Chapter 4

Induction, Recursion, and
Recurrences

4.1 Mathematical Induction

Smallest Counter-Examples

In Section 3.3, we saw one way of proving statements about infinite universes: we considered a
“generic” member of the universe and derived the desired statement about that generic member.
When our universe is the universe of integers, or is in a one-to-one correspondence with the
integers, there is a second technique we can use.

Recall our our proof of Euclid’s Division Theorem (Theorem 2.12), which says that for each
pair (m,n) of positive integers, there are nonnegative integers ¢ and r such that m = ng+r and
0 <r < n. “Among all pairs (m,n) that make it false, choose the smallest m that makes it false.
We cannot have m < n because then the statement would be true with ¢ = 0, and we cannot
have m = n because then the statement is true with ¢ = 1 and » = 0. This means m — n is a
positive number smaller than k, and so there must exist a ¢ and r such that

k—n=qn+r, with0<r<n.

Thus m = (¢ + 1)n + r, contradicting the assumption that the statement is false, so the only
possibility is that the statement is true.”

Focus on the sentences “This means m — n is a positive number smaller than m, and so there
must exist a ¢ and r such that

m—-n=qn+r, with0<r<n.

Thus m = (¢+1)n+r, ....” To analyze these sentences, let p(m,n) denote the statement “there
are nonnegative integers ¢ and r with 0 < r < n such that m = ng + r” The quoted sentences
above are a proof that p(m — n,n) = p(m,n), and this implication is the crux of the proof.
Restating the form of the proof: we assumed a counter-example with a smallest m existed, then
using the fact that p(m’, n) had to be true for every m’ smaller than m, we chose m’ = m—mn, and
used the implication p(m—n,n) = p(m,n) to conclude the truth of p(m,n). But we had assumed
that p(m,n) was false, so this is the assumption we contradicted in the proof by contradiction.
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Exercise 4.1-1 In Chapter 1 we learned Gauss’s trick for showing that for all positive
integers n,
n(n+1)

1424344+ . +n= 2

(4.1)
Use the technique of asserting that if there is a counter-example, there is a smallest
counter-example and deriving a contradiction to prove that the sum is n(n + 1)/2.
What implication did you have to prove in the process?

Exercise 4.1-2 For what values of n > 0 do you think 2"+ > n? 4+ 2? Use the technique
of asserting there is a smallest counter-example and deriving a contradiction to prove
you are right. What implication did you have to prove in the process?

Exercise 4.1-3 For what values of n > 0 do you think 2"*! > n? + 37 Is it possible
to use the technique of asserting there is a smallest counter-example and deriving a
contradiction to prove you are right? If so, do so and describe the implication did
you had to prove in the process. If not, why not?

Exercise 4.1-4 Would it make sense to say that if there is a counter example there is a
largest counter-example and try to base a proof on this? Why or why not?

In Exercise 4.1-1, suppose the formula for the sum is false. Then there must be a smallest
n such that the formula does not hold for the sum of the first n positive integers. Thus for any
positive integer ¢ smaller than n,
i(i+1)

1+2+---4+i= 5 (4.2)

Because 1 = 1-2/2, Equation 4.1 holds when n = 1, and therefore the smallest counterexample
is not when n = 1. Son > 1, and n — 1 is one of the positive integers ¢ for which the formula
holds. Substituting n — 1 for ¢ in Equation 4.2 gives us

—1
1+2+-~+n—1:w.
Adding n to both sides gives
—1
1+2+---4+n—-14+n = %+n
_ n*—n+2n
B 2
~ n(n+1)
B 2

Thus n is not a counter-example after all, and therefore there is no counter-example to the
formula. Thus the formula holds for all positive integers n. Note that the crucial step was
proving that p(n — 1) = p(n), where p(n) is the formula

n(n—i—l)‘
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In Exercise 4.1-2, let p(n) be the statement that 2"*! > n? 4 2. Some experimenting with
small values of n leads us to believe this statement is true for all nonnegative integers. Thus we
want to prove p(n) is true for all nonnegative integers n. To do so, we assume that the statement
that “p(n) is true for all nonnegative integers n” is false. When a “for all” statement is false,
there must be some n for which it is false. Therefore, there is some smallest nonnegative integer
n so that 2"t # n? + 2. Assume now that n has this value. This means that for all nonnegative
integers i with i < n, 27! > 42 4+ 2. Since we know from our experimentation that n # 0, we
know n — 1 is a nonnegative integer less than n, so using n — 1 in place of i, we get

2(7’L—1)+1 2 (TL _ 1)2 _|_ 2,
or

M > p2_om41+42
n® —2n + 3. (4.3)

From this we want to draw a contradiction, presumably a contradiction to 2"t % n? + 2.

To get the contradiction, we want to convert the left-hand side of Equation 4.3 to 2"*!. For
this purpose, we multiply both sides by 2, giving

2mtl = 2.27
> 2% —4dn+6.

You may have gotten this far and wondered “What next?” Since we want to obtain a contra-
diction, we want to convert the right hand side into something like n? + 2. More precisely, we
will convert the right-hand side into n? + 2 plus an additional term. If we can show that the
additional term is nonnegative, the proof will be complete. Thus we write

2"t > on? _4n 46

(n? +2)+ (n? —4n +4)

= n?4+2+(n—-2)7

> n?+2, (4.4)

since (n —2)? > 0. This is a contradiction, so there must not have been a smallest counter-
example, and thus there must be no counter-example. Therefore 2" > n? + 2 for all nonnegative
integers n.

What implication did we prove above? Let p(n) stand for 27t > n? + 2. Then in Equations
4.3 and 4.4 we proved that p(n — 1) = p(n). Notice that at one point in our proof we had to
note that we had considered the case with n = 0 already. Although we have given a proof by
smallest counterexample, it is natural to ask whether it would make more sense to try to prove
the statement directly. Would it make more sense to forget about the contradiction now that we
have p(n — 1) = p(n) in hand and just observe that p(0) and p(n — 1) = p(n) implies p(1),that
p(1) and p(n — 1) = p(n) implies p(2), and so on so that we have p(k) for every k? We will
address this question shortly.

Now let’s consider Exercise 4.1-3. Notice that 2! % n243 for n = 0 and 1, but 2"t > n?43
for any larger n we look at at. Let us try to prove that 2"*1 > n2 4+ 3 for n > 2. We now let
p'(n) be the statement 2”1 > n? + 3. We can easily prove p/(2): since 8 = 23 > 22 +3 = 7.
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Now suppose that among the integers larger than 2 there is a counter-example m to p’(n). That
is, suppose that there is an m such that m > 2 and p/(m) is false. Then there is a smallest
such m, so that for k between 2 and m — 1, p(k) is true. If you look back at your proof that
p(n — 1) = p(n), you will see that, when n > 2, essentially the same proof applies to p’ as well.
That is, with very similar computations we can show that p'(n — 1) = p'(n), so long as n > 2.
Thus since p(m — 1) is true, our implication tells us that p(m) is also true. This is a contradiction
to our assumption that p(m) is false. therefore, p(m) is true. Again, we could conclude from
P'(2) and p'(2) = p/(3) that p/(3) is true, and similarly for p’(4), and so on. The implication we
had to prove was p'(n — 1) = p/(n).

For Exercise 4.1-4 if we have a counter-example to a statement p(n) about an integer n,
this means that there is an m such that p(m) is false. To find a smallest counter example we
would need to examine p(0), p(1), ..., perhaps all the way up to p(m) in order to find a smallest
counter-example, that is a smallest number k such that p(k) is false. Since this involves only a
finite number of cases, it makes sense to assert that there is a smallest counter-example. But, in
answer to Exercise 4.1-4, it does not make sense to assert that there is a largest counter example,
because there are infinitely many cases n that we would have to check in hopes if finding a largest
one, and thus we might never find one. Even if we found one, we wouldn’t be able to figure out
that we had a largest counter-example just by checking larger and larger values of n, because we
would never run out of values of n to check. Sometimes there is a largest counter-example, as in
Exercise 4.1-3. To prove this, though, we didn’t check all cases. Instead, based on our intuition,
we guessed that the largest counter example was n = 1. Then we proved that we were right by
showing that among numbers greater than or equal to two, there is no smallest counter-example.
Sometimes there is no largest counter example n to a statement p(n); for example n? < n is false
for all all integers n, and therefore there is no largest counter-example.

The Principle of Mathematical Induction

It may seem clear that repeatedly using the implication p(n—1) = p(n) will prove p(n) for all n (or
all n > 2). That observation is the central idea of the Principle of Mathematical Induction, which
we are about to introduce. In a theoretical discussion of how one constructs the integers from first
principles, the principle of mathematical induction (or the equivalent principle that every set of
nonnegative integers has a smallest element, thus letting us use the “smallest counter-example”
technique) is one of the first principles we assume. The principle of mathematical induction is
usually described in two forms. The one we have talked about so far is called the “weak form.”
It applies to statements about integers n.

The Weak Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(n — 1) = p(n) is true for all n > b, then p(n) is true for all integers n > b.

Suppose, for example, we wish to give a direct inductive proof that 2"t > n? + 3 for n > 2.
We would proceed as follows. (The material in square brackets is not part of the proof; it is a
running commentary on what is going on in the proof.)

We shall prove by induction that 2"+ > n? 43 for n > 2. First, 22t = 23 = 8, while
22 +3 = 7. [We just proved p(2). We will now proceed to prove p(n — 1) = p(n).]
Suppose now that n > 2 and that 2" > (n — 1)? + 3. [We just made the hypothesis
of p(n — 1) in order to use Rule 8 of our rules of inference.]
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Now multiply both sides of this inequality by 2, giving us

2l > 22 —2n4+1)+6
= n? 4340 —dn+4+1
= n?+3+(n—-27%4+1.

Since (n — 2)% + 1 is positive for n > 2, this proves 2"*t! > n? 4+ 3. [We just showed
that from the hypothesis of p(n — 1) we can derive p(n). Now we can apply Rule 8
to assert that p(n — 1) = p(n).] Therefore

" >n—-12+3 = 2" >p?43

Therefore by the principle of mathematical induction, 2"+ > n? 4+ 3 for n > 2.

In the proof we just gave, the sentence “First, 227! = 23 = 8, while 22 + 3 = 77 is called
the base case. It consisted of proving that p(b) is true, where in this case b is 2 and p(n) is
2"+t > n? + 3. The sentence “Suppose now that n > 2 and that 2" > (n — 1)? + 3.” is called
the inductive hypothesis. This is the assumption that p(n — 1) is true. In inductive proofs, we
always make such a hypothesis! in order to prove the implication p(n — 1) = p(n). The proof of
the implication is called the inductive step of the proof. The final sentence of the proof is called
the inductive conclusion.

Exercise 4.1-5 Use mathematical induction to show that
143454+ +2k—1) =k
for each positive integer k.

Exercise 4.1-6 For what values of n is 2" > n2?? Use mathematical induction to show
that your answer is correct.

For Exercise 4.1-5, we note that the formula holds when & = 1. Assume inductively that the
formula holds when k =n — 1, so that 1 +3 +--- + (2n — 3) = (n — 1)2. Adding 2n — 1 to both
sides of this equation gives

143+ +2n—-3)+2n—1) = n*—2n+1+2n—-1
= n’ (4.5)

Thus the formula holds when k = n, and so by the principle of mathematical induction, the
formula holds for all positive integers k.

Notice that in our discussion of Exercise 4.1-5 we nowhere mentioned a statement p(n). In
fact, p(n) is the statement we get by substituting n for & in the formula, and in Equation 4.5 we
were proving p(n — 1) = p(n). Next notice that we did not explicitly say we were going to give
a proof by induction; instead we told the reader when we were making the inductive hypothesis
by saying “Assume inductively that ....” This convention makes the prose flow nicely but still
tells the reader that he or she is reading a proof by induction. Notice also how the notation in

LAt times, it might be more convenient to assume that p(n) is true and use this assumption to prove that
p(n + 1) is true. This proves the implication p(n) = p(n + 1), which lets us reason in the same way.
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the statement of the exercise helped us write the proof. If we state what we are trying to prove
in terms of a variable other than n, say k, then we can assume that our desired statement holds
when this variable (k) is n — 1 and then prove that the statement holds when & = n. Without
this notational device, we have to either mention our statement p(n) explicitly, or avoid any
discussion of substituting values into the formula we are trying to prove. Our proof above that
2"+l > n? + 3 demonstrates this last approach to writing an inductive proof in plain English.
This is usually the “slickest” way of writing an inductive proof, but it is often the hardest to
master. We will use this approach first for the next exercise.

For Exercise 4.1-6 we note that 2 = 2! > 12 = 1, but then the inequality fails for n = 2,3, 4.
However, 32 > 25. Now we assume inductively that for n > 5 we have 2"~! > (n — 1)2.
Multiplying by 2 gives us

2" >2(n* —2n4+1) = n®+n®—4n+2
> n*+n®—-n-n
since n > 5 implies that —4n > —n-n. (We also used the fact that n? +n?—4n+2 > n?+n?—4n.)
Thus by the principle of mathematical induction, 2" > n? for all n > 5.

Alternatively, we could write the following. Let p(n) denote the inequality 2 > n2. Then p(5)
is true because 32 > 25. Assume that n > 5 and p(n — 1) is true. This gives us 2"~! > (n — 1)2.
Multiplying by 2 gives

2" > 2(n?—2n+1)
= n’+n’—4n+2
> n*+nf-n-n
= n2 N
since n > 5 implies that —4n > —n - n. Therefore p(n — 1) = p(n). Thus by the principle of
mathematical induction, 2" > n? for all n > 5.

Notice how the “slick” method simply assumes that the reader knows we are doing a proof
by induction from our ” Assume inductively...,” and mentally supplies the appropriate p(n) and
observes that we have proved p(n — 1) = p(n) at the right moment.

Here is a slight variation of the technique of changing variables. To prove that 2" > n? when
n > 5, we observe that the inequality holds when n = 5 since 32 > 25. Assume inductively that
the inequality holds when n = k, so that 2 > k2. Now when k > 5, multiplying both sides of
this inequality by 2 yields

2P > 2k = KP4k
> k* 45k
> K242k 41
= (k+1)%,

since k > 5 implies that k2 > 5k and 5k = 2k+3k > 2k+1. Thus by the principle of mathematical
induction, 2" > n? for all n > 5.

This last variation of the proof illustrates two ideas. First, there is no need to save the name
n for the variable we use in applying mathematical induction. We used k as our “inductive
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variable” in this case. Second, as suggested in a footnote earlier, there is no need to restrict
ourselves to proving the implication p(n — 1) = p(n). In this case, we proved the implication
p(k) = p(k+1). Clearly these two implications are equivalent as n ranges over all integers larger
than b and as k ranges over all integers larger than or equal to b.

Strong Induction

In our proof of Euclid’s division theorem we had a statement of the form p(m,n) and, assuming
that it was false, we chose a smallest m such that p(m,n) is false for some n. This meant we
could assume that p(m’,n) is true for all m’ < m, and we needed this assumption, because we
ended up showing that p(m — n,n) = p(m,n) in order to get our contradiction. This situation
differs from the examples we used to introduce mathematical induction, for in those we used an
implication of the form p(n — 1) = p(n). The essence of our method in proving Euclid’s division
theorem is that we have a statement ¢(k) we want to prove. We suppose it is false, so that there
must be a smallest k for which ¢(k) is false. This means we may assume ¢(k’) is true for all &’
in the universe of ¢ with k¥’ < k. We then use this assumption to derive a proof of ¢(k), thus
generating our contradiction.

Again, we can avoid the step of generating a contradiction in the following way. Suppose first
we have a proof of ¢(0). Suppose also that we have a proof that

q(0) Ag(1) Ag(2) A Ag(k — 1) = q(k)

for all £ larger than 0. Then from ¢(0) we can prove ¢(1), from ¢(0) A ¢(1) we can prove ¢(2),
from ¢(0) A q(1) Agq(2) we can prove ¢(3) and so on, giving us a proof of ¢(n) for any n we desire.
This is another form of the mathematical induction principle. We use it when, as in Euclid’s
division theorem, we can get an implication of the form ¢(k') = q(k) for some k' < k or when
we can get an implication of the form ¢(0) A g(1) Ag(2) A... Ag(k —1) = q(k). (As is the case
in Euclid’s division theorem, we often don’t really know what the &’ is, so in these cases the first
kind of situation is really just a special case of the second. Thus, we do not treat the first of
the two implications separately.) We have described the method of proof known as the Strong
Principle of Mathematical Induction.

The Strong Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(b) Ap(b+ 1) A...Ap(n—1) = p(n) is true for all n > b, then p(n) is true for
all integers n > b.

Exercise 4.1-7 Prove that every positive integer is either a power of a prime number or
the product of powers of prime numbers.

In Exercise 4.1-7 we can observe that 1 is a power of a prime number; for example 1 = 20.
Suppose now we know that every number less than n is a power of a prime number or a product
of powers of prime numbers. Then if n is not a prime number, it is a product of two smaller
numbers, each of which is, by our supposition, a power of a prime number or a product of powers
of prime numbers. Therefore n is a power of a prime number or a product of powers of prime
numbers. Thus, by the strong principle of mathematical induction, every positive integer is a
power of a prime number or a product of powers of prime numbers.
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Note that there was no explicit mention of an implication of the form
pO) Apb+1)A...Ap(n—1)= p(n).

This is common with inductive proofs. Note also that we did not explicitly identify the base case
or the inductive hypothesis in our proof. This is common too. Readers of inductive proofs are
expected to recognize when the base case is being given and when an implication of the form
p(n—1) = p(n) or p(b) Ap(b+1)A--- Ap(n—1) = p(n) is being proved.

Mathematical induction is used frequently in discrete math and computer science. Many
quantities that we are interested in measuring, such as running time, space, or output of a
program, typically are restricted to positive integers, and thus mathematical induction is a natural
way to prove facts about these quantities. We will use it frequently throughout this book. We
typically will not distinguish between strong and weak induction, we just think of them both as
induction. (In Problems 14 and 15 at the end of the section you will be asked to derive each
version of the principle from the other.)

Induction in general

To summarize what we have said so far, a typical proof by mathematical induction showing that
a statement p(n) is true for all integers n > b consists of three steps.

1. First we show that p(b) is true. This is called “establishing a base case.”

2. Then we show either that for all n > b, p(n — 1) = p(n), or that for all n > b,
p(b) Ap(b+1)A ... Ap(n—1) = p(n).

For this purpose, we make either the inductive hypothesis of p(n — 1) or the inductive
hypothesis p(b) Ap(b+ 1) A...Ap(n—1). Then we derive p(n) to complete the proof of the
implication we desire, either p(n — 1) = p(n) or p(b) Ap(b+ 1) A ... Ap(n—1) = p(n).

Instead we could

2! show either that for all n > b, p(n) = p(n +1) or
p(b) Ap(b+1)A---Ap(n) = p(n+1).

For this purpose, we make either the inductive hypothesis of p(n) or the inductive hypothesis
p(b)Ap(b+1)A...Ap(n). Then we derive p(n = 1) to complete the proof of the implication
we desire, either p(n) = p(n=1) or p(b) Ap(b+1)A...Ap(n) = p(n=1).

3. Finally, we conclude on the basis of the principle of mathematical induction that p(n) is
true for all integers n greater than or equal to b.

The second step is the core of an inductive proof. This is usually where we need the most insight
into what we are trying to prove. In light of our discussion of Exercise 4.1-6, it should be clear
that step 2 is simply a variation on the theme of writing an inductive proof.

It is important to realize that induction arises in some circumstances that do not fit the “pat”
typical description we gave above. These circumstances seem to arise often in computer science
However, inductive proofs always involve three things. First we always need a base case or cases.
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Second, we need to show an implication that demonstrates that p(n) is true given that p(n') is
true for some set of n’ < n, or possibly we may need to show a set of such implications. Finally,
we reach a conclusion on the basis of the first two steps.

For example, consider the problem of proving the following statement:

2 . .
n_ if n is even

> [5]= (4.6)

i—0 if n is odd

In order to prove this, one must show that p(0) is true, p(1) is true, p(n — 2) = p(n) if n is
odd, and that p(n — 2) = p(n), if n is even. Putting all these together, we see that our formulas
hold for all n > 0. We can view this as either two proofs by induction, one for even and one
for odd numbers, or one proof in which we have two base cases and two methods of deriving
results from previous ones. This second view is more profitable, because it expands our view of
what induction means, and makes it easier to find inductive proofs. In particular we could find
situations where we have just one implication to prove but several base cases to check to cover
all cases, or just one base case, but several different implications to prove to cover all cases.

Logically speaking, we could rework the example above so that if fits the pattern of strong
induction. For example, when we prove a second base case, then we have just proved that the
first base case implies it, because a true statement implies a true statement. Writing a description
of mathematical induction that covers all kinds of base cases and implications one might want to
consider in practice would simply give students one more unnecessary thing to memorize, so we
shall not do so. However, in the mathematics literature and especially in the computer science
literature, inductive proofs are written with multiple base cases and multiple implications with
no effort to reduce them to one of the standard forms of mathematical induction. So long as it is
possible to ”cover” all the cases under consideration with such a proof, it can be rewritten as a
standard inductive proof. Since readers of such proofs are expected to know this is possible, and
since it adds unnecessary verbiage to a proof to do so, this is almost always left out.

Important Concepts, Formulas, and Theorems

1. Weak Principle of Mathematical Induction. The weak principle of mathematical induction
states that

If the statement p(b) is true, and the statement p(n — 1) = p(n) is true for all
n > b, then p(n) is true for all integers n > b.

2. Strong Principle of Mathematical Induction. The strong principle of mathematical induc-
tion states that

If the statement p(b) is true, and the statement p(b) Ap(b+1)A...Ap(n—1) = p(n)
is true for all n > b, then p(n) is true for all integers n > b.

3. Base Case. Every proof by mathematical induction, strong or weak, begins with a base case
which establishes the result being proved for at least one value of the variable on which we
are inducting. This base case should prove the result for the smallest value of the variable
for which we are asserting the result. In a proof with multiple base cases, the base cases
should cover all values of the variable which are not covered by the inductive step of the
proof.
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4. Inductive Hypothesis. Every proof by induction includes an inductive hypothesis in which
we assume the result p(n) we are trying to prove is true when n = k — 1 or when n < k (or
in which we assume an equivalent statement).

5. Inductive Step. Every proof by induction includes an inductive step in which we prove the
implication that p(k—1) = p(k) or the implication that p(b) Ap(b+1)A---Ap(k—1) = p(k),
or some equivalent implication.

6. Inductive Conclusion. A proof by mathematical induction should include, at least implicitly,

a concluding statement of the form “Thus by the principle of mathematical induction ...,

”

which asserts that by the principle of mathematical induction the result p(n) which we are
trying to prove is true for all values of n including and beyond the base case(s).

Problems

n
1. This exercise explores ways to prove that % + % + -+ 3% =1- (%) for all positive
integers n.

(a)

First, try proving the formula by contradiction. Thus you assume that there is some
integer n that makes the formula false. Then there must be some smallest n that makes
the formula false. Can this smallest n be 17 What do we know about % + % 4+ 4 %
when i is a positive integer smaller than this smallest n? Is n — 1 a positive integer
for this smallest n? What do we know about % + % 4+ 4 ?’n% for this smallest n?
Write this as an equation and add -2 to both sides and simplify the right side. What

37L
does this say about our assumption that the formula is false? What can you conclude

k
about the truth of the formula? If p(k) is the statement 2 + 2 4 .-+ + 3% =1- (%) ,

what implication did we prove in the process of deriving our contradiction?

What is the base step in a proof by mathematical induction that %—i— % 4+ 3% =1-
n

(%) for all positive integers n? What would you assume as an inductive hypothesis?

What would you prove in the inductive step of a proof of this formula by induction?

Prove it. What does the principle of mathematical induction allow you to conclude?
k

If p(k) is the statement % + % +ot 3% =1- (%) , what implication did we prove in

the process of doing our proof by induction?

2. Use contradiction to prove that 1-2+2-34+---+n(n+1) = w
3. Use induction to prove that 1-242-3+---4+n(n+1) = M

4. Prove that 12+ 23 4+33+ ... 4+ n3 =

n?(n+1)>2
—

5. Write a careful proof of Euclid’s division theorem using strong induction.

6. Prove that > ; (;) = ("f1). As well as the inductive proof that we are expecting, there is

Jj+1

a nice “story” proof of this formula. It is well worth trying to figure it out.

7. Prove that every number greater than 7 is a sum of a nonnegative integer multiple of 3 and
a nonnegative integer multiple of 5.
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14.

15.
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. The usual definition of exponents in an advanced mathematics course (or an intermediate

computer science course) is that a” = 1 and a"*! = a™ - a. Explain why this defines a™ for
all nonnegative integers n. Prove the rule of exponents a™ ™ = a™a" from this definition.

. Our arguments in favor of the sum principle were quite intuitive. In fact the sum principle

for n sets follows from the sum principle for two sets. Use induction to prove the sum
principle for a union of n sets from the sum principle for a union of two sets.

We have proved that every positive integer is a power of a prime number or a product of
powers of prime numbers. Show that this factorization is unique in the following sense: If
you have two factorizations of a positive integer, both factorizations use exactly the same
primes, and each prime occurs to the same power in both factorizations. For this purpose,
it is helpful to know that if a prime divides a product of integers, then it divides one of the
integers in the product. (Another way to say this is that if a prime is a factor of a product
of integers, then it is a factor of one of the integers in the product.)

Prove that 1 + 2% 4 .. 4+ n* = O(n® — n?).

