace @T c G.

The discrete series behave like representations of compact groups: the factor |n| should
be interpreted as a formal dimension for these representations, which are characterised
by the fact that they are actual subrepresentations of the regular and that their matrix
coefficients are square-integrable. The other tempered representations are only weakly
contained in the regular and have almost square-integrable matrix coefficients.

Lecture 3. Quasi-regular representations: if GG acts on a space X that carries a G-
invariant Borel measure p, then L?(X, p1) is a unitary representation of G. Criterion for
the existence of a G-invariant measure on a homogeneous space G/H: Ag|lg = Ay. In
particular, this is satisfied when G is reductive and H is discrete.

Case of G = SL(2,R) and H = I'(N) or a congruence subgroup.

Theorem (Gelfand, Graev, Piatetski-Shapiro). As a unitary representation of G,
L*(T\G) ~ H, © Hs

where

- Hi is a direct sum indexed by a countable subset of G:

7‘[1 = ZEBWLW/HW

™

- Hs is a direct integral of principal series representations of G:

®
Hz :/ mpHV dv
vER
where mr only depends on I'. In fact, mp = 0 is I' is a cocompact lattice. In

general, it is equal to the number of cusps of T'.

Selberg conjectured in 1965 that no complementary series occurs in Hy if I' = I'(V).

K-fixed vectors in spherical representations are smooth and eigenfunctions of the hyper-
bolic Laplace operator. Conversely, to an automorphic form f with eigenvalue A, one can
associate a representation ¢ and 7y is in the complementary series if and only if A < }L.
Selberg’s %1 Conjecture is still open in general but Selberg proved that Sp A C [13—6, +oo).

Reference: [K, §7.4].

WEEK 2

Lecture 4. Reciprocal sums of primes numbers, Dirichlet’s Arithmetic Progression.
Euler product for Riemann’s ¢ function, estimates near 1. Dirichlet characters and asso-

ciated L-series:
Z x(n)
ns

n>1



1
Proof of a special case of Dirichlet’s Theorem: Z — diverges.
p=1[4]
Maass cusp forms. Periodicity and Fourier expansion:

1) =3 an(y)er

nez

with a,(y) = ¢ /YK, (2mny) where K, is a Bessel function. The corresponding L-function

Lis, f) =Y =

satisfies a functional equation.

References: [B, §1.9].

Lecture 5. Given a weight k € Z, the Maass operators on the Poincaré plane 7 are

Ri= iy +ym—+2 = (2= 2)— +

0 o k 0 E
y@x 2

and

0
Ly = —iy— — —
k Yo +ty oy
The weight k non-FEuclidean Laplacian is

0? 0? 0
Ak = —y2 (@ + 0_312) + 'Lk‘y—.

They are related via

k k k k

For each k € Z, the group G = GL(2,R)" acts on the right on C*°() by
cz+d\*, (az+b
flkg = <|cz+d|) f(cz+d)

] . The Maass operators satisfy the following equivariance relations:

where g = {? d

(Rif) lk+29 = Ri (f|rg)

(Lif) lk—29 = Li (flrg)

(Arf) kg = Ak (flrg) -

We will study the operators Ay in the context of Hilbert spaces, that is as unbounded
operators. Adjoint of a densely defined operator.

References: [R, Chap. 13].



Lecture 6. Elementary properties of unbounded operators: domain of a sum, composi-
tion, associativity. Distributivity might fail: T(R 4+ S) D TR + T'S in general.
A densely defined operator T' is symmetric if T C T*, that is

(Tw,y) = (x, Ty)
for all x,y € D(T). 1t is self-adjoint if T = T*.
Symmetric operators may or may not have self-adjoint extensions: example of zd— on
x

L*(]0,1]), with various domains, after Rudin [R, Chap. 13], [B, §2.1].

A dy

The measure 5— is SL(2,R)-invariant (use Bruhat decomposition to shorten the
Y

verification). Green’s formula for the Euclidean Laplacian A® = 8722 + g—;:

e ‘ _ Of gy~ 900N — (%9, 99
/Q(gAf—ng)dx/\dy—/mg( dy ayda:) f(@xdy aydx).

References: [R, Chap. 13|, [B, §2.1].

