
DERIVATIVES AS MATRICES; CHAIN RULE

1. Derivatives of Real-valued Functions

Let’s first consider functions f : R2 → R. Recall that if the partial derivatives of f exist at
the point (x0, y0), then we can write down the candidate for the tangent plane:

(1.1) z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

We defined f to be differentiable if this plane really is a tangent plane to the graph of f in the
sense that the tangent line to every smooth curve in the graph through the point (x0, y0, z0) lies
in this plane. As mentioned in class, one can show that if the partial derivatives are continuous,
then the function is differentiable.

However, while we talked about differentiable functions, we never defined the actual deriv-
ative of a function from R2 to R.

Definition 1.1. If f is differentiable at (x0, y0), then we define the derivative to be

f ′(x0, y0) =
[
fx(x0, y0) fy(x0, y0)

]
.

(If we view this row matrix at a vector, then it is the gradient ∇f(x0, y0).) Similarly, for a
differentiable function f : Rn → R, the derivative is the row matrix with n entries consisting
of the n partial derivatives. E.g., for a function of three variables, we have

f ′(x0.y0, z0) =
[
fx(x0, y0, z0) fy(x0, y0, z0) fz(x0, y0, z0)

]
1.2. Example. Let f(x, y) = x2y3, and let (x0, y0) = (2, 1). Then ∂f

∂x = 2xy3 and ∂f
∂y = 3x2y2,

so ∂f
∂x (2, 1) = 4 and ∂f

∂y (2, 1) = 12. Thus

f ′(2, 1) =
[
4 12

]
.

The matrix f ′(2, 1) defines a linear transformation:

L(x, y) =
[
4 12

] [
x
y

]
= 4x + 12y.

Observe that the tangent line

z − 4 = 4(x− 2) + 12(y − 1)

may be written as

z − 4 =
[
4 12

] [
x− 2
y − 1

]
.

As in this example, for an arbitrary differentiable function f : R2 → R, the tangent plane
(Equation 1.1) to the graph at (x0, y0, z0) may be written

(1.3) z − z0 = f ′(x0, y0)
[
x− x0

y − y0

]
1
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If we write

x =
[
x
y

]
and x0 =

[
x0

y0

]
then Equation 1.3 may be rewritten as

(1.4) z − z0 = f ′(x0, y0)(x− x0).

Note the resemblance between this expression for the tangent plane to the graph of a function
f : R2 → R2 and the familiar expression for the tangent line to the graph of a real-valued
function of one variable.

2. Functions for which the domain and range are both higher-dimensional.

A function f : Rn → Rm consists of m-real-valued functions on Rn:

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

The real-valued functions f1, . . . , fm are called the component functions.

2.1. Example. Define a function f : R2 → R3 by f(x, y) = (x2y, 3xy, 5x + 4y)). Then the
component functions are f1(x, y) = x2y, f2(x, y) = 3xy, and f3(x, y) = 5x + 4y.

Definition 2.1. We say a function f : Rn → Rm is differentiable if each of the component
functions is differentiable. In that case, the derivative at a point (a1, . . . , an) in Rn is given by
the m× n matrix whose ith row is the derivative of the ith component function.

2.2. Example. Define f as in Example 2.1. Let (a1, a2) = (1, 1). Then f ′
1(x, y) =

[
2xy x2

]
so

f ′
1(1, 1) =

[
2 1

]
.

Similarly
f ′
2(1, 1) =

[
3 3

]
and

f ′
3(1, 1) =

[
5 4

]
Thus

f ′(1, 1) =

2 1
3 3
5 4

 .

2.3. Exercise. Find the derivatives (as matrices) of each of the following functions at the
indicated point:

(1) f(x, y, z) = (e3x−y−z, x2y2) at the point (1, 1, 2)
(2) f(x, y) = ((x + y)3, xsin(y)) at (2, 0).
(3) f(t) = (t2, t3, t4) at t0 = 1. (If you view f as a parametrized curve, you have the

familiar notion of the tangent vector at the point with parameter t0 = 1. How does
this compare to the derivative that you just computed?)
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Again consider an arbitrary differentiable function f : Rn → Rm. Denote elements of Rn

by column vectors

x =

x1
...

xn


and elements of Rm by columns

u =

u1
...

um


Let

x0 =

a1
...

an


be a chosen point in Rn and set

u0 = f(a1, . . . , an)

(viewed as a column matrix). Then the analog of the tangent plane, or best linear approxima-
tion to the graph at (a1, . . . , an), is given by:

(2.4) u− u0 = f ′(x0)(x− x0)

2.5. Example. In Example 2.1, f(1, 1) = (1, 3, 9), and the best linear approximation at (1, 1)
is given as follows:

u− u0 =

2 1
3 3
5 4

 (x− x0)

I.e.,

(2.6)

u1 − 1
u2 − 3
u3 − 9

 =

2 1
3 3
5 4

[
x− 1
y − 1

]
=

2(x− 1) + 1(y − 1)
3(x− 1) + 3(y − 1)
5(x− 1) + 4(y − 1)


where the first equality is the expression for the tangent plane, and the second equality is
obtained by multiplying matrices. If we compare the matrices on the left and right sides, the
first row tells us that

u− 1 = 2(x− 1) + 1(y − 1).

Note that this is the equation of the tangent plane to the function f1(x, y) = x2y at (1, 2).
Similarly, the second and third rows give the tangent planes to the second and third component
functions of f .