Find the error in the following “proof” that all positive integers n are equal. Let p(n) be
the statement that all numbers in an n-element set of positive integers are equal. Then
p(1) is true. Now assume p(n — 1) is true, and let NV be the set of the first n integers. Let
N’ be the set of the first n — 1 integers, and let N” be the set of the last n — 1 integers.
Then by p(n — 1) all members of N’ are equal and all members of N” are equal. Thus the
first n — 1 elements of N are equal and the last n — 1 elements of N are equal, and so all
elements of IV are equal. Thus all positive integers are equal.

Prove by induction that the number of subsets of an n-element set is 2.

Prove that the Strong Principal of Mathematical Induction implies the Weak Principal of
Mathematical Induction.

Prove that the Weak Principal of Mathematical Induction implies the Strong Principal of
Mathematical Induction.

Prove (4.6).
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4.2 Recursion, Recurrences and Induction

Recursion

Exercise 4.2-1 Describe the uses you have made of recursion in writing programs. Include
as many as you can.

Exercise 4.2-2 Recall that in the Towers of Hanoi problem we have three pegs numbered
1, 2 and 3, and on one peg we have a stack of n disks, each smaller in diameter than
the one below it as in Figure 4.1. An allowable move consists of removing a disk

Figure 4.1: The Towers of Hanoi

from one peg and sliding it onto another peg so that it is not above another disk of
smaller size. We are to determine how many allowable moves are needed to move the
disks from one peg to another. Describe the strategy you have used or would use in
a recursive program to solve this problem.

For the Tower of Hanoi problem, to solve the problem with no disks you do nothing. To solve
the problem of moving all disks to peg 2, we do the following

1. (Recursively) solve the problem of moving n — 1 disks from peg 1 to peg 3,
2. move disk n to peg 2,

3. (Recursively) solve the problem of moving n — 1 disks on peg 3 to peg 2.

Thus if M (n) is the number of moves needed to move n disks from peg i to peg j, we have

M(n)=2M(n—-1)+1.

This is an example of a recurrence equation or recurrence. A recurrence equation for a
function defined on the set of integers greater than or equal to some number b is one that tells
us how to compute the nth value of a function from the (n — 1)st value or some or all the values
preceding n. To completely specify a function on the basis of a recurrence, we have to give enough
information about the function to get started. This information is called the initial condition (or
the initial conditions) (which we also call the base case) for the recurrence. In this case we have
said that M (0) = 0. Using this, we get from the recurrence that M (1) =1, M(2) =3, M(3) =7,
M(4) =15, M(5) = 31, and are led to guess that M (n) = 2" — 1.

Formally, we write our recurrence and initial condition together as

0 itn=20
M(n) = { 2M(n—1)+1 otherwise
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Now we give an inductive proof that our guess is correct. The base case is trivial, as we
have defined M (0) = 0, and 0 = 2° — 1. For the inductive step, we assume that n > 0 and
M(n —1) = 2"~! — 1. From the recurrence, M(n) = 2M(n — 1) + 1. But, by the inductive
hypothesis, M(n — 1) = 2"~! — 1, so we get that:

M(n) = 2M(n—1)+1 (4.8)
= 22" 1) +1 (4.9)
= 2" 1. (4.10)

thus by the principle of mathematical induction, m(n) = 2™ — 1 for all nonnegative integers n.

The ease with which we solved this recurrence and proved our solution correct is no accident.
Recursion, recurrences and induction are all intimately related. The relationship between recur-
sion and recurrences is reasonably transparent, as recurrences give a natural way of analyzing
recursive algorithms. Recursion and recurrences are abstractions that allow you to specify the
solution to an instance of a problem of size n as some function of solutions to smaller instances.
Induction also falls naturally into this paradigm. Here, you are deriving a statement p(n) from
statements p(n’) for n’ < n. Thus we really have three variations on the same theme.

We also observe, more concretely, that the mathematical correctness of solutions to recur-
rences is naturally proved via induction. In fact, the correctness of recurrences in describing the
number of steps needed to solve a recursive problem is also naturally proved by induction. The
recurrence or recursive structure of the problem makes it straightforward to set up the induction
proof.

First order linear recurrences

Exercise 4.2-3 The empty set (0)) is a set with no elements. How many subsets does it
have? How many subsets does the one-element set {1} have? How many subsets does
the two-element {1,2} set have? How many of these contain 27 How many subsets
does {1,2,3} have? How many contain 3?7 Give a recurrence for the number S(n) of
subsets of an n-element set, and prove by induction that your recurrence is correct.

Exercise 4.2-4 When someone is paying off a loan with initial amount A and monthly
payment M at an interest rate of p percent, the total amount 7'(n) of the loan after n
months is computed by adding p/12 percent to the amount due after n—1 months and
then subtracting the monthly payment M. Convert this description into a recurrence
for the amount owed after n months.

Exercise 4.2-5 Given the recurrence
T(n)=rT(n—1)+a,

where r and a are constants, find a recurrence that expresses T'(n) in terms of T'(n—2)
instead of T'(n — 1). Now find a recurrence that expresses 7'(n) in terms of T'(n — 3)
instead of T'(n — 2) or T'(n — 1). Now find a recurrence that expresses 7'(n) in terms
of T'(n — 4) rather than T'(n — 1), T'(n — 2), or T'(n — 3). Based on your work so far,
find a general formula for the solution to the recurrence

T(n)=rT(n—-1)+a,

with 7'(0) = b, and where r and a are constants.
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If we construct small examples for Exercise 4.2-3, we see that () has only 1 subset, {1} has 2
subsets, {1,2} has 4 subsets, and {1,2,3} has 8 subsets. This gives us a good guess as to what
the general formula is, but in order to prove it we will need to think recursively. Consider the
subsets of {1, 2, 3}:

0 {1 {23 {12
{3+ {13} {2,3} {1,2,3}
The first four subsets do not contain three, and the second four do. Further, the first four
subsets are exactly the subsets of {1, 2}, while the second four are the four subsets of {1,2} with 3

added into each one. This suggests that the recurrence for the number of subsets of an n-element
set (which we may assume is {1,2,...,n}) is

S(n):{ ?S("_l) gZié . (4.11)

To prove this recurrence is correct, we note is that the subsets of an n-element set can be
partitioned by whether they contain element n or not. The subsets of {1,2,...,n} containing
element n can be constructed by adjoining the element n to the subsets without element n. So
the number of subsets with element n is the same as the number of subsets without element n.
The number of subsets without element n is just the number of subsets of an n — 1-element set.
Thus the number of subsets of {1,2,...,n} is twice the number of subsets of {1,2,...,n — 1}.
this proves that S(n) = 2S(n — 1) if n > 0. We already observed that () has no subsets, so we
have proved the correctness of Recurrence 4.11.

For Exercise 4.2-4 we can algebraically describe what the problem said in words by
T(n)=(1+.01p/12) - T'(n—1) — M,

with T'(0) = A. Note that we add .01p/12 times the principal to the amount due each month,
because p/12 percent of a number is .01p/12 times the number.

Iterating a recurrence

Turning to Exercise 4.2-5, we can substitute the right hand side of the equation T'(n — 1) =
rT'(n —2) + a for T(n — 1) in our recurrence, and then substitute the similar equations for
T(n—2) and T'(n — 3) to write

T(n) = r(rT(n—2)4a)+a
= r*T(n—2)+ra+ta
= 2(rT(n—3)+a)+ra+a
= PT(n-3)+r*a+ra+a
= POT(n—4)+a)+r’a+ra+a
= Tn—4)+ra+r?a+rata

From this, we can guess that

n—1
T(n) = r"T0)+ad r'
i=0
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n—1
= Tnb—l-CLZT‘Z. (4.12)
=0

The method we used to guess the solution is called iterating the recurrence because we re-
peatedly use the recurrence with smaller and smaller values in place of n. We could instead have
written

T0) = b

T(1) = +T(0) +a
= rb+a

T2) = rT(1)+a
= r(rb+a)+a
= ?b+ra+ta

T3) = rT(2)+a
= b+r?a+ra+ta

This leads us to the same guess, so why have we introduced two methods? Having different
approaches to solving a problem often yields insights we would not get with just one approach.
For example, when we study recursion trees, we will see how to visualize the process of iterating
certain kinds of recurrences in order to simplify the algebra involved in solving them.

Geometric series

You may recognize that sum Z?:_ol r* in Equation 4.12. It is called a finite geometric series with
common ratio r. The sum Z?:_ol ar® is called a finite geometric series with common ratio r and
initial value a. Recall from algebra the factorizations

1-—2z)1+2z) = 1—2°
1l-z)1+z+2%) = 1-2°
1-2)1+z+2®+2%) = 1-2!

These factorizations are easy to verify, and they suggest that (1—7)(1+r+r2+- - -4+r"" 1) = 1—¢"
or
1=

n—1 ]
dort= : (4.13)
= 1—r

In fact this formula is true, and lets us rewrite the formula we got for T'(n) in a very nice form.

Theorem 4.1 IfT(n) =rT(n—1)+a, T(0) =b, and r # 1 then

1—r"

T(n)=1r"b
(n)=r —|—a1_r

(4.14)

for all nonnegative integers n.
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Proof: We will prove our formula by induction. Notice that the formula gives T'(0) =

r9b + al_j: which is b, so the formula is true when n = 0. Now assume that

1— 1
Tn—1)=r"1b+a——.
(n—1)=r +a .

Then we have

Tn) = rT(n—1)+a

1— n—1
= r <T”1b+ a#> +a

1—r
= r”b—l—M—i-a
1—r
_ Tnb_i_arfar"qLafar
1—17r
1_ n
= r"b+a !
1—7r

Therefore by the principle of mathematical induction, our formula holds for all integers n greater
than 0. W

We did not prove Equation 4.13. However it is easy to use Theorem 4.1 to prove it.

Corollary 4.2 The formula for the sum of a geometric series with v # 1 is

n—1
1

szlf. (4.15)

1=0 r

Proof: Define T(n) = Y725 r*. Then T'(n) = rT(n — 1) + 1, and since T(0) is a sum with no
terms, 7'(0) = 0. Applying Theorem 4.1 with b =0 and a = 1 gives us T(n) = 1=~ |

r

Often, when we see a geometric series, we will only be concerned with expressing the sum
in big-O notation. In this case, we can show that the sum of a geometric series is at most the
largest term times a constant factor, where the constant factor depends on r, but not on n.

Lemma 4.3 Let r be a quantity whose value is independent of n and not equal to 1. Let t(n) be
the largest term of the geometric series

n—1

S

=0
Then the value of the geometric series is O(t(n)).

Proof: It is straightforward to see that we may limit ourselves to proving the lemma for r > 0.
We consider two cases, depending on whether » > 1 or » < 1. If » > 1, then

nfli P
Yot o= ;
i=0 r=
7,,’I”L
<
r—1
r
— T,nfl
r—1
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On the other hand, if r < 1, then the largest term is ® = 1, and the sum has value

1—7r" < 1
1—r 1—r

Thus the sum is O(1), and since t(n) = 1, the sum is O(¢(n)). W

In fact, when r is nonnegative, an even stronger statement is true. Recall that we said that,
for two functions f and g from the real numbers to the real numbers that f = ©(g) if f = O(g)
and g = O(f).

Theorem 4.4 Let r be a nonnegative quantity whose value is independent of n and not equal to
1. Let t(n) be the largest term of the geometric series

Then the value of the geometric series is ©(t(n)).

Proof: By Lemma 4.3, we need only show that t(n) = O(2=1). Since all r’ are nonnegative,

the sum ZZ 0 r' is at least as large as any of its summands. But #(n) is one of these summands,
so.t(n) = O(2=1). m

Note from the proof that ¢(n) and the constant in the big-O upper bound depend on r. We
will use this lemma in subsequent sections.

First order linear recurrences

A recurrence of the form T'(n) = f(n)T'(n — 1) + g(n) is called a first order linear recurrence.
When f(n) is a constant, say r, the general solution is almost as easy to write down as in the
case we already figured out. Iterating the recurrence gives us
T(n) = rT(n—1)+ g(n)

= r(rT(n—2) +g(n - ) 9(n)

= rT(n—2) +rg(n—1)+g(n)

= (rT(n —-3)+g(n— 2)) +7rg(n—1)+ g(n)

= r°T(n—3) +1%g(n—2) +rg(n—1) +g(n)

= S(1T(n —4) + g(n - 3)) +r2g(n — 2) + rg(n — 1) + g(n)

= r'T(n—4)+1r°g(n—3) +r’g(n —2) +rg(n —1) +g(n)

\_/\_/

n—1
= r"7T(0)+ Z rig(n — 1)
i=0

This suggests our next theorem.
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Theorem 4.5 For any positive constants a and r, and any function g defined on the nonnegative
integers, the solution to the first order linear recurrence

T(n) = { rTn=1) + () ZZ >0

18

T(n)=r"a+ Z g (4). (4.16)

Proof:  Let’s prove this by induction.

Since the sum " ; r"“%g(i) in Equation 4.16 has no terms when n = 0, the formula gives
T(0) = 0 and so is valid when n = 0. We now assume that n is positive and T'(n — 1) =
rnla 4 Z?;ll r(n=D=ig(;). Using the definition of the recurrence and the inductive hypothesis
we get that

T(n) = rT(n—1)+g(n)

n—1
= r (r”la + Z r("l)ig(i)> +g(n)
i=1
n—1

= r"a+ ) r=DH=(3) + g(n)
i=1

n—1
= r"a+ Z " g(i) + g(n)
i=1
n .
= r"a+ Z r" ().
i=1

Therefore by the principle of mathematical induction, the solution to

T = {0

is given by Equation 4.16 for all nonnegative integers n. H

The formula in Theorem 4.5 is a little less easy to use than that in Theorem 4.1 because it
gives us a sum to compute. Fortunately, for a number of commonly occurring functions g the
sum Y v, " *g(i) is reasonable to compute.

Exercise 4.2-6 Solve the recurrence T'(n) = 47 (n — 1) + 2" with T'(0) = 6.
Exercise 4.2-7 Solve the recurrence T'(n) = 37'(n — 1) + n with 7'(0) = 10.

For Exercise 4.2-6, using Equation 4.16, we can write

n
T(n) = 6-4"+> 4"".2
=1
/L n . .
= 6-4"44") 4772

i=1
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= 64@+4”§X%y

=1

1 1
= 653 (5)
= 64 (- () 4"
— 7o

For Exercise 4.2-7 we begin in the same way and face a bit of a surprise. Using Equation
4.16, we write

T(n) = 10-3"+) 3"".i
i=1
= 10-3"+3") 3™
i=1
= 10.y1+3"§é¢<3>i. (4.17)
i=1 3

Now we are faced with a sum that you may not recognize, a sum that has the form

Z =z Z it

i=1 i=1
with z = 1/3. However by writing it in in this form, we can use calculus to recognize it as x
times a derivative. In particular, using the fact that 02° = 0, we can write

NN A~ g d (1—a
izzlzx _:x;zx _x%;x _x%< )

1—2x
But using the formula for the derivative of a quotient from calculus, we may write

d (1 — x"“) _ w(l —z)(—(n+1)2") — (a — 2" (-1) B nz"t? — (n + 1)z" ! + z

e 1—2)? - (1—2)

1—=x

Connecting our first and last equations, we get

n ) n+2 _ 1)+l
Ziml:nx (n+ 1)z ta (4.18)
i=1

(1—x)?
Substituting in « = 1/3 and simplifying gives us

B 3) =B (1))

i=1

Substituting this into Equation 4.17 gives us

w o oon( 3 "t o3 nil 3
n+1 1 3ntHl
= 1 . n_ _—
0-3 5 it
_ §3n_n+1 1

4 2 4
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The sum that arises in this exercise occurs so often that we give its formula as a theorem.

Theorem 4.6 For any real number x # 1,

n ) n+2 1 n+1
S iat = 2L (nt D" 4z (4.19)
i=1 (1 —a)?

Proof: Given before the statement of the theorem.m

Important Concepts, Formulas, and Theorems

1. Recurrence Equation or Recurrence. A recurrence equation is one that tells us how to
compute the nth term of a sequence from the (n — 1)st term or some or all the preceding
terms.

2. Initial Condition. To completely specify a function on the basis of a recurrence, we have to
give enough information about the function to get started. This information is called the
initial condition (or the initial conditions) for the recurrence.

3. First Order Linear Recurrence. A recurrence T'(n) = f(n)T(n — 1) + g(n) is called a first
order linear recurrence.

4. Constant Coefficient Recurrence. A recurrence in which 7T'(n) is expressed in terms of a
sum of constant multiples of T'(k) for certain values k& < n (and perhaps another function
of n) is called a constant coefficient recurrence.

5. Solution to a First Order Constant Coefficient Linear Recurrence. If T(n) = rT(n—1) +a,
T(0) =b, and 7 # 1 then
1—r"

1—r

T(n)=r"b+a
for all nonnegative integers n.

6. Finite Geometric Series. A finite geometric series with common ratio r is a sum of the
form Z?:_ol r*. The formula for the sum of a geometric series with r # 1 is

1=

n—1
Z rt = 1 :
i=0 -r

7. Big-Theta Bounds on the Sum of a Geometric Series. Let r be a nonnegative quantity
whose value is independent of n and not equal to 1. Let t(n) be the largest term of the
geometric series

Then the value of the geometric series is ©(¢(n)).
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8. Solution to a First Order Linear Recurrence. For any positive constants a and r, and

any function ¢ defined on the nonnegative integers, the solution to the first order linear
recurrence
rT'(n—1)+g(n) ifn>0

T<n>:{a ifn=20

18

. Iterating a Recurrence. We say we are iterating a recurrence when we guess its solution by
using the equation that expresses T'(n) in terms of T'(k) for k smaller than n to re-express
T'(n) in terms of T'(k) for k smaller than n — 1, then for k smaller than n — 2, and so on
until we can guess the formula for the sum.

10. An Important Sum. For any real number x # 1,

imi " — (n+ 12" o
= —5 :
= (1—2x)

Problems

. Prove Equation 4.15 directly by induction.
. Prove Equation 4.18 directly by induction.

. Solve the recurrence M (n) = 2M(n — 1) + 2, with a base case of M (1) = 1. How does it
differ from the solution to Recurrence 4.77

. Solve the recurrence M (n) = 3M(n — 1) + 1, with a base case of M (1) = 1. How does it
differ from the solution to Recurrence 4.7.

. Solve the recurrence M(n) = M(n — 1) 4+ 2, with a base case of M (1) = 1. How does it
differ from the solution to Recurrence 4.7.

. There are m functions from a one-element set to the set {1,2,...,m}. How many functions
are there from a two-element set to {1,2,...,m}? From a three-element set? Give a
recurrence for the number T'(n) of functions from an n-element set to {1,2,...,m}. Solve
the recurrence.

. Solve the recurrence that you derived in Exercise 4.2-4.

. At the end of each year, a state fish hatchery puts 2000 fish into a lake. The number of fish
in the lake at the beginning of the year doubles due to reproduction by the end of the year.
Give a recurrence for the number of fish in the lake after n years and solve the recurrence.

. Consider the recurrence T'(n) = 3T'(n — 1) + 1 with the initial condition that 7°(0) = 2.
We know that we could write the solution down from Theorem 4.1. Instead of using the
theorem, try to guess the solution from the first four values of T'(n) and then try to guess
the solution by iterating the recurrence four times.
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10. What sort of big-© bound can we give on the value of a geometric series 1+7+r24-- - +7"
with common ratio r = 17

11. Solve the recurrence T'(n) = 2T (n — 1) + n2™ with the initial condition that 7°(0) = 1.

12. Solve the recurrence T'(n) = 2T (n — 1) + n32" with the initial condition that 7(0) = 2.

13. Solve the recurrence T'(n n—1)+ 3" with 7'(0) = 1.

S

I
S
S

15. Solve the recurrence T'(n n — 1)+ r* with T(0) = 1

16. Solve the recurrence T'(n) = rT'(n — 1) + s™ with T'(0) = 1.

17. Solve the recurrence T'(n) = rT'(n

(n) (n—1)
(n) (n—1)
(n) (n—1)
14. Solve the recurrence T'(n) = rT'(n — 1) + r™ with 7'(0) = 1.
(n) (n—1)
(n) (n—1)
(n) (n—1)

1) +n with 7(0) = 1.

18. The Fibonacci numbers are defined by the recurrence

_J Tn—1)4+T(n—-2) ifn>0
T(n)_{l ifn=0orn=1

(a) Write down the first ten Fibonacci numbers.

(b) Show that (#)” and (%ﬁ)n are solutions to the equation F(n) = F(n — 1) +

F(n—2).
(c) Why is
1+5 1-V5
e )"+ eaf )"
2 2
a solution to the equation F'(n) = F(n — 1) + F(n — 2) for any real numbers ¢; and
C2?

(d) Find constants ¢; and ¢y such that the Fibonacci numbers are given by

Pl = o (0 1 (LB
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4.3 Growth Rates of Solutions to Recurrences

Divide and Conquer Algorithms

One of the most basic and powerful algorithmic techniques is divide and conquer. Consider, for
example, the binary search algorithm, which we will describe in the context of guessing a number
between 1 and 100. Suppose someone picks a number between 1 and 100, and allows you to ask
questions of the form “Is the number greater than k7” where k is an integer you choose. Your
goal is to ask as few questions as possible to figure out the number. Your first question should
be “Is the number greater than 507” Why is this? Well, after asking if the number is bigger
than 50, you have learned either that the number is between one and 50, or that the number is
between 51 and 100. In either case have reduced your problem to one in which the range is only
half as big. Thus you have divided the problem up into a problem that is only half as big, and
you can now (recursively) conquer this remaining problem. (If you ask any other question, the
size of one of the possible ranges of values you could end up with would be more than half the
size of the original problem.) If you continue in this fashion, always cutting the problem size in
half, you will reduce the problem size down to one fairly quickly, and then you will know what
the number is. Of course it would be easier to cut the problem size exactly in half each time if
we started with a number in the range from one to 128, but the question doesn’t sound quite so
plausible then. Thus to analyze the problem we will assume someone asks you to figure out a
number between 0 and n, where n is a power of 2.

Exercise 4.3-1 Let T'(n) be number of questions in binary search on the range of numbers
between 1 and n. Assuming that n is a power of 2, give a recurrence for 7'(n).

For Exercise 4.3-1 we get:

T(n) = { 1T(”/2) 1 i " = ? (4.20)

That is, the number of guesses to carry out binary search on n items is equal to 1 step (the guess)
plus the time to solve binary search on the remaining n/2 items.

What we are really interested in is how much time it takes to use binary search in a computer
program that looks for an item in an ordered list. While the number of questions gives us a
feel for the amount of time, processing each question may take several steps in our computer
program. The exact amount of time these steps take might depend on some factors we have little
control over, such as where portions of the list are stored. Also, we may have to deal with lists
whose length is not a power of two. Thus a more realistic description of the time needed would
be

ro < { T+ 22 oo

where C1 and Cy are constants.

Note that [z] stands for the smallest integer larger than or equal to z, while |z] stands for
the largest integer less than or equal to z. It turns out that the solution to (4.20) and (4.21)
are roughly the same, in a sense that will hopefully become clear later. (This is almost always
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the case.) For now, let us not worry about floors and ceilings and the distinction between things
that take 1 unit of time and things that take no more than some constant amount of time.

Let’s turn to another example of a divide and conquer algorithm, mergesort. In this algorithm,
you wish to sort a list of n items. Let us assume that the data is stored in an array A in positions
1 through n. Mergesort can be described as follows:

MergeSort (A,low,high)

if (low == high)
return

else
mid = (low + high)/2
MergeSort (A,low,mid)
MergeSort (A,mid+1,high)
Merge the sorted lists from the previous two steps

More details on mergesort can be found in almost any algorithms textbook. Suffice to say
that the base case (low = high) takes one step, while the other case executes 1 step, makes two
recursive calls on problems of size n/2, and then executes the Merge instruction, which can be
done in n steps.

Thus we obtain the following recurrence for the running time of mergesort:

T(n) = { fT(”/ 2)+n ! nel (4.22)

Recurrences such as this one can be understood via the idea of a recursion tree, which we
introduce below. This concept allows us to analyze recurrences that arise in divide-and-conquer
algorithms, and those that arise in other recursive situations, such as the Towers of Hanoi, as
well. A recursion tree for a recurrence is a visual and conceptual representation of the process of
iterating the recurrence.

Recursion Trees

We will introduce the idea of a recursion tree via several examples. It is helpful to have an
“algorithmic” interpretation of a recurrence. For example, (ignoring for a moment the base case)
we can interpret the recurrence

T(n) =2T(n/2)+n (4.23)

as “in order to solve a problem of size n we must solve 2 problems of size n/2 and do n units of
additional work.” Similarly we can interpret

T(n) = T(n/4) + n?

as “in order to solve a problem of size n we must solve one problem of size n/4 and do n? units
of additional work.”

We can also interpret the recurrence
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Figure 4.2: The initial stage of drawing a recursion tree diagram.

Problem Size Work

v O

as “in order to solve a problem of size n, we must solve 3 subproblems of size n — 1 and do n
additional units of work.

In Figure 4.2 we draw the beginning of the recursion tree diagram for (4.23). For now, assume
n is a power of 2. A recursion tree diagram has three parts, a left, a middle, and a right. On
the left, we keep track of the problem size, in the middle we draw the tree, and on right we keep
track of the work done. We draw the diagram in levels, each level of the diagram representing
a level of recursion. Equivalently, each level of the diagram represents a level of iteration of the
recurrence. So to begin the recursion tree for (4.23), we show, in level 0 on the left, that we
have problem of size n. Then by drawing a root vertex with two edges leaving it, we show in the
middle that we are splitting our problem into 2 problems. We note on the right that we do n
units of work in addition to whatever is done on the two new problems we created. In the next
level, we draw two vertices in the middle representing the two problems into which we split our
main problem and show on the left that each of these problems has size n/2.