WEEK 3

Lecture 7. The hyperbolic Laplacian (A, C2°(#)) is a symmetric operator on L?( 7).
Let I' be a subgroup of SL(2, R) acting discontinuously on #, x € Hom(T', T) a character,
k € Z a weight and define C>°(I'\.7Z, x, k) as

{fEC""(«f”f) : V’Y_{CCL HEF : f(’y~2)—x(7)(cz+d)_kf(2)}

lcz + d|

with the compatibility assumption x(—1Iy) = (—1).

If f,g € C°(I'\A, x, k), then fg is I'-invariant and one can define

——dxdy
(f.9) = f(2)g(2) —;
D\ Y
and complete C°(T'\J#, x, k) into a Hilbert space, denoted by L?(T'\JZ, x, k).
Behaviour of the Maass operators:

Ry : C*(I\A, x, k) — CF(D\A, X, k + 2)

Ly : C*(ITN\A, x, k) — C(T\A, x, k — 2)

Ag : C(\A, x, k) — C(T\I, x, k)
and

for f and ¢ in spaces with appropriate weights.
It follows that Ay, is a symmetric operator on L*(T'\JZ, x, k).

SPECTRAL PROBLEM (v.1): determine the spectrum of A on L*(T\JZ, x, k).




References: [B, §2.1].

Lecture 8. Definition of Maass forms of weight k as elements of C°(I'\JZ, x, k)NSp(Ag).
Generalities on Iwasawa decomposition and decompositions of Haar measure.
In the case of G = SL(2,R), every element g can be written uniquely as

. o= TR e ]

~
with § € R/27Z, x € R and y € R} and the Haar measure decomposes accordingly in
these coordinates:

dx dy

- df.
v

dg =

Given a character y € Hom(I', T), consider

LM\G, x) ={feL*G) , YyeTl, f(y-2)=x(f(2)}.

It is a Hilbert space for the inner product

(fi, f2) = f1(9) f2(g) dg

NG
and smooth functions constitute a dense subspace. Moreover, letting GG act by right
translation, L?*(T'\G, x) is a continuous unitary representation of G.

SPECTRAL PROBLEM (v.2): decompose L?(I'\G, x) into irreducibles.

References: [B, §2.1]. See also Knapp’s books for Iwasawa decomposition and the
corresponding decomposition of measures.

WEEK 4

Lecture 9. K-isotypic decomposition of a unitary representation, proof in the case of
SL(2,R), by means of Fejér’s kernel.

Admissible representations. Harish-Chandra’s Admissibility Theorem: unitary irreducible
representations of reductive groups are admissible. Consider the K-isotypic decomposition
of L*(T\G, x):

IAT\Gx) = 3 IAT\G.x, k)
keZ
where

L*(T\G, x, k) = {f € L*(G), Vy € I,V0 € R/27Z , f(vgRg) = x(7)e"*f(9)} .
The map oy, defined on C°(I'\JZ, x, k) by
orf(9) = (flrg) ()

is an isometric isomorphism of Hilbert spaces:

o« LX(T\, x, k) — L*(T\G, x, k).



References: [B, §2.1]. See also Katznelson for details about the Fejér Kernel.

Lecture 10. Image of Maass operators under the isomorphisms oy:
Or420 Ry = Rooy
0p_90 L, =L ooy

0,0 A =Aooy

where R, L and A are given in the coordinates x, y, 6 of the Iwasawa decomposition (1)
by:

R_i—+ 2+ig
~Wor Ty T 200
o 8 10
L=—iy— +y— — ——

ox oy 2100

2 2 2

A = —y? (%+88_y2) +y 0 .

Lie algebras: definition, Lie algebra Lie(A) associated with an associative algebra A:
la,b] = ab — ba.
The Lie algebra of a closed subgroup G of GL(n,R):

g={z€M,(R), VteR, " € G}.
Tr

Examples: using the relation det(e”) = e

so(n,R) ={z € M,(R), 2T+ 2 =0}

¥ one proves that

sl(n,R) ={z € M,(R), Trz =0}
gl(n,R) = M,(R).

References: [B, §2.2] and P. Garett’s notes on Invariant differential operators.