2.7. Exercise. Write down the linear approximation to the graph of each of the functions
in Exercise 2.3 at the indicated point. (Your answers should be expressed similarly to Equa-
tion 2.6.)
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2.8. Remark. The most common mistake students make in writing down a derivative matrix is
to switch the rows and columns. Note that the rows of the derivative matrix are the derivatives
(gradients) of the component functions. The columns correspond to the independent variable;
e.g., in the first column we see the partials of the component functions with respect to the first
variable. A good way to keep this straight is to view the derivative matrix as the matrix of
a linear transformation L (the one that gives us the linear approximation). Since the original
function f has domain Rn, we want L to have domain Rn and range Rm as well. That means
we need to be able to multiply the derivative matrix by a column with n entries. So the
derivative matrix must have n columns. Similarly, for the range to be Rm, it must have m
rows.

In the examples above, we wrote down the derivative (as a matrix) by first computing the
partials. Conversely, if you are given the derivative matrix, then you can read off the partial
derivatives of all the component functions.

2.9. Example. Suppose f : R3 → R2 is differentiable at x0 = (x0, y0, z0) and that it’s deriva-
tive at x0 is

f ′(x0, y0, z0) =
[
2 5 1
3 1 4

]
Writing (u, v) = f(x, y, z) = (f1(x, y, z), f2(x, y, z), then at the point x0, we can read off from
the matrix that

∂

∂x
f1(x0, y0z0) = 2.

(This is also written as ∂u
∂x = 2.) Similarly at x0, we have

∂u

∂y
=

∂

∂y
f1 = 5

∂u

∂z
=

∂

∂z
f1 = 1

and
∂v

∂x
=

∂

∂x
f2 = 3

etc.

3. The Chain Rule

Recall the chain rule for real-valued functions of one variable:

1. Familiar chain rule. If g : R→ R is differentiable at x0 and f : R→ R is differentiable
at y0 = g(x0), then f ◦ g is differentiable at x0 and

(f ◦ g)′(x0) = f ′(y0)g′(x0).

Using matrices, the chain rule in higher dimensions looks identical to the familiar chain rule.
As before, we use bold face letters like x to denote points (or vectors) in Rn.

1. Chain rule in higher dimensions. If g : Rn → Rm is differentiable at x0 and f : Rm →
Rp is differentiable at y0 = g(x0), then f ◦ g is differentiable at x0 and

(f ◦ g)′(x0) = f ′(y0)g′(x0).
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3.1. Example. Define g : R2 → R3 by

g(s, t) = (s2t, s + 2t2, st)

and define f : R3 → R by
f(x, y, z) = e2x−y+z.

Let’s compute the derivative of f ◦ g at (s0, t0) = (1, 1, ).
Note that g(1, 1) = (1, 3, 1). The chain rule says that

(f ◦ g)′(1, 1) = f ′(1, 3, 1)g′(1, 1).

We compute:

g′(s, t) =

2st s2

1 4t
t s


so

g′(1, 1, ) =

2 1
1 4
1 1


Similarly

f ′(1, 3, 1) =
[
2 −1 1

]
Thus

(f ◦ g)′(1, 1) =
[
2 −1 1

] 2 1
1 4
1 1

 =
[
4 −1

]
Writing w = f ◦ g(s, t), we can read off from this derivative matrix that at (1, 1), ∂w

∂s = 4
and ∂w

∂t = −1.
Let’s compare this computation with the version of the chain rule given in Section 15.5 of

Stewart. Writing w = f(x, y, z) and (x, y, z) = g(s, t), the chain rule in Stewart says that

∂w

∂s
=

∂w

∂x

∂x

∂s
+

∂w

∂y

∂y

∂s
+

∂w

∂z

∂x

∂s
.

At (s, t) = (1, 1) and (x, y, z) = (1, 3, 1), we get

(3.2)
∂w

∂s
= 2(2) + (−1)(1) + (1)(1) = 4.

This agrees with what we obtained using the matrices. Notice that the computation in
Equation 3.2 is equivalent to multiplying the first (and only) row of the matrix f ′(1, 3, 1) by
the first column of the matrix g′(1, 1). Similarly, the formula in Stewart for ∂w

∂t corresponds to
multiplying the row of f ′(1, 3, 1) by the second column of g′(1, 1). The matrix multiplication
gives us both partials at once. (If you are only interested in one of the partials, then the
formula in Stewart is a bit faster. If you want all the partials, the matrix method is more
convenient.)
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3.3. Example. Let g be as in the previous example, and let f : R3 → R2 be given by

f(x, y, z) = (e2x−y+z, xyz).

Then

f ′(1, 3, 1) =
[
2 −1 1
3 1 3

]
so

(f ◦ g)′(1, 1) =
[
2 −1 1
3 1 3

]2 1
1 4
1 1

 =
[

4 −1
10 10

]
Writing (u, v) = f(x, y, z) = (f ◦ g)(s, t), we can read off all the partials at (s, t) = (1, 1):

∂u

∂s
= 4

∂u

∂t
= −1

∂v

∂s
= 10

∂v

∂t
= 10

3.4. Exercise. Let f : R2 → R2 be given by f(x, y) = (exy2, (x+1)y3) and let g : R→ R2 be
given by g(t) = (sin(t), et). First use the matrix version of the Chain Rule to find (f ◦ g)′(0).
Then compute (f ◦ g)′(0) by the method in Section 15.5 and compare your answers.

3.5. Exercise. This exercise refers to problem 26 in Section 15.5. (same in old edition).
(1) Express the given functions as Y = f(u, v, w) and (u, v, w) = g(r, s, t).
(2) Write down the derivative matrices for f and g at the indicated point (i.e., (r, s, t) =

(1, 0, 1) and (u, v, w) = g(1, 0, 1), which you can compute).
(3) Use the matrix version of the Chain Rule to compute the derivative (f ◦ g)′(1, 0, 1).
(4) Read off from your matrix in (3) the partial derivatives that are requested in problem

26.