You can see how the recurrence is reflected in levels 0 and 1 of the recursion tree. The
top vertex of the tree represents T'(n), and on the next level we have two problems of size n/2,
representing the recursive term 27'(n/2) of our recurrence. Then after we solve these two problems
we return to level 0 of the tree and do n additional units of work for the nonrecursive term of
the recurrence.

Now we continue to draw the tree in the same manner. Filling in the rest of level one and
adding a few more a few more levels, we get Figure 4.3.

Let us summarize what the diagram tells us so far. At level zero (the top level), n units of
work are done. We see that at each succeeding level, we halve the problem size and double the
number of subproblems. We also see that at level 1, each of the two subproblems requires n/2
units of additional work, and so a total of n units of additional work are done. Similarly level 2
has 4 subproblems of size n/4 and so 4(n/4) = n units of additional work are done.

To see how iteration of the recurrence is reflected in the diagram, we iterate the recurrence
once, getting
T(n) = 2T(n/2)+n
T(n) = 2(2T(n/4)+n/2)+n
T(n) = 4T(n/4)+n+n=4T(n/4)+ 2n

If we examine levels 0, 1, and 2 of the diagram, we see that at level 2 we have four vertices which
represent four problems, each of size n/4 This corresponds to the recursive term that we obtained
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Figure 4.3: Four levels of a recursion tree diagram.
Problem Size Work

n n
n/2 n2+n/2=n

n/4 n4+n/4+n/d+n/4d=n
n/8 8(n/8) =n

after iterating the recurrence. However after we solve these problems we return to level 1 where
we twice do n/2 additional units of work and to level 0 where we do another n additional units
of work. In this way each time we add a level to the tree we are showing the result of one more
iteration of the recurrence.

We now have enough information to be able to describe the recursion tree diagram in general.
To do this, we need to determine, for each level, three things:

e the number of subproblems,
e the size of each subproblem,

e the total work done at that level.

We also need to figure out how many levels there are in the recursion tree.

We see that for this problem, at level i, we have 2¢ subproblems of size n/2¢. Further, since
a problem of size 2! requires 2! units of additional work, there are (2¢)[n/(2")] = n units of work
done per level. To figure out how many levels there are in the tree, we just notice that at each
level the problem size is cut in half, and the tree stops when the problem size is 1. Therefore
there are log, n + 1 levels of the tree, since we start with the top level and cut the problem size
in half logy n times.2 We can thus visualize the whole tree in Figure 4.4.

The computation of the work done at the bottom level is different from the other levels. In
the other levels, the work is described by the recursive equation of the recurrence; in this case
the amount of work is the n in T'(n) = 27'(n/2) + n. At the bottom level, the work comes from
the base case. Thus we must compute the number of problems of size 1 (assuming that one is
the base case), and then multiply this value by T'(1) = 1. For this particular recurrence, the
nonrecursive term is n, and so when n = 1, we have n = T'(1) also. Had we chosen to say that
T'(1) was some constant other than 1, this would not have been the case. We emphasize that

2To simplify notation, for the remainder of the book, if we omit the base of a logarithm, it should be assumed
to be base 2.
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Figure 4.4: A finished recursion tree diagram.

Problem Size Work
n n
w2 n2+n2=n
logn+1
levels
n/4 n4+n4+n/4+n/d=n
n/8 8(n/8)=n

00000 OO0

the correct value always comes from the base case; it is just a coincidence that it sometimes also
comes from the recursive equation of the recurrence.

The bottom level of the tree represents the final stage of iterating the recurrence. We have
seen that at this level we have n problems each requiring work 7'(1) = 1, giving us total work n
at that level. After we solve the problems represented by the bottom level, we have to do all the
additional work from all the earlier levels. For this reason, we sum the work done at all the levels
of the tree to get the total work done. Iteration of the recurrence shows us that the solution to
the recurrence is the sum of all the work done at all the levels of the recursion tree.

The important thing is that we now know how much work is done at each level. Once we
know this, we can sum the total amount of work done over all the levels, giving us the solution
to our recurrence. In this case, there are logs n + 1 levels, and at each level the amount of work
we do is n units. Thus we conclude that the total amount of work done to solve the problem
described by recurrence (4.23) is n(logyn + 1). The total work done throughout the tree is the
solution to our recurrence, because the tree simply models the process of iterating the recurrence.
Thus the solution to recurrence (4.22) is T'(n) = n(logn + 1).

Since one unit of time will vary from computer to computer, and since some kinds of work
might take longer than other kinds, we are usually interested in the big- behavior of T'(n). For
example, we can consider a recurrence that it identical to (4.22), except that 7'(1) = a, for some
constant a. In this case, T'(n) = an + nlogn, because an units of work are done at level 1 and
n additional units of work are done at each of the remaining logn levels. It is still true that
T(n) = O(nlogn), because the different base case did not change the solution to the recurrence
by more than a constant factor®. Although recursion trees can give us the exact solutions (such
as T'(n) = an 4+ nlogn above) to recurrences, our interest in the big-© behavior of solutions will
usually lead us to use a recursion tree to determine the big-© or even, in complicated cases, just
the big-O behavior of the actual solution to the recurrence. In Problem 10 we explore whether
the value of T'(1) actually influences the big-© behavior of the solution to a recurrence.

Let’s look at one more recurrence.

3More precisely, nlogn < an +nlogn < (a4 1)nlogn for any a > 0.
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{10

Again, assume n is a power of two. We can interpret this as follows: to solve a problem of
size n, we must solve one problem of size n/2 and do n units of additional work. We draw the
tree for this problem in Figure 4.5 and see that the problem sizes are the same as in the previous
tree. The remainder, however, is different. The number of subproblems does not double, rather

Figure 4.5: A recursion tree diagram for Recurrence 4.24.

Problem Size Work
n n
n/2 n/2
logn+1
levels
n/4 n/4

8 Q 8
1 O 1

it remains at one on each level. Consequently the amount of work halves at each level. Note that
there are still logn + 1 levels, as the number of levels is determined by how the problem size is
changing, not by how many subproblems there are. So on level i, we have 1 problem of size n/2¢,
for total work of /2! units.

We now wish to compute how much work is done in solving a problem that gives this recur-
rence. Note that the additional work done is different on each level, so we have that the total
amount of work is

1 1 1 logo n
n+n/2+n/d+---4+2+1=n 1+§+Z+---+<§> )
which is n times a geometric series. By Theorem 4.4, the value of a geometric series in which the
largest term is one is ©(1). This implies that the work done is described by T'(n) = ©(n).

We emphasize that there is exactly one solution to recurrence (4.24); it is the one we get by
using the recurrence to compute 7'(2) from 7'(1), then to compute 7'(4) from 7'(2), and so on.
What we have done here is show that T'(n) = ©(n). In fact, for the kinds of recurrences we have
been examining, once we know 7'(1) we can compute 7'(n) for any relevant n by repeatedly using
the recurrence, so there is no question that solutions do exist and can, in principle, be computed
for any value of n. In most applications, we are not interested in the exact form of the solution,
but a big-O upper bound, or Big-© bound on the solution.
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Exercise 4.3-2 Find a big-O bound for the solution to the recurrence

) 3T(n/3)+n ifn>3
TW”‘{1 ifn<3

using a recursion tree. Assume that n is a power of 3.

Exercise 4.3-3 Solve the recurrence

) AT(n/2)+n ifn>2
Tmy_{l if n =1

using a recursion tree. Assume that n is a power of 2. Convert your solution to a
big-© statement about the behavior of the solution.

Exercise 4.3-4 Can you give a general big-© bound for solutions to recurrences of the
form T'(n) = aT'(n/2) + n when n is a power of 2?7 You may have different answers
for different values of a.

The recurrence in Exercise 4.3-2 is similar to the mergesort recurrence. One difference is
that at each step we divide into 3 problems of size n/3. Thus we get the picture in Figure 4.6.
Another difference is that the number of levels, instead of being log, n + 1 is now logsn + 1, so

Figure 4.6: The recursion tree diagram for the recurrence in Exercise 4.3-2.

Problem Size Work
n n
w3 n3+n/3+n/3=n

logn+1
levels

9 Q 99 =n

JNelelelerelolololt

the total work is still ©(nlogn) units. (Note that log, n = ©(logyn) for any b > 1.)

Now let’s look at the recursion tree for Exercise 4.3-3. Here we have 4 children of size n/2,
and we get Figure 4.7 Let’s look carefully at this tree. Just as in the mergesort tree there are
logyn + 1 levels. However, in this tree, each node has 4 children. Thus level 0 has 1 node, level
1 has 4 nodes, level 2 has 16 nodes, and in general level i has 4° nodes. On level i each node
corresponds to a problem of size n/2? and hence requires n/2¢ units of additional work. Thus the
total work on level i is 4'(n/2%) = 2'n units. This formula applies on level logy n as well since
there are n? = 21°82™n nodes, each requiring 7'(1) = 1 work. Summing over the levels, we get

logy logy 1

Z 2in =n Z 20
i=0 i=0
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Figure 4.7: The Recursion tree for Exercise 4.3-3.

Problem Size Work

n n

w2 % n2+n2+n2+n/2=2n
logn+ 1
levels

n/4 16(n/4) = 4n

i

OOO O o) (O (O )man=m

There are many ways to simplify that expression, for example from our formula for the sum
of a geometric series we get

log, n
Tn) = n» 2
=0
1— 2(log2 n)+1
1-2
1—2n
-1
= 2m%—n

= 0(n?).

= n

= n

More simply, by Theorem 4.4 we have that T'(n) = n©(2'%8™) = O(n?).

Three Different Behaviors

Now let’s compare the recursion tree diagrams for the recurrences T'(n) = 27'(n/2) +n, T(n) =
T(n/2) +n and T(n) = 4T (n/2) + n. Note that all three trees have depth 1 + logy n, as this is
determined by the size of the subproblems relative to the parent problem, and in each case, the
size of each subproblem is 1/2 the size of of the parent problem. The trees differ, however, in the
amount of work done per level. In the first case, the amount of work on each level is the same.
In the second case, the amount of work done on a level decreases as you go down the tree, with
the most work being at the top level. In fact, it decreases geometrically, so by Theorem 4.4 the
total work done is bounded above and below by a constant times the work done at the root node.
In the third case, the number of nodes per level is growing at a faster rate than the problem
size is decreasing, and the level with the largest amount of work is the bottom one. Again we
have a geometric series, and so by Theorem 4.4 the total work is bounded above and below by a
constant times the amount of work done at the last level.
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If you understand these three cases and the differences among them, you now understand the
great majority of the recursion trees that arise in algorithms.

So to answer Exercise 4.3-4, which asks for a general Big-© bound for the solutions to recur-
rences of the form T'(n) = aT'(n/2) + n, we can conclude the following:

Lemma 4.7 Suppose that we have a recurrence of the form
T(n) =aT(n/2)+n,

where a is a positive integer and T'(1) is nonnegative. The we have the following big- Theta bounds
on the solution.

1. If a <2 then T'(n) = ©(n).
2. If a =2 then T'(n) = O(nlogn)

3. If a > 2 then T(n) = O(n'°&29)

Proof:  Cases 1 and 2 follow immediately from our observations above. We can verify case 3
as follows. At each level i we have a’ nodes, each corresponding to a problem of size n/2¢. Thus
at level i the total amount of work is a*(n/2%) = n(a/2)" units. Summing over the logy n levels,
we get

(logg n)—1

dE"T()+n Y (a/2)

i=0
The sum given by the summation sign is a geometric series, so, since a/2 # 1, the sum will be
big-© of the largest term (see Theorem 4.4). Since a > 2, the largest term in this case is clearly
the last one, namely n(a/2)1°82™)~1 and applying rules of exponents and logarithms, we get that
n times the largest term is

logy n)—1 1 1
n(g>(og2n) _ 2 nea®™®" 2 a2 g _ 2 glogyalogyn _ 2 logsa (4.25)

a  2logan a n a a a

Thus T(1)a'°®2" = T(1)n'°®22. Since
O(n'°e27).

ISEIM)

and T'(1) are both nonnegative, the total work done is

In fact Lemma 4.7 holds for all positive real numbers a; we can iterate the recurrence to see
this. Since a recursion tree diagram is a way to visualize iterating the recurrence when « is an
integer, iteration is the natural thing to try when a is not an integer.

Notice that in the last two equalities of computation we made in Equation 4.25, we showed
that a'°8™ = nl°8¢, This is a useful and, perhaps, surprising fact, so we state it (in slightly more
generality) as a corollary to the proof.

Corollary 4.8 For any base b, we have a'°%™ = nlogy @
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Important Concepts, Formulas, and Theorems

1.

Divide and Conquer Algorithm. A divide and conquer algorithm is one that solves a problem
by dividing it into problems that are smaller but otherwise of the same type as the original
one, recursively solves these problems, and then assembles the solution of these so-called
subproblems into a solution of the original one. Not all problems can be solved by such a
strategy, but a great many problems of interest in computer science can.

. Mergesort. In mergesort we sort a list of items that have some underlying order by dividing

the list in half, sorting the first half (by recursively using mergesort), sorting the second
half (by recursively using mergesort), and then merging the two sorted list. For a list of
length one mergesort returns the same list.

. Recursion Tree. A recursion tree diagram for a recurrence of the form T'(n) = aT'(n/b)+g(n)

has three parts, a left, a middle, and a right. On the left, we keep track of the problem
size, in the middle we draw the tree, and on right we keep track of the work done. We
draw the diagram in levels, each level of the diagram representing a level of recursion. The
tree has a vertex representing the initial problem and one representing each subproblem
we have to solve. Each non-leaf vertex has a children. The vertices are divided into levels
corresponding to (sub-)problems of the same size; to the left of a level of vertices we write
the size of the problems the vertices correspond to; to the right of the vertices on a given
level we write the total amount of work done at that level by an algorithm whose work is
described by the recurrence, not including the work done by any recursive calls from that
level.

4. The Base Level of a Recursion Tree. The amount of work done on the lowest level in a
recursion tree is the number of nodes times the value given by the initial condition; it is not
determined by attempting to make a computation of “additional work” done at the lowest
level.

5. Bases for Logarithms. We use logn as an alternate notation for logy n. A fundamental fact
about logarithms is that log, n = ©(logy n) for any real number b > 1.

6. An Important Fact About Logarithms. For any b > 0, al°%™ = nlogs @,

7. Three behaviors of solutions. The solution to a recurrence of the form 7'(n) = aT'(n/2) +n
behaves in one of the following ways:

(a) if a < 2 then T'(n) = ©(n).
(b) if a =2 then T'(n) = ©(nlogn)
(c) if a > 2 then T(n) = ©(n'°829).
Problems
1. Draw recursion trees and find big-© bounds on the solutions to the following recurrences.

For all of these, assume that 7'(1) = 1 and n is a power of the appropriate integer.

(a) T(n) =8T(n/

n/2)+n
(b) T(n) =8T(n/2) + n?

8
8
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2.

10.

(¢c) T(n) =3T(n/2)+n
(d) T(n)=T(n/4)+1
(e) T(n) =3T(n/3) + n?

Draw recursion trees and find exact solutions to the following recurrences. For all of these,
assume that 7'(1) = 1 and n is a power of the appropriate integer.

(a) T(n) =8T(n/2)+n
(b) T(n) = 8T(n/2) +n?
(c) T(n) =3T(n/2)+n
(d) T(n)=T(n/4)+1

(e) T(n) =3T(n/3) + n?

. Find the exact solution to Recurrence 4.24.
. Show that log, n = ©(logy n), for any constant b > 1.
. Prove Corollary 4.8 by showing that a!°%™ = nl°% @ for any b > 0.

. Recursion trees will still work, even if the problems do not break up geometrically, or even

if the work per level is not n¢ units. Draw recursion trees and and find the best big-O
bounds you can for solutions to the following recurrences. For all of these, assume that
T(1)=1.

In each case in the previous problem, is the big-O bound you found a big-© bound?

It S(n) =aS(n—1)+ g(n) and g(n) < ¢® with 0 < ¢ < a, how fast does S(n) grow (in

big-© terms)?

It S(n) =aS(n—1)+g(n) and g(n) = ¢" with 0 < a < ¢, how fast does S(n) grow in big-©

terms?

Given a recurrence of the form 7'(n) = aT'(n/b) + g(n) with T(1) = ¢ > 0 and g(n) > 0
for all n and a recurrence of the form S(n) = aS(n/b) + g(n) with S(1) = 0 (and the same
a. b, and g(n)), is there any difference in the big-© behavior of the solutions to the two
recurrences? What does this say about the influence of the initial condition on the big-©
behavior of such recurrences?
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4.4 The Master Theorem

Master Theorem

In the last section, we saw three different kinds of behavior for recurrences of the form

_J aT(n/2)+n ifn>1
T(”)_{d ifn=1.

These behaviors depended upon whether a < 2, a = 2, or @ > 2. Remember that a was the
number of subproblems into which our problem was divided. Dividing by 2 cut our problem size
in half each time, and the n term said that after we completed our recursive work, we had n
additional units of work to do for a problem of size n. There is no reason that the amount of
additional work required by each subproblem needs to be the size of the subproblem. In many
applications it will be something else, and so in Theorem 4.9 we consider a more general case.
Similarly, the sizes of the subproblems don’t have to be 1/2 the size of the parent problem. We
then get the following theorem, our first version of a theorem called the Master Theorem. (Later
on we will develop some stronger forms of this theorem.)

Theorem 4.9 Let a be an integer greater than or equal to 1 and b be a real number greater than
1. Let ¢ be a positive real number and d a nonnegative real number. Given a recurrence of the
form
T(n) = aT(n/b) + n z:fn > 1
d ifn=1

then for n a power of b,

1. iflogya < ¢, T(n) = O(n),
2. iflogya = ¢, T(n) = ©(nlogn),
3. iflogya > ¢, T(n) = ©(n'&r9).

Proof: In this proof, we will set d = 1, so that the work done at the bottom level of the tree
is the same as if we divided the problem one more time and used the recurrence to compute the
additional work. As in Footnote 3 in the previous section, it is straightforward to show that we
get the same big-© bound if d is positive. It is only a little more work to show that we get the
same big-© bound if d is zero.

Let’s think about the recursion tree for this recurrence. There will be 1 + log, n levels. At
each level, the number of subproblems will be multiplied by a, and so the number of subproblems
at level i will be a’. Each subproblem at level 7 is a problem of size (n/b%). A subproblem of size
n/b® requires (n/b')¢ additional work and since there are a’ problems on level i, the total number

of units of work on level 7 is
a'(n/b")¢ = ne <%> =n° <%) . (4.26)

Recall from Lemma 4.7 that the different cases for ¢ = 1 were when the work per level was
decreasing, constant, or increasing. The same analysis applies here. From our formula for work
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on level i, we see that the work per level is decreasing, constant, or increasing exactly when (l%)’
is decreasing, constant, or increasing, respectively. These three cases depend on whether (%) less

than one, equal to one, or greater than one, respectively. Now observe that

()=1

& a = b°

Il=

< logya = clogy,b
& log, a = c.

This shows us where the three cases in the statement of the theorem come from. Now we
need to show the bound on T'(n) in the different cases. In the following paragraphs, we will use
the facts (whose proof is a straightforward application of the definition of logarithms and rules
of exponents) that for any x, y and z, each greater than 1, '°8v* = 21°8y® (see Corollary 4.8,
Problem 5 at the end of the previous section, and Problem 3 at the end of this section) and that
log, y = O(log, y) (see Problem 4 at the end of the previous section).

In general, the total work done is computed by summing the expression for the work per level
given in Equation 4.26 over all the levels, giving

logy, n i logy, n i
a a
2 : c _ o C 2 : el
! (bc) - (bc>
=0 i=0

In case 1, (part 1 in the statement of the theorem) this is n¢ times a geometric series with a ratio
of less than 1. Theorem 4.4 tells us that

n¢ ; (%)Z = 0O(n°).

Exercise 4.4-1 Prove Case 2 (part 2 of the statement) of the Master Theorem.

Exercise 4.4-2 Prove Case 3 (part 3 of the statement) of the Master Theorem.

In Case 2 we have that ,;ic =1 and so

log, n a\l log, A
ne Z <E> = nc Z 1t
i=0 i=0
= n°(1+log,n)
= O(nlogn).

In Case 3, we have that ;& > 1. So in the series

log, n i logy, n i
a a
2 : c _ . C 2 : o
" (bc} - (bc} ’
=0 i=0

the largest term is the last one, so by Theorem 4.4,the sum is © (nc (ljic)logb n) But
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logy n logy, n
c a b B c a b
n® | — = Nt
be (bc)logbn
. nlogba
= n- nlogy b¢
logy, a
n b
— C |
= n e
— nlogba_

Thus the solution is O(n!°#: ). W

We note that we may assume that a is a real number with a > 1 and give a somewhat similar
proof (replacing the recursion tree with an iteration of the recurrence), but we do not give the
details here.

Solving More General Kinds of Recurrences

Exercise 4.4-3 What can you say about the big-0 behavior of the solution to

| 2T(n/3) +4n3? ifn>1
TW*‘{d ifn=1,

where n can be any nonnegative power of three?

Exercise 4.4-4 If f(n) = ny/n+ 1, what can you say about the Big-© behavior of solu-
tions to
) 28(n/3)+ f(n) ifn>1
Smy_{d ifn=1,

where n can be any nonnegative power of three?

For Exercise 4.4-3, the work done at each level of the tree except for the bottom level will be
four times the work done by the recurrence

b 2T (n3) + 037 it >1
T“”{d ifn =1,

Thus the work done by 7' will be no more than four times the work done by 7", but will be
larger than the work done by T”. Therefore T'(n) = ©(7”'(n)). Thus by the master theorem, since
logs 2 < 1 < 3/2, we have that T(n) = ©(n%/?).

For Exercise 4.4-4, Since nv/n + 1 > ny/n = n/? we have that S(n) is at least as big as the

solution to the recurrence

po ) 2T (ny3) 0% ifn > 1
T“”‘{d ifn =1,

where n can be any nonnegative power of three. But the solution to the recurrence for .S will be
no more than the solution to the recurrence in Exercise 4.4-3 for T, because ny/n + 1 < 4n3/2
for n > 0. Since T'(n) = ©(T"(n)), then S(n) = O(T'(n)) as well.
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Extending the Master Theorem

As Exercise 4.4-3 and Exercise 4.4-4 suggest, there is a whole range of interesting recurrences that
do not fit the master theorem but are closely related to recurrences that do. These recurrences
have the same kind of behavior predicted by our original version of the Master Theorem, but the
original version of the Master Theorem does not apply to them, just as it does not apply to the
recurrences of Exercise 4.4-3 and Exercise 4.4-4.

We now state a second version of the Master Theorem that covers these cases. A still stronger
version of the theorem may be found in Introduction to Algorithms by Cormen, et. al., but the
version here captures much of the interesting behavior of recurrences that arise from the analysis
of algorithms. The condition that b > 2 in this theorem can be replaced by b > 1, but then the
base case depends on b and is not the case with n = 1.

Theorem 4.10 Let a and b be positive real numbers with a > 1 and b > 2. Let T'(n) be defined
for powers n of b by

T(n) = { aT'(n/b) + f(n) ifn>1

d ifn=1.
Then
1. if f(n) = ©(x) where log, a < ¢, then T(n) = ©(n°) = O(f(n)).
2. if f(n) = O(n°), where logya = ¢, then T'(n) = O(n'°8 % log, n)
3. if f(n) = ©(n), where log, a > ¢, then T(n) = O(n'°8+2)

Proof: = We construct a recursion tree or iterate the recurrence. Since we have assumed that
f(n) = ©(n°), there are constants c; and cp, independent of the level, so that the work at each
level is between ¢1n® ()" and con® ()" so from this point on the proof is largely a translation
of the original proof. B

Exercise 4.4-5 What does the Master Theorem tell us about the solutions to the recur-
rence

Tin) — 3I'n/2)+nyn+1 ifn>1
() =191 ifn =17

As we saw in our solution to Exercise 4.4-4 v/ + 1 = ©(2%/?). Since 23/2 = /23 = /8 < 3,
we have that logy 3 > 3/2. Then by conclusion 3 of version 2 of the Master Theorem, T'(n) =
O(n'os23).

The remainder of this section is devoted to carefully analyzing divide and conquer recurrences
in which n is not a power of b and T'(n/b) is replaced by T'([n/b]). While the details are
somewhat technical, the end result is that the big-© behavior of such recurrences is the same as
the corresponding recurrences for functions defined on powers of b. The reader should be able to
skip over the remainder of this section without loss of continuity.
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More realistic recurrences (Optional)

So far, we have considered divide and conquer recurrences for functions 7'(n) defined on integers
n which are powers of b. In order to consider a more realistic recurrence in the master theorem,
namely

_J aT(n/b])+n° iftn>1
T(”)_{d ifn =1,
or
) aT(In/b])+n° iftn>1
T(")_{d ifn =1,
or even

T(n) _{ Z’T([n/b])+(a—a’)T(Ln/bJ)+nc ﬁZi}

it turns out to be easiest to first extend the domain for our recurrences to a much bigger set than
the nonnegative integers, either the real or rational numbers, and then to work backwards.