Lecture 11. If a Lie group G acts smoothly on the right of a manifold M, then it acts
on C*°(M) via
g- f(m) = f(m-g)
and g acts by the differential operators X, where
d tx
== 1t:Of(m~e ).
These two actions do not commute but they satisfy, for g € G and x € g,

Xof(m)

gXa:g_l = XAd(g)a:

where the adjoint representation Ad : G — End(g) is defined by Ad(g)z = grg~!. We
admit (for now) the important fact that x — X, is a Lie algebra morphism, that is,

Kz = XXy — Xy Xy


http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf

The universal enveloping algebra: there is an (associative) algebra U(g) such that for
every algebra A,

Homssoc. (U(g), A) = Homyie(g, Lie(A)).
In other words, the functor U(—) is a left adjoint for Lie(—).
Construction of U(g): consider the ideal [ in the tensor algebra 7 (g) generated by elements
of the form 2 ® y —y ® x — [z, y] and let

U(g) =T(g)/I.

The adjoint action G ~ g extends to an action G ~ U(g) and the map = — X, also
extends to U(g) by the universal property.
Killing form , Cartan’s criterion for semisimplicity:

k(z,y) = 2nTr(zy) — 2 Tr(x) Tr(y)

on gl(n,R) (degenerate) and sl(n,R) (non-degenerate) so sl(n,R) is semisimple, and
gl(n,R) is not. In addition, x is G-invariant:

k (Ad(g)z, Ad(g)y) = k(z,y)
hence defines a G-equivariant identification g ~ g*, where G acts on g* via the contragre-
dient of Ad. Since g is finite-dimensional, one can consider the composition

a:End(g) = gog" ——gog— T(g) — U(g).
The Casimir element is
Q = a(Idy).
Since « is G-equivariant, it is an element of Z(g), that is, a G-invariant element in U(g).

References: [B, §2.2] and P. Garett’s notes on Invariant differential operators. See
also S. Sternberg’s notes on Lie algebras.

WEEK 5
Lecture 12. Elements in the center of the universal enveloping algebra U(g),
Z(g) ={AclU(g), Ad(G)A = A}

define G-left-invariant differential operators on manifolds of the form G/H.
Case of SL(2,R): the matrices

1 0 0 1 0 0
=0 A x=lia) =)
constitute a basis of s(2,R) and satisfy the relations
[H,X]=2X , [HY]=-2Y , [X,Y]=0.

Under the identification s[(2, R)* ~ s[(2,R), the dual basis of {H,X,Y} is {$H,Y, X}.

Therefore, the Casimir element can be expressed as
1
Q:5m+XY+YX

where products are taken in U(g). Observe that X —Y € s0(2) so
(X-Y) - f=0


http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf
http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf

for any SO(2)-invariant function f on SL(2,R).

References: P. Garett’s notes on Invariant differential operators.

0*  0?
Lecture 13. The Casimir operator Q2 € Z(g) acts as 2y (8_ + 90 )
Y

KAK and K exp(p) (Cartan) decompositions for GL(n,R) and SL(n,R).

References: [B, §2.2]. See also Knapp’s book.

Lecture 14. Comments on the Cartan motion group K x g/ associated with G and the
Mackey-Higson-Afgoustidis analogy.
The convolution ring C*°(K\G/K) of K-bi-invariant functions on G is commutative

(Gelfand). If (G, K) = (SL(2,R),SO(2)) and ¢ € Hom(K,C*), the convolution ring
CE(K\G/K,0) ={f € CX(G) , f(kighz) = o(k1)f(g)o(k2)}

is also commutative.
The Spectral Theorem: if T is a compact self-adjoint operators on a Hilbert space H,
there exists a Hilbert basis of H of eigenvectors and the eigenvalues \; satisfy lim \; = 0.

References: [B, §2.2].

WEEK 6

Lecture 15. Compact operators are the limits of finite-rank operators. They form a
closed two-sided ideal in B(H). Hilbert-Schmidt operators: if K (z,y) € L*(X x X), then

the operator T' defined on L?*(X) by
- [ Kwrwdy
X

is compact. Every unitary representation (m,H) of G, yields a *-representation 7 of the
convolution algebra C°(G):
0 = [ elomaedy

T(pr o) = (1) (p2)  and  7(¢") = 7(p)*
where ¢*(g) = p(g~1). In the case of the right quasi-regular representation p on L?(T'\G, x),

1= [t

This is a Hilbert-Schmidt operator with kernel

= x(1e(g'yh).

yel

satisfies

Moreover,
ple) (L*(T\G, x)) € C=(T\G, x)


http://www.math.umn.edu/~garrett/m/mfms/notes/12_diffops.pdf

and, if p(Ryg) = e "*(g), then

p(e) (L*(T\G,x)) € C*(T\G, x. k).

