- 1. (10 points) Find the volume of the first-octant region outside the paraboloid $z = x^2 + y^2$ and inside the cylinder $x^2 + y^2 = 4$.
- 2. Set up the following integrals. You need not evaluate the integrals, just set them up.
 - (a) (8 points) $\int_0^1 \int_{e^x}^e xy \, dy \, dx$ rewritten as an iterated integral with the x-integration performed first.
 - (b) (8 points) $\iiint_{\Omega} z \, dx \, dy \, dz$ rewritten in spherical coordinates, where Ω is the region above the cone $z = \sqrt{\frac{x^2 + y^2}{3}}$ and inside the sphere $x^2 + y^2 + z^2 = 9$.
 - (c) (9 points) $\int_0^1 \int_x^{\sqrt{2-x^2}} \int_0^{x^2+y^2} \sqrt{x^2+y^2} \ dz \, dy \, dx$ rewritten in cylindrical coordinates.
 - 3. (Expoints) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Let $a = \frac{\partial f}{\partial x}(1,0,-2)$, $b = \frac{\partial f}{\partial y}(1,0,-2)$, $c = \frac{\partial f}{\partial z}(1,0,-2)$. Let $g: \mathbb{R}^2 \to \mathbb{R}^3$ by $g(u,v) = (e^v + 2u, u + v, u 2)$. Compute the derivative matrix $D(f \circ g)(0,0)$ in terms of a, b, and c.
- 4. (19) points) Prove that the path $c(t) = (\cos t, \sin t, 0)$ is a flow line of the vector field $\mathbf{F}(x, y, z) = (-y, x, z^5)$. (Be sure to state carefully what it means for a path to be a flow line of a vector field.)
- 6. (10 points) Find an equation for the tangent plane at the point (-2,1,-3) to the ellipsoid given by $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.
- 7. (10 points) Evaluate the surface integral $\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = (1,1,z(x^2+y^2))$ and W is the solid cylinder given by $x^2+y^2 \le 1$, $0 \le z \le 1$. [Hint: Do this the easy way!]
- 8. (10 points) Let H be the regular hexagon in the plane whose vertices are (1,0), $\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$, $\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$, $\left(-1,0\right)$, $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$, $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. Evaluate the line integral $\oint \mathbf{F} \cdot d\mathbf{s}$, where \mathbf{F} is the vector field $\mathbf{F}(x,y) = (\frac{y^2}{2},xy+x)$. [Hint: Do this the easy way!]