For example, we can write a recurrence of the form

t(z) = { fx)t(x/b) +g(x) ifx>0b
k() if1<z<b

for two (known) functions f and g defined on the real [or rational] numbers greater than 1 and
one (known) function k defined on the real [or rational] numbers x with 1 < 2 < b. Then so long
as b > 1 it is possible to prove that there is a unique function ¢ defined on the real [or rationall
numbers greater than or equal to 1 that satisfies the recurrence. We use the lower case t in this
situation as a signal that we are considering a recurrence whose domain is the real or rational
numbers greater than or equal to 1.

Exercise 4.4-6 How would we compute ¢(x) in the recurrence

| 3t(z/2) + 2% ifx>2
t(x)_{Sx if1<z<?2

if £ were 77 How would we show that there is one and only one function ¢ that satisfies
the recurrence?

Exercise 4.4-7 Is it the case that there is one and only one solution to the recurrence

rop= { o

when f and g are (known) functions defined on the positive integers, and k and b are
(known) constants with b an integer larger than or equal to 27

To compute #(7) in Exercise 4.4-6 we need to know ¢(7/2). To compute t(7/2), we need to
know ¢(7/4). Since 1 < 7/4 < 2, we know that t(7/4) = 35/4. Then we may write
35 49 154 77

H(1/2)=3-2Z+ 5 =" =7
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Next we may write

t(7) = 3t(7/2) +7°
77

— 3. 44
32+9

329

-5

Clearly we can compute ¢(z) in this way for any x, though we are unlikely to enjoy the arithmetic.
On the other hand suppose all we need to do is to show that there is a unique value of ¢(x)
determined by the recurrence, for all real numbers z > 1. If 1 < x < 2, then ¢(x) = 5z, which
uniquely determines ¢(z). Given a number x > 2, there is a smallest integer i such that /2! < 2,
and for this 7, we have 1 < x/2°. We can now prove by induction on i that t(x) is uniquely
determined by the recurrence relation.

In Exercise 4.4-7 there is one and only one solution. Why? Clearly T'(1) is determined by
the recurrence. Now assume inductively that n > 1 and that 7'(m) is uniquely determined for
positive integers m < n. We know that n > 2, so that n/2 < n — 1. Since b > 2, we know
that n/2 > n/b, so that n/b < n — 1. Therefore [n/b] < n, so that we know by the inductive
hypothesis that T'([n/b]) is uniquely determined by the recurrence. Then by the recurrence,

7(0) = )T (| 7]) + oto)

which uniquely determines 7'(n). Thus by the principle of mathematical induction, 7'(n) is
determined for all positive integers n.

For every kind of recurrence we have dealt with, there is similarly one and only one solution.
Because we know solutions exist, we don’t find formulas for solutions to demonstrate that solu-
tions exist, but rather to help us understand properties of the solutions. In this section and the
last section, for example, we were interested in how fast the solutions grew as n grew large. This
is why we were finding Big-O and Big-© bounds for our solutions.

Recurrences for general n (Optional)

We will now show how recurrences for arbitrary real numbers relate to recurrences involving
floors and ceilings. We begin by showing that the conclusions of the Master Theorem apply to
recurrences for arbitrary real numbers when we replace the real numbers by “nearby” powers
of b.

Theorem 4.11 Let a and b be positive real numbers with b > 1 and ¢ and d be real numbers.
Let t(x) be the solution to the recurrence

at(xz/b) +x¢ ifx >b
t(x):{d F1<z<b

Let T'(n) be the solution to the recurrence

) aT'(n/b)+n° ifn>0
T("){ d ifn =1,

defined for n a monnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(z) = O(T (m(z)))
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Proof: If we iterate (or, in the case that a is an integer, draw recursion trees for) the two
recurrences, we can see that the results of the iterations are nearly identical. This means the
solutions to the recurrences have the same big-© behavior. See the Appendix to this Section for
details. W

Removing Floors and Ceilings (Optional)

We have also pointed out that a more realistic Master Theorem would apply to recurrences of
the form T'(n) = aT'(|n/b]) + n°, or T(n) = aT([n/b]) + n°, or even T'(n) = a'T'([n/b]) + (a —
a')T'(|n/b])+nc. For example, if we are applying mergesort to an array of size 101, we really break
it into pieces, of size 50 and 51. Thus the recurrence we want is not really 7'(n) = 27(n/2) + n,
but rather T'(n) = T'(|n/2]) + T([n/2]) + n.

We can show, however, that one can essentially “ignore” the floors and ceilings in typical
divide-and-conquer recurrences. If we remove the floors and ceilings from a recurrence relation,
we convert it from a recurrence relation defined on the integers to one defined on the rational
numbers. However we have already seen that such recurrences are not difficult to handle.

The theorem below says that in recurrences covered by the master theorem, if we remove
ceilings, our recurrences still have the same big-© bounds on their solutions. A similar proof
shows that we may remove floors and still get the same big-© bounds. Without too much more
work we can see that we can remove floors and ceilings simultaneously without changing the
big-© bounds on our solutions. Since we may remove either floors or ceilings, that means that we
may deal with recurrences of the form T'(n) = o'T'([n/b]) + (a —a')T(|n/b]) + n°. The condition
that b > 2 can be replaced by b > 1, but the base case for the recurrence will depend on b.

Theorem 4.12 Let a and b be positive real numbers with b > 2 and let ¢ and d be real numbers.
Let T'(n) be the function defined on the integers by the recurrence

T(n):{ ZT(fn/bW)JrnC Z‘Z il

and let t(x) be the function on the real numbers defined by the recurrence

at(x/b) +x¢ ifx>b
t(””):{d Fl<z<b

Then T'(n) = ©(t(n)). The same statement applies with ceilings replaced by floors.

Proof: As in the previous theorem, we can consider iterating the two recurrences. It is
straightforward (though dealing with the notation is difficult) to show that for a given value of
n, the iteration for computing 7'(n) has at most two more levels than the iteration for computing
t(n). The work per level also has the same Big-© bounds at each level, and the work for the two
additional levels of the iteration for T'(n) has the same Big-O bounds as the work at the bottom
level of the recursion tree for ¢(n). We give the details in the appendix at the end of this section.
]

Theorem 4.11 and Theorem 4.12 tell us that the Big-© behavior of solutions to our more

realistic recurrences
) aT'([n/b]) +n¢ ifn>1
T(n) = { d n=1

is determined by their Big-© behavior on powers of the base b.
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Floors and ceilings in the stroger version of the Master Theorem (Optional)

We showed that, in our first version of the master theorem, we could ignore ceilings and assume
our variables were powers of b. In fact we can ignore them in circumstances where the function
telling us the “work” done at each level of our recursion tree is ©(x¢) for some positive real
number ¢. This lets us apply the second version of the master theorem to recurrences of the form

T(n) = aT([n/b]) + f(n).

Theorem 4.13 Theorems 4.11 and 4.12 apply to recurrences in which the x¢ or n® term is
replaced by f(x) or f(n) for a function f with f(x) = 6(x°).

Proof:  We iterate the recurrences or construct recursion trees in the same way as in the proofs
of the original theorems, and find that the condition f(z) = ©(z¢) gives us enough information
to again bound the solution above and below with multiples of the solution of the recurrence
with z¢. The details are similar to those in the original proofs. l

Appendix: Proofs of Theorems (Optional)

For convenience, we repeat the statements of the earlier theorems whose proofs we merely out-
lined.

Theorem 4.11 Let a and b be positive real numbers with b > 1 and ¢ and d be real numbers.
Let t(x) be the solution to the recurrence

_J at(z/b)+ 2z ifz >0
t(x)_{d if1<a<b.

Let T'(n) be the solution to the recurrence

) aT'(n/b)+n° ifn>0
T(")—{ d ifn=1,
defined for n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(z) = O(T (m(z)))

Proof: By iterating each recursion 4 times (or using a four level recursion tree in the case
that a is an integer), we see that

t(x) = a4t(£) + (%)3.%0 + (%)2.%6 + %aﬁc

and 5 )
A T a a a
T(n)=a T(b—4> + (ﬁ> n’ + (E) n’ + Enc
Thus, continuing until we have a solution, in both cases we get a solution that starts with a
raised to an exponent that we will denote as either e(z) or e(n) when we want to distinguish
between them and e when it is unnecessary to distinguish. The solution for ¢ will be a® times

t(z/b°) plus x€ times a geometric series Ef;& (g%)l. The solution for T' will be a® times d plus n¢
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times a geometric series -, (l;ic)Z In both cases t(x/b°) (or T'(n/b%)) will be d. In both cases the

geometric series will be ©(1), ©(e) or @(g%)e, depending on whether ;% is less than 1, equal to 1,
or greater than one. Clearly e(n) = log, n. Since we must divide z by b an integer number greater
than log, x — 1 times in order to get a value in the range from 1 to b, e(x) = |log, «|. Thus, if m
is the largest integer power of b less than or equal to x, then 0 < e(z) — e(m) < 1. Let us use r
to stand for the real number lj%. Then we have r0 < pe(@)—e(m) r, Or re(m) < re(@) <r. relm)
Thus we have r¢(*) = ©(r°(™)) Finally, m¢ < z¢ < bm¢, and so 2¢ = ©(m°). Therefore, every
term of ¢(z) is © of the corresponding term of T'(m). Further, there are only a fixed number of
different constants involved in our Big-© bounds. Therefore since ¢(z) is composed of sums and
products of these terms, t(x) = ©(T(m)). &

Theorem 4.12 Let a and b be positive real numbers with b > 2 and let ¢ and d be real numbers.
Let T'(n) be the function defined on the integers by the recurrence

T(n) :{ o (1) + Ziib

and let t(x) be the function on the real numbers defined by the recurrence

fg) — at(xz/b) +x¢ ifx >b
@) =9 4a ifl1<z<b.

Then T'(n) = ©(t(n)).

Proof:  As in the previous proof, we can iterate both recurrences. Let us compare what the
results will be of iterating the recurrence for ¢(n) and the recurrence for 7'(n) the same number
of times. Note that

[n/b] < n/b+1
[[n/b]/b] < [n/b* +1/b] < n/b*>+1/b+1
[[[n/b]/b]/b] < [n/b® +1/6* +1/b] < n/b®>+1/b* +1/b+1

This suggests that if we define ng = n, and n; = [n;—1/b], then, using the fact that b > 2, it
is straightforward to prove by induction, or with the formula for the sum of a geometric series,
that n; < n/b' + 2. The number n; is the argument of T in the ith iteration of the recurrence
for T. We have just seen it differs from the argument of ¢ in the ith iteration of ¢ by at most
2. In particular, we might have to iterate the recurrence for T' twice more than we iterate the
recurrence for ¢ to reach the base case. When we iterate the recurrence for ¢, we get the same
solution we got in the previous theorem, with n substituted for x. When we iterate the recurrence
for T, we get for some integer j that

j—1
T(n)=dd+ Z a'ng,
1=0

with 3+ <n; < 77 + 2. But, so long as n/b" > 2, we have n/b’ +2 < n/bi~!. Since the number of
iterations of T' is at most two more than the number of iterations of ¢, and since the number of
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iterations of ¢ is |log, n], we have that j is at most |log, n| + 2. Therefore all but perhaps the
last three values of n; are less than or equal to n/b°~!, and these last three values are at most b2,
b, and 1. Putting all these bounds together and using ng = n gives us

j=1 ./ M\ C izl .
() < i
=0 =0
Jj—4 n \ec
< ek d () F ) T el
i=1
or
j—1 j—1
/M \C .
Ya() < Tan
=0 i=0

j74 . c . c . c
¢ TEA Ry S i (Y i(Y
< n —i—biz:la(bi) +a (bj—2 +a i +a Wy

As we shall see momentarily these last three “extra” terms and the b in front of the summation
sign do not change the Big-© behavior of the right-hand side.

As in the proof of the master theorem, the Big-© behavior of the left hand side depends on
whether a/b¢ is less than 1, in which case it is ©(n°), equal to 1, in which case it is ©(n°log, n),
or greater than one in which case it is ©(n!°% ). But this is exactly the Big-© behavior of the

right-hand side, because n < b < nb? so v/ = O(n), which means that (2—1)0 =0 ((%)c>,

and the b in front of the summation sign does not change its Big-© behavior. Adding a’d to
the middle term of the inequality to get T'(n) does not change this behavior. But this modified
middle term is exactly 7'(n). Since the left and right hand sides have the same big-© behavior
as t(n), we have T(n) = ©(t(n)). W

Important Concepts, Formulas, and Theorems

1. Master Theorem, simplified version. The simplified version of the Master Theorem states:
Let a be an integer greater than or equal to 1 and b be a real number greater than 1. Let ¢
be a positive real number and d a nonnegative real number. Given a recurrence of the form

_J aT'(n/b)+n° ifn>1
T(”)_{ d ifn=1

then for n a power of b,

(a) if logya < ¢, T'(n) = O(n°),
(b) if logya = ¢, T'(n) = ©(n‘logn),
(c) if logya > ¢, T(n) = O(n'o8 ).

2. Properties of Logarithms. For any z, y and z, each greater than 1, z'°%v% = 218y % Also,
log, y = ©(logy y).
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3. Master Theorem, More General Version. Let a and b be positive real numbers with a > 1

and b > 2. Let T'(n) be defined for powers n of b by

T(n) = { aT(n/b) + f(n) ifn>1

d ifn=1
Then
(a) if f(n) = O(n®) where logy a < ¢, then T'(n) = O(n¢) = O(f(n)).
(b) if f(n) = ©(n°), where log, a = ¢, then T'(n) = ©(n'°& * log, n)
(c) if f(n) = ©(n°), where log, a > ¢, then T'(n) = ©(nl°& ).

A similar result with a base case that depends on b holds when 1 < b < 2.

. Important Recurrences have Unique Solutions. (Optional.) The recurrence

O P

when f and g are (known) functions defined on the positive integers, and k and b are
(known) constants with b an integer larger than 2 has a unique solution.

. Recurrences Defined on the Positive Real Numbers and Recurrences Defined on the Positive

Integers. (Optional.) Let a and b be positive real numbers with b > 1 and ¢ and d be real
numbers. Let ¢(z) be the solution to the recurrence

_J at(z/b)+2¢ ifx>0b
t@y_{d it1<z<b.

Let T'(n) be the solution to the recurrence

|} aT'(n/b)+n° ifn>0
Tm”‘{d ifn =1,

where n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = (T (m(x)))

. Remowving Floors and Ceilings from Recurrences. (Optional.) Let a and b be positive real

numbers with b > 2 and let ¢ and d be real numbers. Let T'(n) be the function defined on
the integers by the recurrence

T(n):{ ZT([n/bDJrnc gi?l 7

and let t(z) be the function on the real numbers defined by the recurrence

_J at(z/b)+2¢ ifx>0b
t@y_{d ifl<z<b

Then T'(n) = O(t(n)). The same statement applies with ceilings replaced by floors.
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7. Extending 5 and 6 (Optional.) In the theorems summarized in 5 and 6 the n¢ or z¢ term
may be replaced by a function f with f(z) = ©(z°).

8. Solutions to Realistic Recurrences. (Optional.) The theorems summarized in 5, 6, and 7
tell us that the Big-© behavior of solutions to our more realistic recurrences

T(n) _{ ;T([n/m)w(n) irf_"; 1

where f(n) = O(n), is determined by their Big-© behavior on powers of the base b and
with f(n) = n°.

Problems

1. Use the master theorem to give Big-© bounds on the solutions to the following recurrences.
For all of these, assume that T'(1) = 1 and n is a power of the appropriate integer.

2. Extend the proof of the Master Theorem, Theorem 4.9 to the case T'(1) = d.
3. Show that for any z, y and z, each greater than 1, z!°%s* = 2198y @

4. Show that for each real number x > 0 there is one and only one value of ¢(z) given by the
recurrence

ﬂm:{7m@—n+1ﬁx21

1 fo<z <1
5. Show that for each real number x > 1 there is one and only one value of t(x) given by the
recurrence

| 3aT(z/2) + 2% ifx>2
“@_{1 fl<z<2

6. How many solutions are there to the recurrence

O P

if b < 27 If b = 10/9, by what would we have to replace the condition that T'(n) = k if
n =1 in order to get a unique solution?
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7. Give a big-© bound on the solution to the recurrence
3T([n/2]) +vn+3 ifn>1
T(n) = .
d if n=1.

8. Give a big-© bound on the solution to the recurrence

T(n)_{ZT([n/ﬂ)%- n3 + 3 iZii

9. Give a big-© bound on the solution to the recurrence
d ifn=1.

T(n):{z;T((n/z})Jr W +3 ifn>1

10. Give a big-© bound on the solution to the recurrence

T(n):{ ZT(M/Q])—F n? + 3 EZ:
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4.5 More general kinds of recurrences

Recurrence Inequalities

The recurrences we have been working with are really idealized versions of what we know about
the problems we are working on. For example, in merge-sort on a list of n items, we say we
divide the list into two parts of equal size, sort each part, and then merge the two sorted parts.
The time it takes to do this is the time it takes to divide the list into two parts plus the time
it takes to sort each part, plus the time it takes to merge the two sorted lists. We don’t specify
how we are dividing the list, or how we are doing the merging. (We assume the sorting is done
by applying the same method to the smaller lists, unless they have size 1, in which case we do
nothing.) What we do know is that any sensible way of dividing the list into two parts takes no
more than some constant multiple of n time units (and might take no more than constant time if
we do it by leaving the list in place and manipulating pointers) and that any sensible algorithm
for merging two lists will take no more than some (other) constant multiple of n time units. Thus
we know that if T'(n) is the amount of time it takes to apply merge sort to n data items, then
there is a constant ¢ (the sum of the two constant multiples we mentioned) such that

T(n) < 2T(n/2) + cn. (4.27)

Thus real world problems often lead us to recurrence inequalities rather than recurrence
equations. These are inequalities that state that T'(n) is less than or equal to some expression
involving values of T'(m) for m < n. (We could also include inequalities with a greater than
or equal to sign, but they do not arise in the applications we are studying.) A solution to a
recurrence inequality is a function T' that satisfies the inequality. For simplicity we will expand
what we mean by the word recurrence to include either recurrence inequalities or recurrence
equations.

In Recurrence 4.27 we are implicitly assuming that T is defined only on positive integer values
and, since we said we divided the list into two equal parts each time, our analysis only makes
sense if we assume that n is a power of 2.

Note that there are actually infinitely many solutions to Recurrence 4.27. (For example for
any ¢ < ¢, the unique solution to

T(n) =

{ 2T(n/2) +cn ifn>2 (4.28)

k ifn=1

satisfies Inequality 4.27 for any constant k.) The idea that Recurrence 4.27 has infinitely many
solutions, while Recurrence 4.28 has exactly one solution is analogous to the idea that z —3 <0
has infinitely many solutions while £ — 3 = 0 has one solution. Later in this section we shall see
how to show that all the solutions to Recurrence 4.27 satisfy T'(n) = O(nlogy n). In other words,
no matter how we sensibly implement merge sort, we have a O(nlog, n) time bound on how long
the merge sort process takes.

Exercise 4.5-1 Carefully prove by induction that for any function 7" defined on the non-
negative powers of 2, if
T(n) <2T(n/2)+cn

for some constant ¢, then T'(n) = O(nlogn).
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A Wrinkle with induction

We can analyze recurrence inequalities via a recursion tree. The process is virtually identical to
our previous use of recursion trees. We must, however, keep in mind that on each level, we are
really computing an upper bound on the work done on that level. We can also use a variant of the
method we used a few sections ago, guessing an upper bound and verifying by induction. We use
this method for the recurrence in Exercise 4.5-1. Here we wish to show that T'(n) = O(nlogn).
From the definition of Big-O, we can see that we wish to show that T'(n) < knlogn for some
positive constant k (so long as n is larger than some value ny).

We are going to do something you may find rather curious. We will consider the possibility
that we have a value of k for which the inequality holds. Then in analyzing the consequences
of this possibility, we will discover that there are assumptions that we need to make about k in
order for such a k to exist. What we will really be doing is experimenting to see how we will
need to choose k to make an inductive proof work.

We are given that T'(n) < 27'(n/2) + cn for all positive integers n that are powers of 2. We
want to prove there is another positive real number £ > 0 and an ng > 0 such that for n > ng,
T(n) < knlogn. We cannot expect to have the inequality T'(n) < knlogn hold for n = 1,
because log1 = 0. To have T'(2) < k- 2log2 = k - 2, we must choose k > @ This is the first
assumption we must make about k. Our inductive hypothesis will be that if n is a power of 2 and
m is a power of 2 with 2 < m < n then T'(m) < kmlogm. Now n/2 < n, and since n is a power
of 2 greater than 2, we have that n/2 > 2, so (n/2)logn/2 > 2. By the inductive hypothesis,
T(n/2) < k(n/2)logn/2. But then

T(n) < 2T(n/2) +en < 2/% logg +en (4.29)
= knlog g +cn (4.30)
= knlogn —knlog2+ cn (4.31)
= knlogn — kn + cn. (4.32)

Recall that we are trying to show that T'(n) < knlogn. But that is not quite what Line 4.32
tells us. This shows that we need to make another assumption about k, namely that —kn+cn < 0,
or k > ¢. Then if both our assumptions about k are satisfied, we will have T'(n) < knlogn, and
we can conclude by the principle of mathematical induction that for all n > 1 (so our ng is 2),
T'(n) < knlogn, so that T'(n) = O(nlogn).

A full inductive proof that T'(n) = O(nlogn) is actually embedded in the discussion above,
but since it might not appear to everyone to be a proof, below we will summarize our observations
in a more traditional looking proof. However you should be aware that some authors and teachers
prefer to write their proofs in a style that shows why we make the choices about k£ that we do,
and so you should learn how to to read discussions like the one above as proofs.

We want to show that if T'(n) < T'(n/2) + cn, then T'(n) = O(nlogn). We are given a real
number ¢ > 0 such that T'(n) < 27'(n/2) + ¢n for all n > 1. Choose k to be larger than or equal

to @ and larger than or equal to ¢. Then

T(2) <k-2log2
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because k > T'(np)/2 and log2 = 1. Now assume that n > 2 and assume that for m with
2 <m < n, we have T(m) < kmlogm. Since n is a power of 2, we have n > 4, so that n/2 is an
m with 2 < m < n. Thus, by the inductive hypothesis,

T <E> < ke log n
2 2 2.
Then by the recurrence,

T(n) Qk:g log ien

2
= kn(logn—1)+cn

= knlogn+cn—kn
< knlogn,

since k > ¢. Thus by the principle of mathematical induction, T'(n) < knlogn for all n > 2, and
therefore T'(n) = O(nlogn).

There are three things to note about this proof. First without the preceding discussion, the
choice of k seems arbitrary. Second, without the preceding discussion, the implicit choice of 2 for
the ng in the big-O statement also seems arbitrary. Third, the constant k is chosen in terms of
the previous constant c. Since ¢ was given to us by the recurrence, it may be used in choosing the
constant we use to prove a Big-O statement about solutions to the recurrence. If you compare
the formal proof we just gave with the informal discussion that preceded it, you will find each
step of the formal proof actually corresponds to something we said in the informal discussion.
Since the informal discussion explained why we were making the choices we did, it is natural that
some people prefer the informal explanation to the formal proof.

Further Wrinkles in Induction Proofs

Exercise 4.5-2 Suppose that ¢ is a real number greater than zero. Show by induction
that any solution 7'(n) to the recurrence

T(n) <T(n/3)+cn
with n restricted to integer powers of 3 has T'(n) = O(n).

Exercise 4.5-3 Suppose that ¢ is a real number greater than zero. Show by induction
that any solution T'(n) to the recurrence

T(n) <4T(n/2) + cn

with n restricted to integer powers of 2 has T'(n) = O(n?).

In Exercise 4.5-2 we are given a constant ¢ such that T'(n) < T'(n/3) + c¢n if n > 1. Since
we want to show that T'(n) = O(n), we want to find two more constants ng and k such that
T(n) < kn whenever n > ng.

We will choose ng = 1 here. (This was not an arbitrary choice; it is based on observing that
T'(1) < kn is not an impossible condition to satisfy when n = 1.) In order to have T'(n) < kn for
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n = 1, we must assume k > T'(1). Now assuming inductively that 7'(m) < km when 1 <m <n
we can write

T(n) T(n/3)+cn

k(n/3) + cn

2k
kn—k(c—?)n

IAIA

Thus, as long as ¢ — % <0, ie k> %c, we may conclude by mathematical induction that
T(n) < kn for all n > 1. Again, the elements of an inductive proof are in the preceding
discussion. Again you should try to learn how to read the argument we just finished as a valid
inductive proof. However, we will now present something that looks more like an inductive proof.

We choose k to be the maximum of T'(1) and 3¢/2 and we choose ng = 1. To prove by
induction that T'(x) < kz we begin by observing that T'(1) < k- 1. Next we assume that n > 1
and assume inductively that for m with 1 < m < n we have T'(m) < km. Now we may write

T(n) <T(n/3)+cn <kn/3+cn=kn+ (c—2k/3)n < kn,
because we chose k to be at least as large as 3¢/2, making ¢ — 2k/3 negative or zero. Thus by
the principle of mathematical induction we have T'(n) < kn for all n > 1 and so T'(n) = O(n).

Now let’s analyze Exercise 4.5-3. We won’t dot all the i’s and cross all the t’s here because
there is only one major difference between this exercise and the previous one. We wish to prove
there are an ng and a k such that T'(n) < kn? for n > ng. Assuming that we have chosen ng and
k so that the base case holds, we can bound 7'(n) inductively by assuming that 7'(m) < km? for
m < n and reasoning as follows:

AT <g> +en

4 (k: <§>2> +oen
(=) e

= kn®>+cn.