References: [B, §2.3].

Lecture 16. Guest lecture by J. Voight: On the arithmetic significance of A = i

References: sce also [B, §Chap. I].

Lecture 17. Let F is a closed G-invariant space of L*(T'\G, x), with K-isotypical de-

composition
o
F=>"F.
keZ

If Fi, # {0}, then A has a non-zero eigenvector in F° = F, N C*(T'\G, ).
The representation L?(I'\G, x) of G is semisimple: it decomposes as the direct sum of
unitary irreducible representations of G.

References: [B, §2.3].

WEEK 7
Lecture 18. For o € S/O@ and £ character of C°(K\G/K, o), let

= {f € X(T\G.x. k), plp)f = E(@)f forall o€ CX(K\G/K,0)}.
The spaces H (&) are finite-dimensional, mutually orthogonal and

L*(D\G, x, k Z H(E

It follows that L*(T'\JZ, x, k) decomposes as the Hilbert direct sum of eigenspaces for the
weight k& Laplacian A. One can also prove that

>

AESP(A)

converges, from which it follows that Ay has a self-adjoint extension to L*(T\J#, x, k).

References: [B, §2.3].



Lecture 19. Construction of smooth vectors: if (7, ) is a representation on a Hilbert
space and £ € H, then 7(p)¢ € H™ for ¢ € C°(G). Using a Dirac sequence, it follows
that smooth vectors are dense in H.

Overview of the representation theory of compact groups: a locally compact group is
compact if and only if it has finite Haar measure, which can be assumed equal to 1.

All representations on Hilbert spaces can unitarized: if (m,H) is a representation on a
Hilbert space, then 7 is unitary for the inner product

(€)= /G (r(9). w(g)n) g,

which defines the same topology.

If (m1,H1) and (meHs) are unitary representations of a compact group G that possess
matrix coefficients f; and f, which are not orthogonal in L?*(G), then there exists a non-
trivial intertwiner L : H; — Ho, namely, if fi(g) = (m:i(9)&, i),

b /G (m (96, m)ma(g™ e dg.

Peter-Weyl Theorem: if GG is a compact group,

(i) Matrix coefficients of finite dimensional unitary representations are dense in C'(G)
and LP(G) for 1 < p < o0
(ii) Unitary irreducible representations of G are finite-dimensional;
(iii) All unitary representations are semisimple.

In other words,
@)=Y VeV, =Y dim(Vo)Vy
WE@ weé

A representation m of a (non-compact) group G with maximal compact subgroup K is
said admissible if all its K-isotypical components are finite-dimensional. In other words,

@
Tl Z m,Vp
peR
with all multiplicities m,, finite. A famous theorem of Harish-Chandra says that unitary

irreducible representations of Lie groups are admissible. We will prove in the case of
G = SL(2,R) that all the representations that occur in L*(T'\G, x) are admissible.

References: [B, §2.4].

Lecture 20. If (7,#) is a unitary irreducible representation of G = SL(2,R), then for
cach k€ Z~K , the isotypical component Hy, is an irreducible C*°(K\G/ K, oy)-module
and has dimension at most 1.

Introductory example of (g, K)-module: trigonometric polynomials in L?(T). Action of
K, action of g. General definition of (g, K)-modules.

References: [B, §2.4] and Casselman’s essays.


http://www.math.ubc.ca/~cass/research/essays.html

WEEK 8

Lecture 21. K-finite vectors of an admissible representation are smooth and everywhere
dense; they form a (g, K)-module. Representations with isomorphic (g, K')-modules are
said infinitesimally equivalent.

References: [B, §2.4], see also Knapp.

Lecture 22. The complexification g¢ of sI(2,R) is generated by

171 171 — 0 —i
Rzﬁ{i —1} ’ Lzé[—i —1} ’ H:[i 0]

subject to the relations
[H,R]=2R , [H,L|=-2L , [R,L]|=H.
There is also a Casimir element €2 € Z(gc) defined by
—4Q = H? + 2RL + 2LR.

This element acts by a scalar on every irreducible admissible (g, K)-module. If V' is an
irreducible admissible (g, K')-module and k € Z, let V (k) denote the isotypical component
of V associated with o, : Ry — €. Then,

V(k)={x €V, Hx = ka}

R:V(k) — V(k+2) and L:V(k) — V(k—2).
If V(k) > 2 #0, then CR"z = V(k + 2n), and CL"x = V(k — 2n) and
V=Czr® @CR”Z‘ D @CL”:C.

n>0 n>0

If 2 acts by A on V, then for x € V (k)

k k k k
LRx:(—A—§(1+§)>x and RLJZ—(—)\+§(1—§))£E.

If V(k) contains a non-zero vector = such that Rz = 0 (resp. Lz = 0), then

() (maed(D)

It follows that all the K-types of a given admissible irreducible (g, K)-module have the
same parity, giving a dichotomy between even and odd modules.

Uniqueness results:

e If )\ is not of the form g (1 — g) with k even (resp. odd), then there exists at most
one isomorphism class of even (resp. odd) (g, K)-modules on which © acts by A.
The K-types of such a module are all the even (resp. odd) integers.



o If A\ =% (1—%) with k € Z, then the K-types of an irreducible admissible (g, K)-
module with parity & mod 2 on which 2 acts by A must be one of the following:

StR)={(eZ , =k mod2 , (>Fk}
S k)={{eZ , Il=k mod2 , (< —Fk}
Yk)={teZ , I=k mod2 , |{<k}

and there exists at most one isomorphism class of irreducible admissible (g, K)-
module with a given set of such K-types.

It remains to prove the existence and study the realizability of (g, K')-modules correspond-
ing to these situations.

References: [B, §2.5].

Lecture 23. (Generalized, non-unitary) principal series: for (e, s) € {0,1} x C,

u t

meeo={rec=@. 1 (|4 L ]o) =0 | c mdGayo o n o 1y

where s = Y2 and o.(m) = m for m € {£1} ~ M, x,(a) = a” for a € R* ~ A and 1y

is the trivial representation of N. A function in H* (e, s) is determined by its restriction
to K, which must be even or odd. Conversely, any even or odd function f on T extends
to an element of H* (e, s) by

(7

Complete H*(e, s) into a Hilbert space H (e, s) for the norm associated with

(f1, f2) = (filk, fali) L2 (x0)-

Action of g on K-finite vectors: H(e, s)(k) is generated by functions of the form
Yy s 1
([ 3] )

Hfp=1(fe , Rfi= (S + E) fivo + Lfi= ( g) fe—a , Afi=5(1—=35)fe

Si-gl

Re) =y° f(0).

)

e

which satisfy

2 "7
It follows that the irreducible admissible (g, K)-modules of SL(2,R) can be realized as
subquotients of H(e, s) k) for some (e,s) € {0,1} x C:
o If A\ = s(1 — s) is not of the form £ (1 — £) with k = ¢ mod 2, then H(e, s)(x) is
the unique irreducible admissible (g, K')-module on which A acts by A. Its set of

K-types is 2Z+¢. We denote by P (), ¢) its isomorphism class and call it principal
series representation.



o If )\ = g (1 — %) with 1 < k = ¢ mod 2, there exists three irreducible subquotients
of H(e, s)(x) on which A acts by A, with respective sets of K-types ¥ (k), ¥~ (k)
and X°(k). The isomorphism classes corresponding to % (k) are denoted by D* (k)
and called discrete series representations. The corresponding modules D*(1) for
k =1 are called limits of the discrete series.

References: [B, §2.5].

WEEK 9

Lecture 24. Unitarizability of the principal series: if A > 1, then P()\, &) contains a

unitary representative. Conversely, if (m,H) is a unitary admissible representation of
SL(2,R) on which Q acts by A, then A € R. Moreover,

- if (m,H) € P(A,0), then A > 0;
- if (m, %) € P(A, 1), then A > 1.

This shows that the unitarizable principal series are the 7., = Ind]\% AN O @ Xy ® 1y with
v € iR and possibly 7y, with —1 < v < 1. These can be shown to be unitarizable, using
intertwining integrals. They are called the complementary series.

Finite dimensional representations: the only finite-dimensional unitary irreducible rep-
resentations of GL(n,R)* are one-dimensional, of the form det” with » € iR. As a
by-product of the proof, SL(2, R) has no non-trivial finite dimensional unitary irreducible
representation.

Unitary irreducible representations that are infinitesimally equivalent, i.e. have isomor-
phic (g, K)-modules, are unitarily equivalent.