T(n)

IA

IN

To proceed as before, we would like to choose a value of k£ so that cn < 0. But we see that
we have a problem because both ¢ and n are always positive! What went wrong? We have a
statement that we know is true, and we have a proof method (induction) that worked nicely for
similar problems.

The usual way to describe the problem we are facing is that, while the statement is true, it
is too weak to be proved by induction. To have a chance of making the inductive proof work,
we will have to make an inductive hypothesis that puts some sort of negative quantity, say a
term like —kn, into the last line of our display above. Let’s see if we can prove something that is
actually stronger than we were originally trying to prove, namely that for some positive constants
ki and ko, T'(n) < kyn? — kon. Now proceeding as before, we get

T(n) < 4T(n/2)+cn
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(u5) n(5) e
— 4 (’“T”Q . (g)) +en

kin? — 2kon + cn
= kin® —kan + (c — ko)n.

IN

Now we have to make (¢ — k2)n < 0 for the last line to be at most kin? — kon, and so we just
choose k2 > ¢ (and greater than whatever we need in order to make a base case work). Since
T(n) < k1n? — kan for some constants ki and kg, then T'(n) = O(n?).

At first glance, this approach seems paradoxical: why is it easier to prove a stronger statement
than it is to prove a weaker one? This phenomenon happens often in induction: a stronger
statement is often easier to prove than a weaker one. Think carefully about an inductive proof
where you have assumed that a bound holds for values smaller than n and you are trying to
prove a statement for n. You use the bound you have assumed for smaller values to help prove
the bound for n. Thus if the bound you used for smaller values is actually weak, then that is
hindering you in proving the bound for n. In other words when you want to prove something
about p(n) you are using p(1) A... Ap(n —1). Thus if these are stronger, they will be of greater
help in proving p(n). In the case above, the problem was that the statements, p(1),...,p(n —1)
were too weak, and thus we were not able to prove p(n). By using a stronger p(1),...,p(n — 1),
however, we were able to prove a stronger p(n), one that implied the original p(n) we wanted.
When we give an induction proof in this way, we say that we are using a stronger inductive
hypothesis.

Dealing with functions other than n¢

Our statement of the Master Theorem involved a recursive term plus an added term that was
O(n°). Sometimes algorithmic problems lead us to consider other kinds of functions. The most
common such is example is when that added function involves logarithms. For example, consider
the recurrence:
_J 2(n/2) + nlogn ifn>1
T(”)_{l ifn=1,

where n is a power of 2. Just as before, we can draw a recursion tree; the whole methodology
works, but our sums may be a little more complicated. The tree for this recurrence is shown in
Figure 4.8.

This is similar to the tree for T'(n) = 27'(n/2) +n, except that the work on level 7 is n log (%)
for ¢ > 2, and, for the bottom level, it is n, the number of subproblems, times 1. Thus if we sum
the work per level we get

logn—1 n logn—1 n
Z nlog (§> +n = n Z log <§> +n
1=0 =0
logn—1

= n Z (logn —log2") +n
=0
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Figure 4.8: The recursion tree for T'(n) = 27 (n/2) + nlogn if n > 1 and T'(1) =

Problem Size Work
n nlogn

w2 n/2 log(n/2) + n/2 log(n/2) = n log(n/2)

logn+1
levels
na 4(n/4 log(/4)) = n log(r/4)

- Qo&ﬁ Qé@

logn—1 logn—1
n Z logn — Z il +n
i=0

=0

= n <(10gn)(logn) - (logn)(lggn - 1)) +n

= O(nlog’n) .

A bit of mental arithmetic in the second last line of our equations shows that the log?n will not
cancel out, so our solution is in fact ©(nlog®n).

Exercise 4.5-4 Find the best big-O bound you can on the solution to the recurrence

] T(n/2) +nlogn ifn>1
T(”)_{ 1 ifn=1,

assuming n is a power of 2. Is this bound a big-© bound?

The tree for this recurrence is in Figure 4.9

Notice that the work done at the bottom nodes of the tree is determined by the statement
T(1) =1 in our recurrence; it is not 1log 1. Summing the work, we get

logn—1 n logn—1 1 '
1+ Z 2110g<21> = 1+n Z ?(logn—logT)

=0
logn

= 1+4n Z()log) ))

=0

logn—1 1 i
1 1 =
+n | logn Z <2)

IN

=0
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Figure 4.9: The recursion tree for the recurrence T'(n) = T'(n/2) + nlogn if n > 1 and T'(1) = 1.

Problem Size Work

n O n
2 é n/2 log(n/2)
logn ‘
levels
n/4 Q n/4 log(n/4)
8 Q 8 log(rv8)

2 Q 2l0g2

IN

1+ n(logn)(2)
= O(nlogn).

Note that. the largest term in the sum in our second line of equations is log(n), and none of the
terms in the sum are negative. This means that n times the sum is at least nlogn. Therefore,
we have T'(n) = O(nlogn).

Removing Ceilings and Using Powers of b. (Optional)

We showed that in our versions of the master theorem, we could ignore ceilings and assume our
variables were powers of b. It might appear that the two theorems we used do not apply to the
more general functions we have studied in this section any more than the master theorem does.
However, they actually only depend on properties of the powers n¢ and not the three different
kinds of cases, so it turns out we can extend them.

Notice that (zb)¢ = bz, and this proportionality holds for all values of = with constant
of proportionality b°. Putting this just a bit less precisely, we can write (zb)¢ = O(z¢). This
suggests that we might be able to obtain Big-© bounds on T'(n) when T satisfies a recurrence of
the form

T(n) = aT(n/b) + f(n)

with f(nb) = O(f(n)), and we might be able to obtain Big-O bounds on 7" when T satisfies a
recurrence of the form

T(n) < aT(n/b)+ f(n)

with f(nb) = O(f(n)). But are these conditions satisfied by any functions of practical interest?
Yes. For example if f(z) = log(x), then

F(b) = log(b) + log(x) = ©(log(x)).

Exercise 4.5-5 Show that if f(z) = #?logz, then f(bz) = O(f(x)).
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Exercise 4.5-6 If f(x) = 3% and b =2, is f(bx) = O(f(x))? Is f(b(x)) = O(f(x))?

For Exercise 4.5-5 if f(x) = 2?logz, then
f(bx) = (bx)*log bz = b2z*(logb + log ) = O (22 log x).

However, if f(z) = 3%, then
f(QI‘) — 3231: — (395)2 —3%. 3957

and there is no way that this can be less than or equal to a constant multiple of 3%, so it is
neither ©(3%) nor O(3%). Our exercises suggest the kinds of functions that satisfy the condition
f(bx) = O(f(x)) might include at least some of the kinds of functions of = which arise in the
study of algorithms. They certainly include the power functions and thus polynomial functions
and root functions, or functions bounded by such functions.

There was one other property of power functions n¢ that we used implicitly in our discussions
of removing floors and ceilings and assuming our variables were powers of b. Namely, if x > y (and
¢ > 0) then ¢ > y¢. A function f from the real numbers to the real numbers is called (weakly)
increasing if whenever x > y, then f(z) > f(y). Functions like f(z) = logz and f(z) = xzlogz
are increasing functions. On the other hand, the function defined by

22 otherwise

z if x is a power of b
fx) = { P

is not increasing even though it does satisfy the condition f(bx) = O(f(x)).

Theorem 4.14 Theorems 4.11 and 4.12 apply to recurrences in which the x¢ term is replaced
by an increasing function f for which f(bx) = O(f(x)).

Proof: = We iterate the recurrences in the same way as in the proofs of the original theorems,
and find that the condition f(bz) = O(f(x)) applied to an increasing function gives us enough
information to again bound the solution to one kind of recurrence above and below with a multiple
of the solution of the other kind. The details are similar to those in the original proofs so we
omit them. Wl

In fact there are versions of Theorems 4.11 and 4.12 for recurrence inequalities also. The
proofs involve a similar analysis of iterated recurrences or recursion trees, and so we omit them.

Theorem 4.15 Let a and b be positive real numbers with b > 2 and let f : Rt — RT be an
increasing function such that f(bx) = O(f(x)). Then every solution t(x) to the recurrence

t(z) < { at(z/b) + f(x) ifx >0

c if 1 <z <b,

where a, b, and ¢ are constants, satisfies t(x) = O(h(x)) if and only if every solution T(n) to the

aT(n/b)+ f(n) ifn>1
T(")S{ d ifn=1,

where n is restricted to powers of b, satisfies T'(n) = O(h(n)).
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Theorem 4.16 Let a and b be positive real numbers with b > 2 and let f : Rt — RT be an
increasing function such that f(bx) = O(f(x)). Then every solution T'(n) to the recurrence

at([n/b])+ f(n) ifn>1
Iwwg{d ifn=1,

satisfies T'(n) = O(h(n)) if and only if every solution t(x) to the recurrence

aT(x/b)+ f(x) ifx>b
“”S{d ifl1<z<b,

satisfies t(x) = O(h(x)).

Important Concepts, Formulas, and Theorems

1. Recurrence Inequality. Recurrence inequalities are inequalities that state that T'(n) is less
than or equal to some expression involving values of T'(m) for m < n. A solution to a
recurrence inequality is a function 7' that satisfies the inequality.

2. Recursion Trees for Recurrence Inequalities. We can analyze recurrence inequalities via a
recursion tree. The process is virtually identical to our previous use of recursion trees. We
must, however, keep in mind that on each level, we are really computing an upper bound
on the work done on that level.

3. Discovering Necessary Assumptions for an Inductive Proof. If we are trying to prove a
statement that there is a value k such that an inequality of the form f(n) < kg(n) or
some other statement that involves the parameter k is true, we may start an inductive
proof without knowing a value for k and determine conditions on k by assumptions that
we need to make in order for the inductive proof to work. When written properly, such an
explanation is actually a valid proof.

4. Making a Stronger Inductive Hypothesis. If we are trying to prove by induction a statement
of the form p(n) = ¢(n) and we have a statement s(n) such that s(n) = ¢(n), it is
sometimes useful to try to prove the statement p(n) = s(n). This process is known as
proving a stronger statement or making an stronger inductive hypothesis. It sometimes
works because it gives us an inductive hypothesis which suffices to prove the stronger
statement even though our original statement ¢(n) did not give an inductive hypothesis
sufficient to prove the original statement. However we must be careful in our choice of s(n),
because we have to be able to succeed in proving p(n) = s(n).

5. When the Master Theorem does not Apply. To deal with recurrences of the form

R PR

where f(n) is not ©(n®), recursion trees and iterating the recurrence are appropriate tools
even though the Master Theorem does not apply. The same holds for recurrence inequalities.

6. Increasing function. (Optional.) A function f: R — R is said to be (weakly) increasing if
whenever z >y, f(z) > f(y)
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7. Removing Floors and Ceilings when the Master Theorem does not Apply. (Optional.) To

deal with big-© bounds with recurrences of the form

i) = { (/b + o) ifn>1

where f(n) is not ©(n¢), we may remove floors and ceilings and replace n by powers of b
if f is increasing and satisfies the condition f(nb) = O(f(n)). To deal with big-O bounds
for a similar recurrence inequality we may remove floors and ceilings if f is increasing and

satisfies the condition that f(nb) = O(f(n)).

Problems

1.

(a) Find the best big-O upper bound you can to any solution to the recurrence

|} 4T(n/2) + nlogn ifn>1
TW%‘{l itn=1.

(b) Assuming that you were able to guess the result you got in part (a), prove by induction
that your answer is correct.

. Is the big-O upper bound in the previous problem actually a big-© bound?

. Show by induction that

_J 8T (n/2) + nlogn ifn>1
Tmy_{d ifn=1

has T'(n) = O(n?) for any solution T'(n).

. Is the big-O upper bound in the previous problem actually a big-© bound?

. Show by induction that any solution to a recurrence of the form

T(n) <2T(n/3) + cloggn

is O(nloggn). What happens if you replace 2 by 3 (explain why)? Would it make a
difference if we used a different base for the logarithm (only an intuitive explanation is
needed here).

What happens if you replace the 2 in Problem 5 by 47 (Hint: one way to attack this is
with recursion trees.)

Is the big-O upper bound in Problem 5 actually a big © bound?

. Give an example (different from any in the text) of a function for which f(bx) = O(f(z)).

Give an example (different from any in the text) of a function for which f(bz) is not

O(f(x))-

. Give the best big O upper bound you can for the solution to the recurrence 7'(n) = 27'(n/3—

3) + n, and then prove by induction that your upper bound is correct.
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10. Find the best big-O upper bound you can to any solution to the recurrence defined on
nonnegative integers by

T(n) <2T([n/2] +1) + cn.

Prove by induction that your answer is correct.
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4.6 Recurrences and Selection

One common problem that arises in algorithms is that of selection. In this problem you are given
n distinct data items from some set which has an underlying order. That is, given any two items
a and b, you can determine whether a < b. (Integers satisfy this property, but colors do not.)
Given these n items, and some value ¢, 1 < i < n, you wish to find the ith smallest item in the
set. For example in the set

{3,1,8,6,4,11,7}, (4.33)

the first smallest (¢ = 1) is 1, the third smallest (i = 3) is 4 and the seventh smallest (i =n = 17)
is 11. An important special case is that of finding the median, which is the case of i = [n/2].
Another important special case is finding percentiles; for example the 90th percentile is the case
i = [.9n]. As this suggests, i is frequently given as some fraction of n.

Exercise 4.6-1 How do you find the minimum (¢ = 1) or maximum (i = n) in a set?
What is the running time? How do you find the second smallest element? Does this
approach extend to finding the ith smallest? What is the running time?

Exercise 4.6-2 Give the fastest algorithm you can to find the median (i = [n/2]).

In Exercise 4.6-1, the simple O(n) algorithm of going through the list and keeping track of
the minimum value seen so far will suffice to find the minimum. Similarly, if we want to find the
second smallest, we can go through the list once, find the smallest, remove it and then find the
smallest in the new list. This also takes O(n +mn — 1) = O(n) time. If we extend this to finding
the ith smallest, the algorithm will take O(in) time. Thus for finding the median, this method
takes O(n?) time.

A better idea for finding the median is to first sort the items, and then take the item in
position n/2. Since we can sort in O(nlogn) time, this algorithm will take O(n logn) time. Thus
if i = O(logn) we might want to run the algorithm of the previous paragraph, and otherwise run
this algorithm.*

All these approaches, when applied to the median, take at least some multiple of (nlogn)
units of time.® The best sorting algorithms take O(nlogn) time also, and one can prove every
comparison-based sorting algorithm takes Q(nlogn) time. This raises the natural question of
whether it is possible to do selection any faster than sorting. In other words, is the problem of
finding the median element, or ith smallest element of a set significantly easier than the problem
of ordering (sorting) the whole set?

Recursive Selection Algorithm

Suppose for a minute that we magically knew how to find the median in O(n) time. That is, we
have a routine MagicMedian, that given as input a set A, returns the median. We could then
use this in a divide and conquer algorithm for Select as follows;

“We also note that the running time can be improved to O(n + ilogn) by first creating a heap, which takes
O(n) time, and then performing a Delete-Min operation 4 times.

®An alternate notation for f(z) = O(g(z)) is g(z) = Q(f(z)). Notice the change in roles of f and g. In this
notation, we say that all of these algorithms take Q(nlogn) time.



4.6. RECURRENCES AND SELECTION 175

Select(A,i,n)
(selects the ith smallest element in set A, where n = |A|)
(1) if (n=1

(2) return the one item in A

(3) else

(4 p = MagicMedian(A)

(5 Let H be the set of elements greater than p

(6) Let L be the set of elements less than or equal to p
(7) if (i <|L|)

(8) Return Select(L,i,|L]|)

€)) else

(10) Return Select(H,i— |L|,|H|)

By H we do not mean the elements that come after p in the list, but the elements of the
list which are larger than p in the underlying ordering of our set. This algorithm is based on
the following simple observation. If we could divide the set A up into a “lower half” (L) and an
“upper” half (H), then we know in which of these two sets the ith smallest element in A will be.
Namely, if i < [n/2], it will be in L, and otherwise it will be in H. Thus, we can recursively look
in one or the other set. We can easily partition the data into two sets by making two passes,
in the first we copy the numbers smaller than p into L, and in the second we copy the numbers
larger than p into H.%

The only additional detail is that if we look in H, then instead of looking for the ith smallest,
we look for the ¢ — [n/2]th smallest, as H is formed by removing the [n/2] smallest elements
from A.

For example, if the input is the set given in 4.33, and p is 6, the set L would be {3,1,6,4},
and H would be {8,11,7}. If i were 2, we would recurse on the set L, with ¢ = 2. On the other
hand, if ¢ were 6, we would recurse on the set H, with ¢ = 6 — 4 = 2. Observe that the second
smallest element in H is 8, as is the sixth smallest element in the original set.

We can express the running time of Select by the following recurrence:
T(n) <T(n/2)+cn . (4.34)

From the master theorem, we know any function which satisfies this recurrence has T'(n) = O(n).

So we can conclude that if we already know how to find the median in linear time, we can
design a divide and conquer algorithm that will solve the selection problem in linear time. This
is nothing to write home about (yet)!

Sometimes a knowledge of solving recurrences can help us design algorithms. What kinds
of recurrences do we know about that have solutions 7'(n) with T'(n) = O(n)? In particular,
consider recurrences of the form T'(n) < T'(n/b) + cn, and ask when they have solutions with
T(n) = O(n). Using the master theorem, we see that as long as log, 1 < 1 (and since log; 1 = 0
for any b, this means than any b allowed by the master theorem works; that is, any b > 1 will
work), all solutions to this recurrence will have T'(n) = O(n). (Note that b does not have to be
an integer.) Letting b’ = 1/b, this says that as long as we can solve a problem of size n by solving

SWe can do this more efficiently, and “in place”, using the partition algorithm of quicksort.
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(recursively) a problem of size b'n, for some b’ < 1, and also doing O(n) additional work, our
algorithm will run in O(n) time. Interpreting this in the selection problem, it says that as long
as we can, in O(n) time, choose p to ensure that both L and H have size at most b'n, we will
have a linear time algorithm. (You might ask “What about actually dividing our set into L and
H, doesn’t that take some time too?” The answer is yes it does, but we already know we can do
the division into H and L in time O(n), so if we can find p in time O(n) also, then we can do
both these things in time O(n).)

In particular, suppose that, in O(n) time, we can choose p to ensure that both L and H have
size at most (3/4)n. Then the running time is described by the recurrence T'(n) = T'(3n/4)+0O(n)
and we will be able to solve the selection problem in linear time.

To see why (3/4)n is relevant, suppose instead of the “black box” MagicMedian, we have a
much weaker magic black box, one which only guarantees that it will return some number in
the middle half of our set in time O(n). That is, it will return a number that is guaranteed to
be somewhere between the n/4th smallest number and the 3n/4th smallest number. If we use
the number given by this magic box to divide our set into H and L, then neither will have size
more than 3n/4. We will call this black box a MagicMiddle box, and can use it in the following
algorithm:

Select1(A,i,n)
(selects the ith smallest element in set A, where n = |A| )
1) if (n=1)

(2) return the one item in A

(3) else

(4 p = MagicMiddle(A)

(56) Let H be the set of elements greater than p

(6) Let L be the set of elements less than or equal to p
(7 if (i <L)

€)) Return Selecti(L,i,|L|)

(9) else

(10) Return Selectl(H,i— |L|,|H|)

The algorithm Select1 is similar to Select. The only difference is that p is now only guaranteed
to be in the middle half. Now, when we recurse, the decision of the set on which to recurse is
based on whether i is less than or equal to |L|. The element p is called a partition element,
because it is used to partition our set A into the two sets L and H.

This is progress, as we now don’t need to assume that we can find the median in order to
have a linear time algorithm, we only need to assume that we can find one number in the middle
half of the set. This problem seems simpler than the original problem, and in fact it is. Thus our
knowledge of which recurrences have solutions which are O(n) led us toward a more plausible
algorithm.

Even though the problem is simpler, we don’t know a straightforward way to even find an
item in the middle half. We will now describe a way to find it, however, in which we first choose
a subset of the numbers and then recursively find the median of that subset.

More precisely, consider the following algorithm (in which we assume that |A| is a multiple
of 5.)
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MagicMiddle (A)
(1) Let n=|A]
(2) if (n < 60)

(3) use Selectl to return the median of A

(4) else

(5) Break A into k=n/5 groups of size 5, Gi,...,Gj
(6) for i=1 to k

9] find m;, the median of Gj

(8 Let M ={my,...,my}

€)) return Selectl (M, [k/2],k)

In this algorithm, we break A into n/5 sets of size 5, and then find the median of each set.
We then (using Select]1 recursively) find the median of medians and return this as our p.

Lemma 4.17 The value returned by MagicMiddle(A) is in the middle half of A.

Proof: Consider arranging the elements in the following manner. For each set of 5, list them
in sorted order, with the smallest element on top. Then line up all n/5 of these lists, ordered by
their medians, smallest on the left. We get the picture in Figure 4.10. In this picture, the medians

Figure 4.10: Dividing a set into n/5 parts of size 5, finding the median of each part and the
median of the medians.

>
>
>
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are in white, the median of medians is cross-hatched, and we have put in all the inequalities that
we know from the ordering information that we have. Now, consider how many items are less
than or equal to the median of medians. Every smaller median is clearly less than the median
of medians and, in its 5 element set, the elements smaller than the median are also smaller than
the median of medians. Now in Figure 4.11 we circle a set of elements that is guaranteed to be
smaller than the median of medians. In one fewer (or in the case of an odd number of columns
as in Figure 4.11, one half fewer) than half the columns, we have circled 3 elements and in one



178 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.11: The circled elements are less than the median of the medians.
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column we have circled 2 elements. Therefore, we have circled at least”
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So far we have assumed n is an exact multiple of 5, but we will be using this idea in cir-
cumstances when it is not. If it is not an exact multiple of 5, we will have [n/5] columns (in
particular more than n/5 columns), but in one of them we might have only one element. It is
possible that column is one of the ones we counted on for 3 elements, so our estimate could be
two elements too large.® Thus we have circled at least

elements.

3 3

I 1-9=""1_3

10 10
elements. It is a straightforward argument with inequalities that as long as n > 60, this quantity
is at least n/4. So if at least n/4 items are guaranteed to be less than the median, then at most

3n/4 items can be greater than the median, and hence |H| < 3n/4.

A set of elements that is guaranteed to be larger than the median of medians is circled in the
Figure 4.12. We can make the same argument about the number of larger elements circled when
the number of columns is odd; when the number of columns is even, a similar argument shows
that we circle even more elements. By the same argument as we used with |H|, this shows that
the size of L is at most 3n/4. W

Note that we don’t actually identify all the nodes that are guaranteed to be, say, less than
the median of medians, we are just guaranteed that the proper number exists.

Since we only have the guarantee that MagicMiddle gives us an element in the middle half of
the set if the set has at least sixty elements, we modify Selectl to start out by checking to see if

"We say “at least” because our argument applies exactly when n is even, but underestimates the number of
circled elements when n is odd.
8 A bit less than 2 because we have more than n/5 columns.
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Figure 4.12: The circled elements are greater than the median of the medians.
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n < 60, and sorting the set to find the element in position ¢ if n < 60. Since 60 is a constant,
sorting and finding the desired element takes at most a constant amount of time.

Exercise 4.6-3 Let T'(n) be the running time of Selectl on n items. How can you express
the running time of Magic Middle in terms of T'(n)?

Exercise 4.6-4 What is a recurrence for the running time of Select1? Hint: how could
Exercise 4.6-3 help you?

Exercise 4.6-5 Can you prove by induction that each solution to the recurrence for Select1
is O(n)?

For Exercise 4.6-3, the first step of MagicMiddle is to divide the items into sets of five; this
takes O(n) time. We then have to find the median of each five-element set. (We can find this
median by any straightforward method we choose and still only take at most a constant amount
of time; we don’t use recursion here.) There are n/5 sets and we spend no more than some
constant time per set, so the total time is O(n). Next we recursively call Selectl to find the
median of medians; this takes T'(n/5) time. Finally, we partition A into those elements less than
or equal to the “magic middle” and those that are not, which takes O(n) time. Thus the total
running time is 7'(n/5) + O(n), which implies that for some ng there is a constant cg > 0 such
that, for all n > ng, the running time is no more than con. Even if ng > 60, there are only finitely
many cases between 60 and ng so there is a constant ¢ such that for n > 60, the running time of
Magic Middle is no more than T'(n/5) + cn.

Now Selectl has to call Magic Middle and then recurse on either L or H, each of which has
size at most 3n/4. Adding in a base case that it takes time no more than some constant amount
d of time to cover sets of size less than 60, we get the following recurrence for the running time
of Select1:

T(n) < { §(3n/4)—|—T(n/5)+c’n Ezigg (4.35)
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This answers Exercise 4.6-4.

As Exercise 4.6-5 requests, we can now verify by induction that T'(n) = O(n). What we want
to prove is that there is a constant k& such that T'(n) < kn. What the recurrence tells us is that
there are constants ¢ and d such that T'(n) < T'(3n/4) + T(n/5) + cn if n > 60, and otherwise
T'(n) < d. For the base case we have T'(n) < d < dn for n < 60, so we choose k to be at least d
and then T'(n) < kn for n < 60. We now assume that n > 60 and T'(m) < km for values m < n,
and get

T(n) T(3n/4) +T(n/5) + cn
3kn/4 + 2kn/5 + cn
19/20kn + cn

kn+ (¢ —k/20)n .

IAIA

As long as k > 20c, this is at most kn; so we simply choose k this big and by the principle of
mathematical induction, we have T'(n) < kn for all positive integers n.

Uneven Divisions

The kind of recurrence we found for the running time of Selectl is actually an instance of a more
general class which we will now explore.

Exercise 4.6-6 We already know that when g(n) = O(n), then every solution of T'(n) =
T(n/2) 4+ g(n) satisfies T'(n) = O(n). Use the master theorem to find a Big-O bound
to the solution of T'(n) = T'(cn) + g(n) for any constant ¢ < 1, assuming that g(n) =
O(n).

Exercise 4.6-7 Use the master theorem to find Big-O bounds to all solutions of T'(n) =
2T (cn) 4+ g(n) for any constant ¢ < 1/2, assuming that g(n) = O(n).

Exercise 4.6-8 Suppose g(n) = O(n) and you have a recurrence of the form 7T'(n) =
T(an) 4+ T(bn) + g(n) for some constants a and b. What conditions on a and b
guarantee that all solutions to this recurrence have T'(n) = O(n)?

Using the master theorem for Exercise 4.6-6, we get T'(n) = O(n), since log; ;.1 < 1. We also
get T'(n) = O(n) for Exercise 4.6-7, since log; ;.2 < 1 for ¢ < 1/2. You might now guess that as
long as a + b < 1, any solution to the recurrence T'(n) < T'(an) + T'(bn) + c¢n has T'(n) = O(n).
We will now see why this is the case.

First, let’s return to the recurrence we had, T'(n) = T(3/4n)+T(n/5)+g(n), were g(n) = O(n)
and let’s try to draw a recursion tree. This recurrence doesn’t quite fit our model for recursion
trees, as the two subproblems have unequal size (thus we can’t even write down the problem size
on the left), but we will try to draw a recursion tree anyway and see what happens. As we draw
levels one and two, we see that at the level one, we have (3/4 4+ 1/5)n work. At the level two
we have ((3/4) 4+ 2(3/4)(1/5) + (1/5)%)n work. Were we to work out the third level we would
see that we have ((3/4)% + 3(3/4)2(1/5) + 3(3/4)(1/5)? + (1/5)%)n. Thus we can see a pattern
emerging. At level one we have (3/4+ 1/5)n work. At level 2 we have, by the binomial theorem,
(3/4 + 1/5)?n work. At level 3 we have, by the binomial theorem, (3/4 + 1/5)3n work. And,
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Figure 4.13: Attempting a recursion tree for T'(n) = T'(3/4n) + T'(n/5) + g(n).
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We have actually ignored one detail here. In contrast to a recursion tree in which all subproblems
at a level have equal size, the “bottom” of the tree is more complicated. Different branches of
the tree will reach problems of size 1 and terminate at different levels. For example, the branch
that follows all 3/4’s will bottom out after log, /3 n levels, while the one that follows all 1/5’s will
bottom out after logs n levels. However, the analysis above overestimates the work, that is, it
assumes that nothing bottoms out until everything bottoms out, i.e. at logy/ 197 levels, and in
fact, the upper bound we gave on the sum “assumes” that the recurrence never bottoms out.

We see here something general happening. It seems as if to understand a recurrence of the
form T'(n) = T(an) + T(bn) + g(n), with g(n) = O(n), we can study the simpler recurrence
T(n) = T((a + b)n) + g(n) instead. This simplifies things (in particular, it lets us use the
Master Theorem) and allows us to analyze a larger class of recurrences. Turning to the median
algorithm, it tells us that the important thing that happened there was that the sizes of the two
recursive calls, namely 3/4n and n/5, summed to less than 1. As long as that is the case for an
algorithm with two recursive calls and an O(n) additional work term, whose recurrence has the
form T'(n) = T'(an) + T'(bn) 4+ g(n), with g(n) = O(n), the algorithm will work in O(n) time.

Important Concepts, Formulas, and Theorems

1. Median. The median of a set (with an underlying order) of n elements is the element that
would be in position [n/2] if the set were sorted into a list in order.

2. Percentile. The pth percentile of a set (with an underlying order) is the element that would

be in position 1(5_181” if the set were sorted into a list in order.
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Selection. Given an n-element set with some underlying order, the problem of selection of
the 7th smallest element is that of finding the element that would be in the ith position if
the set were sorted into a list in order. Note that often ¢ is expressed as a fraction of n.

Partition Element. A partition element in an algorithm is an element of a set (with an
underlying order) which is used to divide the set into two parts, those that come before
or are equal to the element (in the underlying order), and the remaining elements. Notice
that the set as given to the algorithm is not necessarily (in fact not usually) given in the
underlying order.

Linear Time Algorithms. If the running time of an algorithm satisfies a recurrence of the
form T'(n) < T'(an) + cn with 0 < a < 1, or a recurrence of the form T'(n) < T(an) +
T'(bn) + cn with a and b nonnegative and a + b < 1, then T'(n) = O(n).

Finding a Good Partition Element. If a set (with an underlying order) has sixty or more
elements, then the procedure of breaking the set into pieces of size 5 (plus one leftover piece
if necessary), finding the median of each piece and the finding the median of the medians
gives an element guaranteed to be in the middle half of the set.

Selection algorithm. The Selection algorithm with a linear time running guarantee sorts a
set of size less than sixty to find the element in the ith position; otherwise it recursively
uses the median of medians of five to find a partition element, uses that partition element
to divide the set into two pieces and looks for the appropriate element in the appropriate
piece recursively.

Problems

. In the MagicMiddle algorithm, suppose we broke our data up into n/3 sets of size 3. What

would the running time of Selectl be?

. In the MagicMiddle algorithm, suppose we broke our data up into n/7 sets of size 7. What

would the running time of Selectl be?

. Let

) T(n/3)+T(n/2)+n ifn>6
T(n) = { 1 otherwise,

and let

) S(Bn/6)+n ifn>6
S(n) = { 1 otherwise.

Draw recursion trees for T and S. What are the big-O bounds we get on solutions to the
recurrences? Use the recursion trees to argue that, for all n, T'(n) < S(n).

Find a (big-O) upper bound (the best you know how to get) on solutions to the recurrence
T(n)=T(n/3)+T(n/6)+T(n/4) +n.

Find a (big-O) upper bound (the best you know how to get) on solutions the recurrence
T(n) =T(n/4) +T(n/2) + n?.
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6. Note that we have chosen the median of an n-element set to be the element in position
[n/2]. We have also chosen to put the median of the medians into the set L of algorithm
Select1. Show that this lets us prove that T'(n) < T'(3n/4) +T(n/5) 4 cn for n > 40 rather

than n > 60. (You will need to analyze the case where [n/5] is even and the case where it
is odd separately.) Is 40 the least value possible?
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Chapter 5

Probability

5.1 Introduction to Probability

Why do we study probability?

You have studied hashing as a way to store data (or keys to find data) in a way that makes it
possible to access that data quickly. Recall that we have a table in which we want to store keys,
and we compute a function h of our key to tell us which location (also known as a “slot” or a
“bucket”) in the table to use for the key. Such a function is chosen with the hope that it will
tell us to put different keys in different places, but with the realization that it might not. If the
function tells us to put two keys in the same place, we might put them into a linked list that
starts at the appropriate place in the table, or we might have some strategy for putting them into
some other place in the table itself. If we have a table with a hundred places and fifty keys to
put in those places, there is no reason in advance why all fifty of those keys couldn’t be assigned
(hashed) to the same place in the table. However someone who is experienced with using hash
functions and looking at the results will tell you you’d never see this in a million years. On
the other hand that same person would also tell you that you’d never see all the keys hash into
different locations in a million years either. In fact, it is far less likely that all fifty keys would
hash into one place than that all fifty keys would hash into different places, but both events are
quite unlikely. Being able to understand just how likely or unlikely such events are is our reason
for taking up the study of probability.

In order to assign probabilities to events, we need to have a clear picture of what these events
are. Thus we present a model of the kinds of situations in which it is reasonable to assign
probabilities, and then recast our questions about probabilities into questions about this model.
We use the phrase sample space to refer to the set of possible outcomes of a process. For now,
we will deal with processes that have finite sample spaces. The process might be a game of
cards, a sequence of hashes into a hash table, a sequence of tests on a number to see if it fails
to be a prime, a roll of a die, a series of coin flips, a laboratory experiment, a survey, or any of
many other possibilities. A set of elements in a sample space is called an event. For example,
if a professor starts each class with a 3 question true-false quiz the sample space of all possible
patterns of correct answers is

(TTT,TTF,TFT,FTT,TFF,FTF,FFT, FFF}.

185
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The event of the first two answers being true is {TTT, TTF}. In order to compute probabilities we
assign a probability weight p(x) to each element of the sample space so that the weight represents
what we believe to be the relative likelihood of that outcome. There are two rules we must follow
in assigning weights. First the weights must be nonnegative numbers, and second the sum of the
weights of all the elements in a sample space must be one. We define the probability P(E) of the
event F to be the sum of the weights of the elements of E. Algebraically we can write

PE)= Y p=). (5.1)

r:x€ER

We read this as p(F) equals he sum over all x such that x is in E of p(x).

Notice that a probability function P on a sample space S satisfies the rules!

1. P(A) >0 for any AC S.
2. P(S)=1.
3. P(AUB) = P(A) + P(B) for any two disjoint events A and B.

The first two rules reflect our rules for assigning weights above. We say that two events are
disjoint if AN B = (. The third rule follows directly from the definition of disjoint and our
definition of the probability of an event. A function P satisfying these rules is called a probability
distribution or a probability measure.

In the case of the professor’s three question quiz, it is natural to expect each sequence of trues
and falses to be equally likely. (A professor who showed any pattern of preferences would end
up rewarding a student who observed this pattern and used it in educated guessing.) Thus it is
natural to assign equal weight 1/8 to each of the eight elements of our quiz sample space. Then
the probability of an event F, which we denote by P(E), is the sum of the weights of its elements.
Thus the probability of the event “the first answer is T” is é + % + % + % = % The event “There
is at exactly one True” is {TF'F, FTF, FFT}, so P(there is exactly one True) is 3/8.

Exercise 5.1-1 Try flipping a coin five times. Did you get at least one head? Repeat five
coin flips a few more times! What is the probability of getting at least one head in
five flips of a coin? What is the probability of no heads?

Exercise 5.1-2 Find a good sample space for rolling two dice. What weights are appro-
priate for the members of your sample space? What is the probability of getting a
6 or 7 total on the two dice? Assume the dice are of different colors. What is the
probability of getting less than 3 on the red one and more than 3 on the green one?

Exercise 5.1-3 Suppose you hash a list of n keys into a hash table with 20 locations.
What is an appropriate sample space, and what is an appropriate weight function?
(Assume the keys and the hash function are not in any special relationship to the
number 20.) If n is three, what is the probability that all three keys hash to different
locations? If you hash ten keys into the table, what is the probability that at least

!These rules are often called “the axioms of probability.” For a finite sample space, we could show that if we
started with these axioms, our definition of probability in terms of the weights of individual elements of S is the
only definition possible. That is, for any other definition, the probabilities we would compute would still be the
same if we take w(z) = P({z}).
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two keys have hashed to the same location? We say two keys collide if they hash to
the same location. How big does n have to be to insure that the probability is at least
one half that has been at least one collision?

In Exercise 5.1-1 a good sample space is the set of all 5-tuples of Hs and T's. There are 32
elements in the sample space, and no element has any reason to be more likely than any other, so
a natural weight to use is 3% for each element of the sample space. Then the event of at least one
head is the set of all elements but TTTTT. Since there are 31 elements in this set, its probability
is g—; This suggests that you should have observed at least one head pretty often!

The probability of no heads is the weight of the set {TTTTT?}, which is 3% Notice that the
probabilities of the event of “no heads” and the opposite event of “at least one head” add to
one. This observation suggests a theorem. The complement of an event F in a sample space S,
denoted by S — F, is the set of all outcomes in S but not E. The theorem tells us how to compute
the probability of the complement of an event from the probability of the event.

Theorem 5.1 If two events E and F are complementary, that is they have nothing in common
(ENF =0) and their union is the whole sample space (EUF = S), then

P(E) =1- P(F).

Proof: The sum of all the probabilities of all the elements of the sample space is one, and
since we can break this sum into the sum of the probabilities of the elements of FE plus the sum
of the probabilities of the elements of F', we have

P(E)+ P(F) =1,

which gives us P(F) =1— P(F).1R

For Exercise 5.1-2 a good sample space would be pairs of numbers (a,b) where (1 < a,b < 6).
By the product principle?, the size of this sample space is 6 - 6 = 36. Thus a natural weight for
each ordered pair is %. How do we compute the probability of getting a sum of six or seven?
There are 5 ways to roll a six and 6 ways to roll a seven, so our event has eleven elements each of
weight 1/36. Thus the probability of our event is is 11/36. For the question about the red and
green dice, there are two ways for the red one to turn up less than 3, and three ways for the green
one to turn up more than 3. Thus, the event of getting less than 3 on the red one and greater
than 3 on the green one is a set of size 2 - 3 = 6 by the product principle. Since each element of

the event has weight 1/36, the event has probability 6/36 or 1/6.

In Exercise 5.1-3 an appropriate sample space is the set of n-tuples of numbers between 1
and 20. The first entry in an n-tuple is the position our first key hashes to, the second entry is
the position our second key hashes to, and so on. Thus each n tuple represents a possible hash
function, and each hash function, applied to our keys, would give us one n-tuple. The size of
the sample space is 20" (why?), so an appropriate weight for an n-tuple is 1/20™. To compute
the probability of a collision, we will first compute the probability that all keys hash to different
locations and then apply Theorem 5.1 which tells us to subtract this probability from 1 to get
the probability of collision.

2from Section 1.1
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n  Prob of empty slot Prob of no collisions
1 1 1

2 095 0.95

3 09 0.855

4 085 0.72675

5 0.8 0.5814

6 0.75 0.43605

7 07 0.305235

8 0.65 0.19840275
9 06 0.11904165
10 0.55 0.065472908
11 0.5 0.032736454
12 0.45 0.014731404
13 04 0.005892562
14 0.35 0.002062397
15 0.3 0.000618719
16 0.25 0.00015468
17 0.2 3.09359E-05
18 0.15 4.64039E-06
19 0.1 4.64039E-07
20 0.05 2.3202E-08

Table 5.1: The probabilities that all elements of a set hash to different entries of a hash table of
size 20.

To compute the probability that all keys hash to different locations we consider the event that
all keys hash to different locations. This is the set of n tuples in which all the entries are different.
(In the terminology of functions, these n-tuples correspond to one-to-one hash functions). There
are 20 choices for the first entry of an n-tuple in our event. Since the second entry has to be
different, there are 19 choices for the second entry of this n-tuple. Similarly there are 18 choices
for the third entry (it has to be different from the first two), 17 for the fourth, and in general
20 — i + 1 possibilities for the ith entry of the n-tuple. Thus we have

20-19-18-----(20—n+1) =20"

elements of our event.® Since each element of this event has weight 1/20", the probability that
all the keys hash to different locations is
20-19-18----- (20-n+1) 207
207 207,

In particular if n is 3 the probability is (20 - 19 - 18)/20% = .855.

We show the values of this function for n between 0 and 20 in Table 5.1. Note how quickly
the probability of getting a collision grows. As you can see with n = 10, the probability that
there have been no collisions is about .065, so the probability of at least one collision is .935.

If n = 5 this number is about .58, and if n = 6 this number is about .43. By Theorem 5.1 the
probability of a collision is one minus the probability that all the keys hash to different locations.

3using the notation for falling factorial powers that we introduced in Section 1.2.
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Thus if we hash six items into our table, the probability of a collision is more than 1/2. Our
first intuition might well have been that we would need to hash ten items into our table to have
probability 1/2 of a collision. This example shows the importance of supplementing intuition
with careful computation!

The technique of computing the probability of an event of interest by first computing the
probability of its complementary event and then subtracting from 1 is very useful. You will see
many opportunities to use it, perhaps because about half the time it is easier to compute directly
the probability that an event doesn’t occur than the probability that it does. We stated Theorem
5.1 as a theorem to emphasize the importance of this technique.

The Uniform Probability Distribution

In all three of our exercises it was appropriate to assign the same weight to all members of our
sample space. We say P is the uniform probability measure or uniform probability distribution
when we assign the same probability to all members of our sample space. The computations in
the exercises suggest another useful theorem.

Theorem 5.2 Suppose P is the uniform probability measure defined on a sample space S. Then
for any event E,

P(E) = |E|/|S|,
the size of E divided by the size of S.
Proof: Let S = {x1,x9,... ,:1;|5|}. Since P is the uniform probability measure, there must be

some value p such that for each x; € S, P(x;) = p. Combining this fact with the second and third
probability rules, we obtain

1 = P(5)
= P(IE1UI‘2U"'U$|S‘)
= P(x1) + P(x2) +...+ P(x)9))
= ISl
Equivalently
1
p=-—. (5.2)
5]
E is a subset of S with |E| elements and therefore
P(E)= ) plz:) = |Elp. (5.3)

x, €F

Combining equations 5.2 and 5.3 gives that P(E) = |E|p = |E|(1/|S]) = |E|/|S| . 1

Exercise 5.1-4 What is the probability of an odd number of heads in three tosses of a
coin? Use Theorem 5.2.
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Using a sample space similar to that of first example (with “T” and “F” replaced by “H”
and “T”), we see there are three sequences with one H and there is one sequence with three H’s.
Thus we have four sequences in the event of “an odd number of heads come up.” There are eight
sequences in the sample space, so the probability is % = %

It is comforting that we got one half because of a symmetry inherent in this problem. In
flipping coins, heads and tails are equally likely. Further if we are flipping 3 coins, an odd
number of heads implies an even number of tails. Therefore, the probability of an odd number
of heads, even number of heads, odd number of tails and even number of tails must all be the

same. Applying Theorem 5.1 we see that the probability must be 1/2.

A word of caution is appropriate here. Theorem 5.2 applies only to probabilities that come
from the equiprobable weighting function. The next example shows that it does not apply in
general.

Exercise 5.1-5 A sample space consists of the numbers 0, 1, 2 and 3. We assign weight
é to 0, % to 1, % to 2, and % to 3. What is the probability that an element of the
sample space is positive? Show that this is not the result we would obtain by using
the formula of Theorem 5.2.

The event “z is positive” is the set F = {1,2,3}. The probability of E is

P(E):P(1)+P(2)+P(3):g+g+é=g.

However, % = %.

The previous exercise may seem to be “cooked up” in an unusual way just to prove a point.
In fact that sample space and that probability measure could easily arise in studying something
as simple as coin flipping.

Exercise 5.1-6 Use the set {0,1,2,3} as a sample space for the process of flipping a coin
three times and counting the number of heads. Determine the appropriate probability
weights P(0), P(1), P(2), and P(3).

There is one way to get the outcome 0, namely tails on each flip. There are, however, three
ways to get 1 head and three ways to get two heads. Thus P(1) and P(2) should each be three
times P(0). There is one way to get the outcome 3—heads on each flip. Thus P(3) should equal
P(0). In equations this gives P(1) = 3P(0), P(2) = 3P(0), and P(3) = P(0). We also have the
equation saying all the weights add to one, P(0) + P(1) + P(2) + P(3) = 1. There is one and
only one solution to these equations, namely P(0) = é, P(1) = %, P(2) = %, and P(3) = %. Do
you notice a relationship between P(z) and the binomial coefficient (i) here? Can you predict
the probabilities of 0, 1, 2, 3, and 4 heads in four flips of a coin?

Together, the last two exercises demonstrate that we must be careful not to apply Theorem
5.2 unless we are using the uniform probability measure.

Important Concepts, Formulas, and Theorems

1. Sample Space. We use the phrase sample space to refer to the set of possible outcomes of
a process.
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2. Fvent. A set of elements in a sample space is called an event.

3. Probability. In order to compute probabilities we assign a weight to each element of the
sample space so that the weight represents what we believe to be the relative likelihood of
that outcome. There are two rules we must follow in assigning weights. First the weights
must be nonnegative numbers, and second the sum of the weights of all the elements in a
sample space must be one. We define the probability P(F) of the event E to be the sum of
the weights of the elements of E.

4. The axioms of Probability. Three rules that a probability measure on a finite sample space
must satisfy could actually be used to define what we mean by probability.

(a) P(A) >0 forany ACS.
(b) P(S)=1.
(¢) P(AUB) = P(A)+ P(B) for any two disjoint events A and B.

5. Probability Distribution. A function which assigns a probability to each member of a sample
space is called a (discrete) probability distribution.

6. Complement. The complement of an event E in a sample space S, denoted by S — E, is the
set, of all outcomes in S but not FE.

7. The Probabilities of Complementary Events. If two events F and F' are complementary,
that is they have nothing in common (E N F = (), and their union is the whole sample
space (EU F = S), then

P(E)=1—-P(F).

8. Collision, Collide (in Hashing). We say two keys collide if they hash to the same location.

9. Uniform Probability Distribution. We say P is the uniform probability measure or uniform
probability distribution when we assign the same probability to all members of our sample
space.

10. Computing Probabilities with the Uniform Distribution. Suppose P is the uniform proba-
bility measure defined on a sample space S. Then for any event F,
P(E) = |E|/|S],
the size of FE divided by the size of S. This does not apply to general probability distribu-
tions.
Problems

1. What is the probability of exactly three heads when you flip a coin five times? What is the
probability of three or more heads when you flip a coin five times?

2. When we roll two dice, what is the probability of getting a sum of 4 or less on the tops?
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10.

11.

12.

13.

14.
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. If we hash 3 keys into a hash table with ten slots, what is the probability that all three

keys hash to different slots? How big does n have to be so that if we hash n keys to a hash
table with 10 slots, the probability is at least a half that some slot has at least two keys
hash to it? How many keys do we need to have probability at least two thirds that some
slot has at least two keys hash to it?

. What is the probability of an odd sum when we roll three dice?

. Suppose we use the numbers 2 through 12 as our sample space for rolling two dice and

adding the numbers on top. What would we get for the probability of a sum of 2, 3, or 4,
if we used the equiprobable measure on this sample space. Would this make sense?

. Two pennies, a nickel and a dime are placed in a cup and a first coin and a second coin are

drawn.

(a) Assuming we are sampling without replacement (that is, we don’t replace the first coin
before taking the second) write down the sample space of all ordered pairs of letters
P, N, and D that represent the outcomes. What would you say are the appropriate
weights for the elements of the sample space?

(b) What is the probability of getting eleven cents?

63 2

Why is the probability of five heads in ten flips of a coin equal to 57

. Using 5-element sets as a sample space, determine the probability that a “hand” of 5 cards

chosen from an ordinary deck of 52 cards will consist of cards of the same suit.

. Using 5 element permutations as a sample space, determine the probability that a “hand”

of 5 cards chosen from an ordinary deck of 52 cards will have all the cards from the same
suit

How many five-card hands chosen from a standard deck of playing cards consist of five cards
in a row (such as the nine of diamonds, the ten of clubs, jack of clubs, queen of hearts, and
king of spades)? Such a hand is called a straight. What is the probability that a five-card
hand is a straight? Explore whether you get the same answer by using five element sets as
your model of hands or five element permutations as your model of hands.

A student taking a ten-question, true-false diagnostic test knows none of the answers and
must guess at each one. Compute the probability that the student gets a score of 80 or
higher. What is the probability that the grade is 70 or lower?

A die is made of a cube with a square painted on one side, a circle on two sides, and a
triangle on three sides. If the die is rolled twice, what is the probability that the two shapes
we see on top are the same?

Are the following two events equally likely? Event 1 consists of drawing an ace and a king
when you draw two cards from among the thirteen spades in a deck of cards and event 2
consists of drawing an ace and a king when you draw two cards from the whole deck.

There is a retired professor who used to love to go into a probability class of thirty or
more students and announce “I will give even money odds that there are two people in
this classroom with the same birthday.” With thirty students in the room, what is the
probability that all have different birthdays? What is the minimum number of students
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that must be in the room so that the professor has at least probability one half of winning
the bet? What is the probability that he wins his bet if there are 50 students in the room.

Does this probability make sense to you? (There is no wrong answer to that question!)
Explain why or why not.
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5.2 Unions and Intersections

The probability of a union of events

Exercise 5.2-1 If you roll two dice, what is the probability of an even sum or a sum of 8
or more?

Exercise 5.2-2 In Exercise 5.2-1, let F be the event “even sum” and let F' be the event
“8 or more.” We found the probability of the union of the events E and F. Why isn’t
it the case that P(E U F) = P(E) 4+ P(F)? What weights appear twice in the sum
P(E)+ P(F)? Find a formula for P(E U F) in terms of the probabilities of E, F,
and ENF. Apply this formula to Exercise 5.2-1. What is the value of expressing one
probability in terms of three?

Exercise 5.2-3 What is P(F' U F'UG) in terms of probabilities of the events E, F', and G
and their intersections?

In the sum P(E) + P(F) the weights of elements of E N F each appear twice, while the
weights of all other elements of £ U F each appear once. We can see this by looking at a diagram
called a Venn Diagram, as in Figure 5.1. In a Venn diagram, the rectangle represents the sample
space, and the circles represent the events. If we were to shade both E and F', we would wind

Figure 5.1: A Venn diagram for two events.

up shading the region £ N F' twice. In Figure 5.2, we represent that by putting numbers in the
regions, representing how many times they are shaded. This illustrates why the sum P(E)+ P(F)
includes the probability weight of each element of E N F' twice. Thus to get a sum that includes
the probability weight of each element of E U F exactly once, we have to subtract the weight of
E UF from the sum P(FE)+ P(F'). This is why

P(EUF) =P(E)+ P(F)— P(ENF) (5.4)

We can now apply this to Exercise 5.2-1 by noting that the probability of an even sum is 1/2,
while the probability of a sum of 8 or more is

1+2+3+4+5_15
36 36 36 36 36 36
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Figure 5.2: If we shade each of E and F' once, then we shade £ N F' twice

From a similar sum, the probability of an even sum of 8 or more is 9/36, so the probability of a
sum that is even or is 8 or more is

r 15 9 2

573 36 3
(In this case our computation merely illustrates the formula; with less work one could add the
probability of an even sum to the probability of a sum of 9 or 11.) In many cases, however,
probabilities of individual events and their intersections are more straightforward to compute
than probabilities of unions (we will see such examples later in this section), and in such cases

our formula is quite useful.