References: [B, §2.6].

Lecture 25. Induced representations of finite groups: we consider G finite group, H
subgroup of G and V' a representation of G. Restricting V' to a representation of H gives
a functor Res% : Rep(G) — Rep(H).

If V€ Rep(G) and W C V is an H-invariant subspace, then W' € Rep(H) and for g € G,
the space g - W only depends on gH. We say that V is induced by W if

V= @ o-W.
ceG/H

Example: the left regular representation of GG is induced by the left regular representation
of H. For every W € Rep(H) there exists a unique representation of G induced by W.
We denote it by Ind$ .
Example: the regular representation of G is induced by the regular representation of H.
Frobenius Reciprocity is the fact that the functors Ind and Res$, are adjoint to each
other:
Homp (W, Res% U) ~ Homg(IndG W, U).

Other pictures of induced representations: for W € Rep(H ), consider

IndGW ={f:G—V, f(gh)=h""f(g) forallge G, hec H}

with a left action of G by g- f = f(¢g~ ).



One can also consider C[G] as a C|[G]| — C[H]-bimodule. Then, there is a G-equivariant
specialization isomorphism

a: ClG] @cim W — Ind§; W
defined by
a(a,&)(g9) =D _algh)h-w

heH

References: Fulton-Harris.

Lecture 26. Unitarizability of the discrete series: for k > 2, the infinitesimal class D* (k)
admits a unitary representative, namely the space of holomorphic functions f on ¢ such
that

dx dy
|f(2'>|2yk —s <X
H Yy

with G = SL(2,R) acting by

wﬂmﬂ@=4¢m+drv(§%§%).

These representations can also be realized as irreducible subrepresentations of the left
regular L(G).

Solution of the spectral problem: summary of the correspondence between automorphic
forms and unitary irreducible representations of SL(2,R). Holomorphic modular forms
occur in the discrete series.

References: [B, §2.6, 2.7].

Lecture 27. Abstract and concrete C*-algebras, commutative C*-algebras are algebras
of continuous functions (Gelfand isomorphism) and all C*-algebras can be seen as algebras
of bounded operators on a Hilbert space.

For G locally compact group, consider the convolution x-algebra C.(G):

Nﬂﬁzéﬂ%@%wt L) = Acl) T

and equip it with the norm
11> = lIAa(F)lop

where ng( f) is the operator of convolution by f on the left, acting on L?*(G). More
generally, if 7 is a unitary representation of G, define 7(f) acting on H, as in Lecture 15
and consider

1f llmax = sup [[7 () lop-

The completions of C.(G) with respect to these norms are C*-algebras, respectively de-
noted by C*(G) and C*(G). The correspondence 7 — 7 induced a bijection between uni-
tary (resp. tempered) representations of G and non-degenerate representations of C*(G)
(resp. C5(@G)). In other words, the study of unitary representations of G is equivalent to
the study of Hilbert spaces that are modules over the C*-algebra(s) of G.



Hilbert C*-modules and bounded adjointable operators. If A and B are C*-algebras, an
(A, B)-correspondence is a Hilbert module E over B together with a *-morphism

p: A— Lp(E).

Given such a bimodule 4FEp and a x-representation H of B, one can equip the tensor
product E ®p H with the inner product defined by

(e1 ® &1, 2 ® &) = (&1, (e1, e2)&a).
It carries a left action of A via ¢ and the Hilbert completion gives a *-representation,
denoted Ind H.

WEEK 10

Lecture 28. Mackey induction for locally compact groups: induces unitary representa-
tions to unitary representations. Rieffel’s construction: if H is a closed subgroup of G,
there exists a C*-correspondence
c+(6) E(G) =)
such that for every unitary representation H of H, there is a specialization isomorphism
E(G) ®cm) H — Indf H

that intertwines the left C*(G) actions.

If P = L x N is a parabolic subgroup of a real reductive group G, there exists a
(Cx(G), Cx(L))-correspondence £(G/N) that realizes parabolic induction: there is a spe-
cialization isomorphism of C(G)-modules

S(G/N) Qcx(L) H0®X = Indga XY 1y = Tox-

Adjoint of the functor £(G/N)®c: (1) - ? Case of p-adic groups: Frobenius reciprocity and
Bernstein’s Second Adjoint Theorem.
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