Now let’s consider the case for three events and draw a Venn diagram and fill in the numbers
for shading all E, F, and G. So as not to crowd the figure we use E'F to label the region
corresponding to E N F', and similarly label other regions. Doing so we get Figure 5.3. Thus we

Figure 5.3: The number of ways the intersections are shaded when we shade F, F, and G.

have to figure out a way to subtract from P(F) + P(F) + P(G) the weights of elements in the
regions labeled EF, F'G and EG once, and the the weight of elements in the region labeled EFG
twice. If we subtract out the weights of elements of each of EN F, FN G, and EN G, this does
more than we wanted to do, as we subtract the weights of elements in EFF, FFG and EG once
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but the weights of elements in of FF'G three times, leaving us with Figure 5.4. We then see that

Figure 5.4: The result of removing the weights of each intersection of two sets.

all that is left to do is to add weights of elements in the £ N F' N G back into our sum. Thus we
have that

P(EUFUG)=P(E)+P(F)+P(G)—P(ENF)-—P(ENG)—P(FNG)+ P(ENFNG).

Principle of inclusion and exclusion for probability

From the last two exercises, it is natural to guess the formula

n n n—1 n n—2 n—1 n

P(UEZ-):ZP(EZ»)—Z’Z PENE)+> Y Y PENENE)—.... (55)

i=1 j=i+1k=j+1

All the sum signs in this notation suggest that we need some new notation to describe sums.
We are now going to make a (hopefully small) leap of abstraction in our notation and introduce
notation capable of compactly describing the sum described in the previous paragraph. This
notation is an extension of the one we introduced in Equation 5.1. We use

> P(EyNE,N-E;) (5.6)

91,895yt
1<ig <ig<-<ip<n

to stand for the sum, over all sequences i1, 19, ... of integers between 1 and n of the probabil-

ities of the sets E;, N E;, ... N E;,. More generally, Z f(i1,d2,...,10) is the sum of
01,09, i
1<iq <ig<--<ip<n
f(i1,ig,... i) over all increasing sequences of k numbers between 1 and n.

Exercise 5.2-4 To practice with notation, what is Z i1 + io + 137

11,19,13"
1<iy <ig<ig<4
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The sum in Exercise 5.2-4is 1 +24+3+1+24+4+14+3+4+24+3+4=3(1+2+3+4) = 30.

With this understanding of the notation in hand, we can now write down a formula that
captures the idea in Equation 5.5 more concisely. Notice that in Equation 5.5 we include prob-
abilities of single sets with a plus sign, probabilities of intersections of two sets with a minus
sign, and in general, probabilities of intersections of any even number of sets with a minus sign
and probabilities of intersections of any odd number of sets (including the odd number one) with
a plus sign. Thus if we are intersecting k sets, the proper coefficient for the probability of the
intersection of these sets is (—1)**! (it would be equally good to use (—1)*~!, and correct but
silly to use (—1)¥*3). This lets us translate the formula of Equation 5.5 to Equation 5.7 in the
theorem, called the Principle of Inclusion and Ezxclusion for Probability, that follows. We will
give two completely different proofs of the theorem, one of which is a nice counting argument but
is a bit on the abstract side, and one of which is straightforward induction, but is complicated
by the fact that it takes a lot of notation to say what is going on.

Theorem 5.3 (Principle of Inclusion and Exclusion for Probability) The probability of
the union E1 U FEs U ---U E, of events in a sample space S is given by

P(O E) = Zn:(—m’f“ > P(E;,NEy,N---NE;). (5.7)
=1

k=1 PRI
1<iy <ig<-<ip<n

First Proof: Consider an element z of JiL; E;. Let E;, E;,, ... E;, be the set of all events
E; of which z is a member. Let K = {i1,12,...,i;}. Then z is in the event E; N E;, N---NE;
if and only if {j1,j2...Jm} € K. Why is this? If there is a j, that is not in K, then = ¢ E; and
thus x € E; N Ej, N---N Ej, . Notice that every x in (J;_; E; is in at least one Fj, so it is in at
least one of the sets F;, N E;, N---NLE;, .

Recall that we define P (Ej NEj, N---NE; ) to be the sum of the probability weights
p(x) for x € Ej; N Ej N---NE;j, . Suppose we substitute this sum of probability weights
for P(Ej N Ej, N---NE;, ) on the right hand side of Equation 5.7. Then the right hand side
becomes a sum of terms each of with is plus or minus a probability weight. The sum of all the
terms involving p(x) on the right hand side of Equation 5.7 includes a term involving p(z) for
each nonempty subset {j1,j2,...,7m} of K, and no other terms involving p(x). The coefficient
of the probability weight p(x) in the term for the subset {j1,jo,...,jm} is (—1)™*!. Since there
are (7’;) subsets of K of size m, the sum of the terms involving p(z) will therefore be

k k k k
> (—1)m+1< )p(x) = <— > (=™ <m>p(:v)> +p(x) =0 p(z) + p(r) = p(z),

m=1 m=0

because £ > 1 and thus by the binomial theorem, Z?:o (’;)(—1)1 = (1 —1)¥ = 0. This proves
that for each x, the sum of all the terms involving p(z) after we substitute the sum of probability
weights into Equation 5.7 is exactly p(z). We noted above that for every x in U} ; E; appears in
at least one of the sets F;, N E;, N---NE;, . Thus the right hand side of Equation 5.7 is the sum

of every p(z) such that z is in U}'  E;. By definition, this is the left-hand side of Equation 5.7. B

Second Proof:  The proof is simply an application of mathematical induction using Equation
5.4. When n = 1 the formula is true because it says P(E;) = P(E;). Now suppose inductively
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that for any family of n — 1 sets Fy, Fo,..., F,_1

P (U F) = nf(—u’““ > P(F;,NF,NF;,) (5.8)
=1 k=1

11890yt
1<i] <ig<-<ip<n—1

If in Equation 5.4 we let £ = F1U...U E,_1 and F = E,,, we may apply Equation 5.4 to to
compute P (U}, E;) as follows:

(G- e r((e)n)

By the distributive law,

n—1 n—1
(U E> NE,=J (EB:NE,),
i=1 i=1

and substituting this into Equation 5.9 gives

P (Lnj E) =P (nol E) +P(E,) P <7Dl(Ei N En)> .

Now we use the inductive hypothesis (Equation 5.8) in two places to get

P (Lnj E) = nf(—n’f“ > P(E;,NE,N---NE;) (5.10)
=1

k=1 i1,i9,0e i
1<iy <ig< - <ip<n-—1

+ P(En)
n—1

- Z(_l)kJrl Z P(EhmEizﬂ"'mEikmEn)-
k=1 11,82,%.. 0t

1<iy <ig <+ <ip<n—1

The first summation on the right hand side sums (—1)*"1 P (E;, N E;, N---N E;,) over all lists
i1,12,...,1 that do not contain n, while the P(E,) and the second summation work together to
sum (—1)k+1P (Ei, N EjyN---NE;, ) over all lists i1, 49, ..., i that do contain n. Therefore,

<UE> Z 1)k+t > P(E;,NEy,N---NE;,).

k=1 i1 g0
1<y <ig<--<ip<n

Thus by the principle of mathematical induction, this formula holds for all integers n > 0. B

Exercise 5.2-5 At a fancy restaurant n students check their backpacks. They are the only
ones to check backpacks. A child visits the checkroom and plays with the check tickets
for the backpacks so they are all mixed up. If there are 5 students named Judy, Sam,
Pat, Jill, and Jo, in how many ways may the backpacks be returned so that Judy gets
her own backpack (and maybe some other students do, too)? What is the probability
that this happens? What is the probability that Sam gets his backpack (and maybe
some other students do, too)? What is the probability that Judy and Sam both get
their own backpacks (and maybe some other students do, too)? For any particular
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two element set of students, what is the probability that these two students get their
own backpacks (and maybe some other students do, too)? What is the probability
that at least one student gets his or her own backpack? What is the probability that
no students get their own backpacks? What do you expect the answer will be for
the last two questions for n students? This classic problem is often stated using hats
rather than backpacks (quaint, isn’t it?), so it is called the hatcheck problem. Tt is
also known as the derangement problem; a derangement of a set being a one-to-one
function from a set onto itself (i.e., a bijection) that sends each element to something
not equal to it.

For Exercise 5.2-5, let E; be the event that person ¢ on our list gets the right backpack. Thus
Ej is the event that Judy gets the correct backpack and FEs is the event that Sam gets the correct
backpack. The event F1NEj, is the event that Judy and Sam get the correct backpacks (and maybe
some other people do). In Exercise 5.2-5, there are 4! ways to pass back the backpacks so that
Judy gets her own, as there are for Sam or any other single student. Thus P(E,) = P(E;) = é—:
For any particular two element subset, such as Judy and Sam, there are 3! ways that these two
people may get their backpacks back. Thus, for each i and j, P(E; N Ej;) = g—: For a particular
k students the probability that each one of these k students gets his or her own backpack back
is (5 — k)!/5l. If E; is the event that student ¢ gets his or her own backpack back, then the
probability of an intersection of k of these events is (5 — k)!/5! The probability that at least one
person gets his or her own backpack back is the probability of £y U Es U Es U E4U Es. Then by
the principle of inclusion and exclusion, the probability that at least one person gets his or her
own backpack back is

5
P(E1UFE,UE3UE UEs) =Y (—1)F! > P(E,NE,Nn---NE;,).  (511)
k=t 1<) Sigs Eiy <

As we argued above, for a set of k people, the probability that all k people get their backpacks
—k)!

back is (5 — k)!/5!. In symbols, P(E;, N E;,, N---NE;,) = (55—,k) Recall that there are (3)

sets of k people chosen from our five students. That is, there are (2) lists i1,19,...1; with

1 <iy <ig < -+ <ip <5. Thus, we can rewrite the right hand side of the Equation 5.11 as

> 5\ (5 — k)!
> (=) (k:) 51 7

k=1

This gives us

P(El UFEyUFE3UFE4U E5) — 25:(_1)1:—1 <5> (5 - ]{I)'

Pt k) 5l
_ 25:(—1)"“‘1 5L (5 k)
Pt kKI5 — k) 5l

5
1
_ )kl
g;( )
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The probability that nobody gets his or her own backpack is 1 minus the probability that
someone does, or

| —

1 1
NPT

N[ —

!

w

To do the general case of n students, we simply substitute n for 5 and get that the probability
that at least one person gets his or her own backpack is

" 1 11 (—1)nt
171 P _— —_ — e e . —_—

2 1<_1) T R *

1=

and the probability that nobody gets his or her own backpack is 1 minus the probability above,

or
" 11 1 (—1)"

IS =2 .

e A

Those who have had power series in calculus may recall the power series representation of e”,
namely

B (5.12)

. .1'2 1.3 Ooxi
-1 Tor o= il
e AT T ;N

Thus the expression in Equation 5.12 is the approximation to e~! we get by substituting —1
for x in the power series and stopping the series at ¢ = n. Note that the result depends very
“lightly” on m; so long as we have at least four or five people, no matter how many people we
have, the probability that no one gets their hat back remains at roughly e~!. Our intuition might
have suggested that as the number of students increases, the probability that someone gets his
or her own backpack back approaches 1 rather than 1 — e~!. Here is another example of why it
is important to use computations with the rules of probability instead of intuition!

The Principle of Inclusion and Exclusion for Counting

Exercise 5.2-6 How many functions are there from an n-element set N to a k-element set
K = {y1,v2,...yr} that map nothing to y;7 Another way to say this is if I have n
distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out
the candy bars so that Sam doesn’t get any candy (and maybe some other children
don’t either)?

Exercise 5.2-7 How many functions map nothing to a j-element subset J of K7 Another
way to say this is if I have n distinct candy bars and k children Sam, Mary, Pat, etc.,
in how ways may I pass out the candy bars so that some particular j-element subset
of the children don’t get any (and maybe some other children don’t either)?

Exercise 5.2-8 What is the number of functions from an n-element set N to a k element
set K that map nothing to at least one element of K7 Another way to say this is if
I have n distinct candy bars and & children Sam, Mary, Pat, etc., in how ways may I
pass out the candy bars so that some child doesn’t get any (and maybe some other
children don’t either)?

Exercise 5.2-9 On the basis of the previous exercises, how many functions are there from
an n-element set onto a k element set?
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The number of functions from an n-element set to a k-element set K = {y1,¥o2,...yx} that
map nothing to y; is simply (k — 1) because we have k — 1 choices of where to map each of our
n elements. Similarly the number that map nothing to a particular set J of j elements will be
(k — 7)™ This warms us up for Exercise 5.2-8.

In Exercise 5.2-8 we need an analog of the principle of inclusion and exclusion for the size of
a union of k sets (set i being the set of functions that map nothing to element i of the set K).
Because we can make the same argument about the size of the union of two or three sets that
we made about probabilities of unions of two or three sets, we have a very natural analog. That
analog is the Principle of Inclusion and Exclusion for Counting

n

U Ei

i=1

n

=) (=1)ktt > B, NEy,N---NE;,|. (5.13)
k=1 11,09,
1<iy <ig<-<ip<n

In fact, this formula is proved by induction or a counting argument in virtually the same way.
Applying this formula to the number of functions from N that map nothing to at least one
element of K gives us

k n k
- k .
UBI=S 0 Y [BanByn 0B, =Y (1) ( .><k i
i=1 k=1 1,09, ig: 7=1 J

1<iy <ig<--<ip<n

This is the number of functions from N that map nothing to at least one element of K. The
total number of functions from N to K is k™. Thus the number of onto functions is

k -k k (k
I e ( ) (k=) =3 (~1) ( ) (k)"
j=1 J =0 J

where the second equality results because (g) is 1 and (k —0)" is k™.

Important Concepts, Formulas, and Theorems

1. Venn diagram. To draw a Venn diagram, for two or three sets, we draw a rectangle that
represents the sample space, and two or three mutually overlapping circles to represent the
events.

2. Probability of a union of two events. P(EUF)= P(E)+ P(F)—P(ENF)

3. Probability of a union of three events. P(EUFUG) = P(E)+ P(F)+ P(G)—P(ENF)—
P(ENG)—P(FNG)+ P(ENFNG).

4. A summation notation. Z fli1,da,...,4) is the sum of f(iy,ia,...,ix) over all

1,80, eigy:
1<iq <ig<-<ip<n

increasing sequences of £ numbers between 1 and n.

5. Principle of Inclusion and Ezxclusion for Probability. The probability of the union £ U EsU
.-+ U E, of events in a sample space S is given by

P(CJ E) zzn:(—n’““ > P(E;,NEy,N---NE;).
=1

k=1 0156950yt
1<y <ig<-<ip<n
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6. Hatcheck Problem. The hatcheck problem or derangement problem asks for the probability
that a bijection of an n element set maps no element to itself. The answer is

° 11 1 (=)™
g _— —_- — — RS
2N =gyt
=2
the result of truncating the power series expansion of e~ ! at the (7”1!)”. Thus the result is
very close to %, even for relatively small values of n.
7. Principle of Inclusion and Ezxclusion for Counting. The Principle of inclusion and exclusion
for counting says that
n n
UEZ :Z(—l)k+1 Z ’EilﬂEhﬂ“-ﬂEi ‘
i=1 k=1 1582t
1<y <ig<---<ip<n
Problems

1. Compute the probability that in three flips of a coin the coin comes heads on the first flip
or on the last flip.

2. The eight kings and queens are removed from a deck of cards and then two of these cards
are selected. What is the probability that the king or queen of spades is among the cards
selected?

3. Two dice are rolled. What is the probability that we see a die with six dots on top?

4. A bowl contains two red, two white and two blue balls. We remove two balls. What is the
probability that at least one is red or white? Compute the probability that at least one is
red.

5. From an ordinary deck of cards, we remove one card. What is the probability that it is an
Ace, is a diamond, or is black?

6. Give a formula for the probability of P(EUF UGU H) in terms of the probabilities of F | F,
G, and H, and their intersections.

7. What is

> iigig ?
i1,69,i3:
1<y <ig<iz<4
8. What is
Z i1 +io +13 7
i1,19,13"
1<iy <in<iz<5
9. The boss asks the secretary to stuff n letters into envelopes forgetting to mention that he

has been adding notes to the letters and in the process has rearranged the letters but not
the envelopes. In how many ways can the letters be stuffed into the envelopes so that
nobody gets the letter intended for him or her? What is the probability that nobody gets
the letter intended for him or her?
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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If we are hashing n keys into a hash table with k£ locations, what is the probability that
every location gets at least one key?

From the formula for the number of onto functions, find a formula for S(n,k) which is
defined in Problem 12 of Section 1.4. These numbers are called Stirling numbers (of the
second kind).

If we roll 8 dice, what is the probability that each of the numbers 1 through 6 appear on
top at least once?” What about with 9 dice?

Explain why the number of ways of distributing k& identical apples to n children is ("+£_1).

In how many ways may you distribute the apples to the children so that Sam gets more
than m? In how many ways may you distribute the apples to the children so that no child
gets more than m?

A group of n married couples sits a round a circular table for a group discussion of marital
problems. The counselor assigns each person to a seat at random. What is the probability
that no husband and wife are side by side?

)

Suppose we have a collection of m objects and a set P of p “properties,” an undefined term,
that the objects may or may not have. For each subset S of the set P of all properties,
define N, (S) (a is for “at least”) to be the number of objects in the collection that have at
least the properties in S. Thus, for example, N, () = m. In a typical application, formulas
for N,(S) for other sets S C P are not difficult to figure out. Define N.(S) to be the
number of objects in our collection that have exactly the properties in S. Show that

Ne(0) = > (~D)FING(K).

K:KCP

Explain how this formula could be used for computing the number of onto functions in
a more direct way than we did it using unions of sets. How would this formula apply to
Problem 9 in this section?

In Problem 14 of this section we allow two people of the same sex to sit side by side. If we
require in addition to the condition that no husband and wife are side by side the condition
that no two people of the same sex are side by side, we obtain a famous problem known as
the ménage problem. Solve this problem.

In how many ways may we place n distinct books on j shelves so that shelf one gets at
least m books? (See Problem 7 in Section 1.4.) In how many ways may we place n distinct
books on j shelves so that no shelf gets more than m books?

In Problem 15 in this section, what is the probability that an object has none of the
properties, assuming all objects to be equally likely? How would this apply the Problem
5-107
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5.3 Conditional Probability and Independence

Conditional Probability

Two cubical dice each have a triangle painted on one side, a circle painted on two sides and
a square painted on three sides. Applying the principal of inclusion and exclusion, we can
compute that the probability that we see a circle on at least one top when we roll them is
1/341/3 —1/9 =5/9. We are experimenting to see if reality agrees with our computation. We
throw the dice onto the floor and they bounce a few times before landing in the next room.

Exercise 5.3-1 Our friend in the next room tells us both top sides are the same. Now
what is the probability that our friend sees a circle on at least one top?

Intuitively, it may seem as if the chance of getting circles ought to be four times the chance
of getting triangles, and the chance of getting squares ought to be nine times as much as the
chance of getting triangles. We could turn this into the algebraic statements that P(circles)
= 4P(triangles) and P(squares) = 9P(triangles). These two equations and the fact that the
probabilities sum to 1 would give us enough equations to conclude that the probability that our
friend saw two circles is now 2/7. But does this analysis make sense? To convince ourselves,
let us start with a sample space for the original experiment and see what natural assumptions
about probability we can make to determine the new probabilities. In the process, we will be
able to replace intuitive calculations with a formula we can use in similar situations. This is a
good thing, because we have already seen situations where our intuitive idea of probability might
not always agree with what the rules of probability give us.

Let us take as our sample space for this experiment the ordered pairs shown in Table 5.2
along with their probabilities.

Table 5.2: Rolling two unusual dice

T TC TS CT CC CS ST SC SS
1 1 1 1 1 1 1 1 1

36 18 1 18 9 6 12 6 1

We know that the event {TT, CC, SS} happened. Thus we would say while it used to have

probability . L1 u .

36+9+4_36_18 (5.14)
this event now has probability 1. Given that, what probability would we now assign to the event
of seeing a circle? Notice that the event of seeing a circle now has become the event CC. Should
we expect CC to become more or less likely in comparison than TT or SS just because we know
now that one of these three outcomes has occurred? Nothing has happened to make us expect
that, so whatever new probabilities we assign to these two events, they should have the same

ratios as the old probabilities.

Multiplying all three old probabilities by 1—78 to get our new probabilities will preserve the
ratios and make the three new probabilities add to 1. (Is there any other way to get the three
new probabilities to add to one and make the new ratios the same as the old ones?) This gives
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us that the probability of two circles is % . % = % Notice that nothing we have learned about
probability so far told us what to do; we just made a decision based on common sense. When
faced with similar situations in the future, it would make sense to use our common sense in the
same way. However, do we really need to go through the process of constructing a new sample
space and reasoning about its probabilities again? Fortunately, our entire reasoning process can
be captured in a formula. We wanted the probability of an event E given that the event F
happened. We figured out what the event £ N F' was, and then multiplied its probability by

1/P(F). We summarize this process in a definition.

We define the conditional probability of E given F, denoted by P(E|F) and read as “the
probability of E given F” by
P(ENF)

P(EIF) = =5

(5.15)
Then whenever we want the probability of E knowing that F' has happened, we compute P(E|F).
(If P(F) = 0, then we cannot divide by P(F'), but F' gives us no new information about our
situation. For example if the student in the next room says “A pentagon is on top,” we have no
information except that the student isn’t looking at the dice we rolled! Thus we have no reason to
change our sample space or the probability weights of its elements, so we define P(E|F) = P(E)
when P(F) =0.)

Notice that we did not prove that the probability of E given F' is what we said it is; we
simply defined it in this way. That is because in the process of making the derivation we made
an additional assumption that the relative probabilities of the outcomes in the event F' don’t
change when F' happens. This assumption led us to Equation 5.15. Then we chose that equation
as our definition of the new concept of the conditional probability of E given F.4

In the example above, we can let E be the event that there is more than one circle and F' be
the event that both dice are the same. Then E N F' is the event that both dice are circles, and
P(ENF)is , from the table above, . P(F) is, from Equation 5.14, 1—78. Dividing, we get the
probability of P(E|F), which is §/ %

|| Xe]]

2
7

Exercise 5.3-2 When we roll two ordinary dice, what is the probability that the sum of
the tops comes out even, given that the sum is greater than or equal to 107 Use the
definition of conditional probability in solving the problem.

Exercise 5.3-3 We say F is independent of F' if P(E|F) = P(FE). Show that when we roll
two dice, one red and one green, the event “The total number of dots on top is odd”
is independent of the event “The red die has an odd number of dots on top.”

Exercise 5.3-4 Sometimes information about conditional probabilities is given to us indi-
rectly in the statement of a problem, and we have to derive information about other
probabilities or conditional probabilities. Here is such an example. If a student knows
80% of the material in a a course, what do you expect her grade to be on a (well-
balanced) 100 question short-answer test about the course? What is the probability
that she answers a question correctly on a 100 question true-false test if she guesses
at each question she does not know the answer to? (We assume that she knows what

4For those who like to think in terms of axioms of probability, we could give an axiomatic definition of conditional
probability, and one of our axioms would be that for events F1 and Es that are subsets of F', the ratio of the
conditional probabilities P(E1|F) and P(Ez|F) is the same as the ratio of P(F) and P(F).
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she knows, that is, if she thinks that she knows the answer, then she really does.)
What do you expect her grade to be on a 100 question True-False test to be?

For Exercise 5.3-2 let’s let E be the event that the sum is even and F' be the event that
the sum is greater than or equal to 10. Thus referring to our sample space in Exercise 5.3-2,
P(F) =1/6 and P(EN F) = 1/9, since it is the probability that the roll is either 10 or 12.
Dividing these two we get 2/3.

In Exercise 5.3-3, the event that the total number of dots is odd has probability 1/2. Similarly,
given that the red die has an odd number of dots, the probability of an odd sum is 1/2 since
this event corresponds exactly to getting an even roll on the green die. Thus, by the definition
of independence, the event of an odd number of dots on the red die and the event that the total
number of dots is odd are independent.

In Exercise 5.3-4, if a student knows 80% of the material in a course, we would hope that
her grade on a well-designed test of the course would be around 80%. But what if the test is
a True-False test? Let R be the event that she gets the right answer, K be the event that she
knows that right answer and K be the event that she guesses. Then R = P(RNK)+ P(RNK).
Since R is a union of two disjoint events, its probability would be the sum of the probabilities
of these two events. How do we get the probabilities of these two events? The statement of
the problem gives us implicitly the conditional probability that she gets the right answer given
that she knows the answer, namely one, and the probability that she gets the right answer if she
doesn’t know the answer, namely 1/2. Using Equation 5.15, we see that we use the equation

P(ENF) = P(E|F)P(F) (5.16)

to compute P(RN K) and P(RN K), since the problem tells us directly that P(K) = .8 and
P(K) = .2. In symbols,

P(R) = P(RNK)+P(RNK)
= P(R|K)P(K)+ P(R|K)P(K)
= 1-8+.5-2=.9
We have shown that the probability that she gets the right answer is .9. Thus we would expect
her to get a grade of 90%.

Independence

We said in Exercise 5.3-3 that E is independent of F' if P(E|F) = P(FE). The product principle
for independent probabilities (Theorem 5.4) gives another test for independence.

Theorem 5.4 Suppose E and F are events in a sample space. Then E is independent of F if
and only if P(ENF) = P(E)P(F).

Proof: First consider the case when F' is non-empty. Then, from our definition in Exercise
5.3-3
E is independent of <  P(E|F) = P(E).
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(Even though the definition only has an “if”, recall the convention of using “if” in definitions,
even though “if and only if” is meant.) Using the definition of P(E|F) in Equation 5.15, in the
right side of the above equation we get

& P(ENF)=P(E)P(F).

Since every step in this proof was an if and only if statement we have completed the proof for
the case when F' is non-empty.

If F is empty, then E is independent of F' and both P(E)P(F') and P(EN F) are zero. Thus
in this case as well, F' is independent of F' if and only if P(EN F) = P(E)P(F). &

Corollary 5.5 FE is independent of F if and only if F' is independent of E.

When we flip a coin twice, we think of the second outcome as being independent of the
first. It would be a sorry state of affairs if our definition of independence did not capture this
intuitive idea! Let’s compute the relevant probabilities to see if it does. For flipping a coin
twice our sample space is {HH, HT,TH,TT} and we weight each of these outcomes 1/4. To
say the second outcome is independent of the first, we must mean that getting an H second is
independent of whether we get an H or a T first, and same for getting a T second. This gives us
that P(H first) = 1/4+1/4 = 1/2 and P(H second) = 1/2, while P(H first and H second) = 1/4.

Note that

1 1
Eiabin P(H first and H second).

By Theorem 5.4, this means that the event “H second” is independent of the event “H first.” We
can make a similar computation for each possible combination of outcomes for the first and second
flip, and so we see that our definition of independence captures our intuitive idea of independence
in this case. Clearly the same sort of computation applies to rolling dice as well.

P(H first)P(H second) =

N

Exercise 5.3-5 What sample space and probabilities have we been using when discussing
hashing? Using these, show that the event “key i hashes to position p” and the event
“key j hashes to position ¢” are independent when ¢ # j. Are they independent if
1=737

In Exercise 5.3-5 if we have a list of n keys to hash into a table of size k, our sample space
consists of all n-tuples of numbers between 1 and k. The event that key ¢ hashes to some number
p consists of all n-tuples with p in the ith position, so its probability is (%)nil / (%)n = % The
probability that key j hashes to some number ¢ is also % If 4 # j, then the event that key i
hashes to p and key j hashes to ¢ has probability (%)n_z / <%>n = (%)2, which is the product of
the probabilities that key ¢ hashes to p and key j hashes to ¢, so these two events are independent.

However if 7 = j the probability of key 7 hashing to p and key j hashing to ¢ is zero unless p = g,
in which case it is 1. Thus if ¢ = j, these events are not independent.
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Independent Trials Processes

Coin flipping and hashing are examples of what are called “independent trials processes.” Suppose
we have a process that occurs in stages. (For example, we might flip a coin n times.) Let us use
x; to denote the outcome at stage i. (For flipping a coin n times, z; = H means that the outcome
of the ith flip is a head.) We let S; stand for the set of possible outcomes of stage i. (Thus if
we flip a coin n times, S; = {H,T}.) A process that occurs in stages is called an independent
trials process if for each sequence aq, a9, ..., a, with a; € S;,

P(xz; = ajlry = a1, ..., xi—1 = aj—1) = P(z; = a;).
In other words, if we let E; be the event that x; = a;, then
P(E;|E1NEsN---NE;_1) = P(E;).
By our product principle for independent probabilities, this implies that

P(El NE,N---FEi_1N Ez) = P(El NE;N--- Elfl)P(El) (517)

Theorem 5.6 In an independent trials process the probability of a sequence ai,ao,...,a, of

outcomes is P({a1})P({a2}) - P({an}).

Proof:  We apply mathematical induction and Equation 5.17. B

How do independent trials relate to coin flipping? Here our sample space consists of sequences
of n Hs and T's, and the event that we have an H (or T') on the ith flip is independent of the
event that we have an H (or T') on each of the first i — 1 flips. In particular, the probability of an
H on the 4th flip is 277! /2" = .5, and the probability of an H on the ith flip, given a particular
sequence on the first i — 1 flips is 2771 /2"~¢ = 5,

How do independent trials relate to hashing a list of keys? As in Exercise 5.3-5 if we have a
list of n keys to hash into a table of size k, our sample space consists of all n-tuples of numbers
between 1 and k. The probability that key 7 hashes to p and keys 1 through 7 — 1 hash to g,

q2,...Qi_1 18 (%)nﬂ/ (%)n and the probability that keys 1 through ¢ — 1 hash to qi1, ¢o,...¢i—1
—i+1
is (%)n ' /(%)n Therefore

1

D)
OO
Therefore, the event that key ¢ hashes to some number p is independent of the event that the first
i — 1 keys hash to some numbers g1, go,...¢—1. Thus our model of hashing is an independent

P(key i hashes to plkeys 1 through i — 1 hash to qi, ¢2,...¢i—1) =

o N 2N

trials process.

Exercise 5.3-6 Suppose we draw a card from a standard deck of 52 cards, replace it,
draw another card, and continue for a total of ten draws. Is this an independent
trials process?

Exercise 5.3-7 Suppose we draw a card from a standard deck of 52 cards, discard it (i.e.
we do not replace it), draw another card and continue for a total of ten draws. Is this
an independent trials process?
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In Exercise 5.3-6 we have an independent trials process, because the probability that we
draw a given card at one stage does not depend on what cards we have drawn in earlier stages.
However, in Exercise 5.3-7, we don’t have an independent trials process. In the first draw, we
have 52 cards to draw from, while in the second draw we have 51. In particular, we do not have
the same cards to draw from on the second draw as the first, so the probabilities for each possible
outcome on the second draw depend on whether that outcome was the result of the first draw.

Tree diagrams

When we have a sample space that consists of sequences of outcomes, it is often helpful to visualize
the outcomes by a tree diagram. We will explain what we mean by giving a tree diagram of the
following experiment. We have one nickel, two dimes, and two quarters in a cup. We draw a first
and second coin. In Figure 5.3 you see our diagram for this process. Notice that in probability
theory it is standard to have trees open to the right, rather than opening up or down.

Figure 5.5: A tree diagram illustrating a two-stage process.

Each level of the tree corresponds to one stage of the process of generating a sequence in our
sample space. Each vertex is labeled by one of the possible outcomes at the stage it represents.
Fach edge is labeled with a conditional probability, the probability of getting the outcome at
its right end given the sequence of outcomes that have occurred so far. Since no outcomes
have occurred at stage 0, we label the edges from the root to the first stage vertices with the
probabilities of the outcomes at the first stage. Each path from the root to the far right of the
tree represents a possible sequence of outcomes of our process. We label each leaf node with the
probability of the sequence that corresponds to the path from the root to that node. By the
definition of conditional probabilities, the probability of a path is the product of the probabilities
along its edges. We draw a probability tree for any (finite) sequence of successive trials in this
way.

Sometimes a probability tree provides a very effective way of answering questions about a
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process. For example, what is the probability of having a nickel in our coin experiment? We see
there are four paths containing an N, and the sum of their weights is .4, so the probability that
one of our two coins is a nickel is .4.

Exercise 5.3-8 How can we recognize from a probability tree whether it is the probability
tree of an independent trials process?

Exercise 5.3-9 In Exercise 5.3-4 we asked (among other things), if a student knows 80% of
the material in a a course, what is the probability that she answers a question correctly
on a 100 question True-False test (assuming that she guesses on any question she does
not know the answer to)? (We assume that she knows what she knows, that is, if
she thinks that she knows the answer, then she really does.) Show how we can use a
probability tree to answer this question.

Exercise 5.3-10 A test for a disease that affects 0.1% of the population is 99% effective on
people with the disease (that is, it says they have it with probability 0.99). The test
gives a false reading (saying that a person who does not have the disease is affected
with it) for 2% of the population without the disease. We can think of choosing
someone and testing them for the disease as a two stage process. In stage 1, we either
choose someone with the disease or we don’t. In stage two, the test is either positive
or it isn’t. Give a probability tree for this process. What is the probability that
someone selected at random and given a test for the disease will have a positive test?
What is the probability that someone who has positive test results in fact has the
disease?

A tree for an independent trials process has the property that at each level, for each node
at that level, the (labeled) tree consisting of that node and all its children is identical to each
labeled tree consisting of another node at that level and all its children. If we have such a tree,
then it automatically satisfies the definition of an independent trials process.

In Exercise 5.3-9, if a student knows 80% of the material in a course, we expect that she has
probability .8 of knowing the answer to any given question of a well-designed true-false test. We
regard her work on a question as a two stage process; in stage 1 she determines whether she
knows the answer, and in stage 2, she either answers correctly with probability 1, or she guesses,
in which case she answers correctly with probability 1/2 and incorrectly with probability 1/2.
Then as we see in Figure 5.3 there are two root-leaf paths corresponding to her getting a correct
answer. One of these paths has probability .8 and the other has probability .1. Thus she actually
has probability .9 of getting a right answer if she guesses at each question she does not know the
answer to.

In Figure 5.3 we show the tree diagram for thinking of Exercise 5.3-10 as a two stage process.
In the first stage, a person either has or doesn’t have the disease. In the second stage we
administer the test, and its result is either positive or not. We use D to stand for having the
disease and ND to stand for not having the disease. We use “pos” to stand for a positive test
and “neg” to stand for a negative test, and assume a test is either positive or negative. The
question asks us for the conditional probability that someone has the disease, given that they
test positive. This is
P(D Npos)

P(Dlpos) = Ppos)
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Figure 5.6: The probability of getting a right answer is .9.

Guesses
Wrong

Figure 5.7: A tree diagram illustrating Exercise 5.3-10.

pos
.0198

.97902

.00099

.00001

From the tree, we read that P(D Npos) = .00099 because this event consists of just one root-leaf

paths. The event “pos” consists of two root-leaf paths whose probabilities total .0198 +.00099 =
.02097. Thus P(D|pos) = P(D Npos)/P(pos) = .00099/.02097 = .0472. Thus, given a disease
this rare and a test with this error rate, a positive result only gives you roughly a 5% chance of
having the disease! Here is another instance where a probability analysis shows something we
might not have expected initially. This explains why doctors often don’t want to administer a
test to someone unless that person is already showing some symptoms of the disease being tested
for.

We can also do Exercise 5.3-10 purely algebraically. We are given that

P(disease) = .001, (5.18)
P(positive test result|disease) = .99, (5.19)
P(positive test result|no disease) = .02. (5.20)

We wish to compute

P(disease|positive test result).
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We use Equation 5.15 to write that

P(disease N positive test result)

P(disease|positive test result) = (5.21)

P(positive test result)

How do we compute the numerator? Using the fact that P(disease N positive test result) =
P(positive test result N disease) and Equation 5.15 again, we can write

P(positive test result N disease)
P(disease)

P(positive test result|disease) =

Plugging Equations 5.19 and 5.18 into this equation, we get

P(positive test result N disease)
.001

or P(positive test result N disease) = (.001)(.99) = .00099.

99 =

To compute the denominator of Equation 5.21, we observe that since each person either has
the disease or doesn’t, we can write

P(positive test) = P(positive test N disease) + P(positive test N no disease). (5.22)

We have already computed P(positive test result N disease), and we can compute the probability
P(positive test result N no disease) in a similar manner. Writing

P(positive test result N no disease)

P(positive test result|no disease) = ,

P(no disease)
observing that P(no disease) = 1 — P(disease) and plugging in the values from Equations 5.18
and 5.20, we get that P(positive test result Nno disease) = (.02)(1 —.001) = .01998 We now have
the two components of the right hand side of Equation 5.22 and thus P(positive test result) =
.00099 4+ .01998 = .02097. Finally, we have all the pieces in Equation 5.21, and conclude that

P(disease N positive test result)  .00099 0479
P(positive test result) ©.02097 '

P(disease|positive test result) =

Clearly, using the tree diagram mirrors these computations, but it both simplifies the thought
process and reduces the amount we have to write.

Important Concepts, Formulas, and Theorems

1. Conditional Probability. We define the conditional probability of E given F', denoted by
P(E|F) and read as “the probability of E given F” by

P(ENF)

P(EIF) = =5

2. Independent. We say FE is independent of F if P(E|F) = P(E).

3. Product Principle for Independent Probabilities. The product principle for independent
probabilities (Theorem 5.4) gives another test for independence. Suppose E and F are
events in a sample space. Then F is independent of F' if and ounly if P(ENF) = P(E)P(F).
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. Symmetry of Independence. The event F is independent of the event F' if and only if F is

independent of F.

. Independent Trials Process. A process that occurs in stages is called an independent trials

process if for each sequence aq, as, ..., a, with a; € S;,

P(z; =ai|lz1 = a1,..., 221 = ai—1) = P(z; = a;).

. Probabilities of Outcomes in Independent Trials. In an independent trials process the prob-

ability of a sequence ay,aq,...,a, of outcomes is P({a1})P({az}) - P({an}).

. Coin Flipping. Repeatedly flipping a coin is an independent trials process.
. Hashing. Hashing a list of n keys into k slots is an independent trials process with n stages.

. Probability Tree. In a probability tree for a multistage process, each level of the tree

corresponds to one stage of the process. Each vertex is labeled by one of the possible
outcomes at the stage it represents. Each edge is labeled with a conditional probability,
the probability of getting the outcome at its right end given the sequence of outcomes that
have occurred so far. Each path from the root to a leaf represents a sequence of outcomes
and is labelled with the product of the probabilities along that path. This is the probability
of that sequence of outcomes.

Problems

. In three flips of a coin, what is the probability that two flips in a row are heads, given that

there is an even number of heads?

. In three flips of a coin, is the event that two flips in a row are heads independent of the

event that there is an even number of heads?

. In three flips of a coin, is the event that we have at most one tail independent of the event

that not all flips are identical?

. What is the sample space that we use for rolling two dice, a first one and then a second one?

Using this sample space, explain why it is that if we roll two dice, the event “i dots are on
top of the first die” and the event “j dots are on top of the second die” are independent.

. If we flip a coin twice, is the event of having an odd number of heads independent of the

event that the first flip comes up heads? Is it independent of the event that the second flip
comes up heads? Would you say that the three events are mutually independent? (This
hasn’t been defined, so the question is one of opinion. However you should back up your
opinion with a reason that makes sense!)

. Assume that on a true-false test, students will answer correctly any question on a subject

they know. Assume students guess at answers they do not know. For students who know
60% of the material in a course, what is the probability that they will answer a question
correctly? What is the probability that they will know the answer to a question they answer
correctly?
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A nickel, two dimes, and two quarters are in a cup. We draw three coins, one at a time,
without replacement. Draw the probability tree which represents the process. Use the tree
to determine the probability of getting a nickel on the last draw. Use the tree to determine
the probability that the first coin is a quarter, given that the last coin is a quarter.

. Write down a formula for the probability that a bridge hand (which is 13 cards, chosen

from an ordinary deck) has four aces, given that it has one ace. Write down a formula for
the probability that a bridge hand has four aces, given that it has the ace of spades. Which
of these probabilities is larger?

. A nickel, two dimes, and three quarters are in a cup. We draw three coins, one at a time

without replacement. What is the probability that the first coin is a nickel? What is the
probability that the second coin is a nickel? What is the probability that the third coin is
a nickel?

If a student knows 75% of the material in a course, and a 100 question multiple choice test
with five choices per question covers the material in a balanced way, what is the student’s
probability of getting a right answer to a given question, given that the student guesses at
the answer to each question whose answer he or she does not know?

Suppose E and F' are events with ENF = (). Describe when E and F' are independent and
explain why.

What is the probability that in a family consisting of a mother, father and two children of
different ages, that the family has two girls, given that one of the children is a girl? What
is the probability that the children are both boys, given that the older child is a boy?
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5.4 Random Variables

What are Random Variables?

A random variable for an experiment with a sample space S is a function that assigns a number
to each element of S. Typically instead of using f to stand for such a function we use X (at first,
a random variable was conceived of as a variable related to an experiment, explaining the use of
X, but it is very helpful in understanding the mathematics to realize it actually is a function on
the sample space).

For example, if we consider the process of flipping a coin n times, we have the set of all
sequences of n Hs and T's as our sample space. The “number of heads” random variable takes a
sequence and tells us how many heads are in that sequence. Somebody might say “Let X be the
number of heads in 5 flips of a coin.” In that case X(HTHHT) = 3 while X(THTHT) = 2. It
may be rather jarring to see X used to stand for a function, but it is the notation most people
use.

For a sequence of hashes of n keys into a table with k locations, we might have a random
variable X; which is the number of keys that are hashed to location i of the table, or a random
variable X that counts the number of collisions (hashes to a location that already has at least
one key). For an n question test on which each answer is either right or wrong (a short answer,
True-False or multiple choice test for example) we could have a random variable that gives the
number of right answers in a particular sequence of answers to the test. For a meal at a restaurant
we might have a random variable that gives the price of any particular sequence of choices of
menu items.

Exercise 5.4-1 Give several random variables that might be of interest to a doctor whose
sample space is her patients.

Exercise 5.4-2 If you flip a coin six times, how many heads do you expect?

A doctor might be interested in patients’ ages, weights, temperatures, blood pressures, choles-
terol levels, etc.

For Exercise 5.4-2, in six flips of a coin, it is natural to expect three heads. We might argue
that if we average the number of heads over all possible outcomes, the average should be half
the number of flips. Since the probability of any given sequence equals that of any other, it is
reasonable to say that this average is what we expect. Thus we would say we expect the number
of heads to be half the number of flips. We will explore this more formally later.

Binomial Probabilities

When we study an independent trials process with two outcomes at each stage, it is traditional
to refer to those outcomes as successes and failures. When we are flipping a coin, we are often
interested in the number of heads. When we are analyzing student performance on a test, we are
interested in the number of correct answers. When we are analyzing the outcomes in drug trials,
we are interested in the number of trials where the drug was successful in treating the disease.
This suggests a natural random variable associated with an independent trials process with two
outcomes at each stage, namely the number of successes in n trials. We will analyze in general
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the probability of exactly k& successes in n independent trials with probability p of success (and
thus probability 1 — p of failure) on each trial. It is standard to call such an independent trials
process a Bernoulli trials process.

Exercise 5.4-3 Suppose we have 5 Bernoulli trials with probability p of success on each
trial. What is the probability of success on the first three trials and failure on the last
two? Failure on the first two trials and success on the last three? Success on trials
1, 3, and 5, and failure on the other two? Success on any particular three trials, and
failure on the other two?

Since the probability of a sequence of outcomes is the product of the probabilities of the
individual outcomes, the probability of any sequence of 3 successes and 2 failures is p3(1 — p)2.
More generally, in n Bernoulli trials, the probability of a given sequence of k successes and n — k
failures is pk(l — p)”_k . However this is not the probability of having k successes, because many
different sequences could have k successes.

How many sequences of n successes and failures have exactly k successes? The number of
ways to choose the k places out of n where the successes occur is (Z)’ so the number of sequences
with k successes is (7). This paragraph and the last together give us Theorem 5.7.

Theorem 5.7 The probability of having exactly k successes in a sequence of n independent trials
with two outcomes and probability p of success on each trial is

P(exactly k successes) = <Z>pk(1 —p)nF

Proof:  The proof follows from the two paragraphs preceding the theorem.H

Because of the connection between these probabilities and the binomial coefficients, the prob-
abilities of Theorem 5.7 are called binomial probabilities, or the binomial probability dis-
tribution.

Exercise 5.4-4 A student takes a ten question objective test. Suppose that a student
who knows 80% of the course material has probability .8 of success an any question,
independently of how the student did on any other problem. What is the probability
that this student earns a grade of 80 or better?

Exercise 5.4-5 Recall the primality testing algorithm from Section 2.4. Here we said that
we could, by choosing a random number less than or equal to n, perform a test on
n that, if n was not prime, would certify this fact with probability 1/2. Suppose
we perform 20 of these tests. It is reasonable to assume that each of these tests is
independent of the rest of them. What is the probability that a non-prime number is
certified to be non-prime?

Since a grade of 80 or better on a ten question test corresponds to 8, 9, or 10 successes in ten
trials, in Exercise 5.4-4 we have

P(80 or better) (180> (8)3(.2)% + (19()) (8)°(2)" + (.8)1°.
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Some work with a calculator gives us that this sum is approximately .678.

In Exercise 5.4-5, we will first compute the probability that a non-prime number is not certified
to be non-prime. If we think of success as when the number is certified non-prime and failure
when it isn’t, then we see that the only way to fail to certify a number is to have 20 failures. Using
our formula we see that the probability that a non-prime number is not certified non-prime is
just (38) (.5)20 = 1/1048576. Thus the chance of this happening is less than one in a million, and
the chance of certifying the non-prime as non-prime is 1 minus this. Therefore the probability
that a non-prime number will be certified non-prime is 1048575/1048576, which is more than
999999, so a non-prime number is almost sure to be certified non-prime.

A Taste of Generating Functions We note a nice connection between the probability of
having exactly k successes and the binomial theorem. Consider, as an example, the polynomial
(H + T)3. Using the binomial theorem, we get that this is

(H+T)* = (3) H? + (i’) HT + (;) HT? + (2) T3,

We can interpret this as telling us that if we flip a coin three times, with outcomes heads or tails
each time, then there are (3) = 1 way of getting 3 heads, (3) = 3 ways of getting two heads and
one tail, (i’) = 3 ways of getting one head and two tails and (g) = 1 way of getting 3 tails.

Similarly, if we replace H and T by px and (1 — p)y we would get the following:

(pr+ (1 —p)y)* = <3)p3x3 + (i’)pQ(l —p)aty + @)p(l —p)’ay’ + (2) (1—p)*y°.

Generalizing this to n repeated trials where in each trial the probability of success is p, we
see that by taking (pz + (1 — p)y)™ we get

k
(pz+ 1 —py)"=> (Z)p'“(l — p) R gkyn=k,

k=0

Taking the coefficient of 2¥y"~* from this sum, we get exactly the result of Theorem 5.7.
This connection is a simple case of a very powerful tool known as generating functions. We say
that the polynomial (px + (1 — p)y)™ generates the binomial probabilities. In fact, we don’t even
need the y, because

(pz+1-p)" = i (7;)@(1 —p)" i,

i=0
In general, the generating function for the sequence ag,ai,asg,...,a, is > ;- a;x", and the gen-
erating function for an infinite sequence ag, ai, ag, ..., an, ... is the infinite series Y ;2; a;x".

Expected Value

In Exercise 5.4-4 and Exercise 5.4-2 we asked about the value you would expect a random
variable(in these cases, a test score and the number of heads in six flips of a coin) to have.
We haven’t yet defined what we mean by the value we expect, and yet it seems to make sense in
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the places we asked about it. If we say we expect 1 head if we flip a coin twice, we can explain
our reasoning by taking an average. There are four outcomes, one with no heads, two with one
head, and one with two heads, giving us an average of

0+1+1+2
===

1.

Notice that using averages compels us to have some expected values that are impossible to achieve.
For example in three flips of a coin the eight possibilities for the number of heads are 0, 1, 1, 1,
2,2, 2, 3, giving us for our average

O+1+1+14+2+2+2+3

1.5.
8

Exercise 5.4-6 An interpretation in games and gambling makes it clear that it makes
sense to expect a random variable to have a value that is not one of the possible
outcomes. Suppose that I proposed the following game. You pay me some money,
and then you flip three coins. I will pay you one dollar for every head that comes up.
Would you play this game if you had to pay me $2.00? How about if you had to pay
me $17 How much do you think it should cost, in order for this game to be fair?

Since you expect to get 1.5 heads, you expect to make $1.50. Therefore, it is reasonable to
play this game as long as the cost is at most $1.50.

Certainly averaging our variable over all elements of our sample space by adding up one
result for each element of the sample space as we have done above is impractical even when we
are talking about something as simple as ten flips of a coin. However we can ask how many times
each possible number of heads arises, and then multiply the number of heads by the number of
times it arises to get an average number of heads of

00 +100) +209) +--+9() +1008) _ 1% () 523
1024 1024

Thus we wonder whether we have seen a formula for ) ;" z(?) Perhaps we have, but in any case
the binomial theorem and a bit of calculus or a proof by induction show that

“ n
ZZ<Z> =2""n,

=0

giving us 512 -10/1024 = 5 for the fraction in Equation 5.23. If you are asking “Does it have to
be that hard?” then good for you. Once we know a bit about the theory of expected values of
random variables, computations like this will be replaced by far simpler ones.

Besides the nasty computations that a simple question lead us to, the average value of a
random variable on a sample space need not have anything to do with the result we expect. For
instance if we replace heads and tails with right and wrong, we get the sample space of possible
results that a student will get when taking a ten question test with probability .9 of getting the
right answer on any one question. Thus if we compute the average number of right answers in all
the possible patterns of test results we get an average of 5 right answers. This is not the number
of right answers we expect because averaging has nothing to do with the underlying process that
gave us our probability! If we analyze the ten coin flips a bit more carefully, we can resolve this
disconnection. We can rewrite Equation 5.23 as
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0

W) 1l by g b)) 5 G

1024 1024 1024 1024 1024 : (5.24)

In Equation 5.24 we see we can compute the average number of heads by multiplying each
value of our “number of heads” random variable by the probability that we have that value for our
random variable, and then adding the results. This gives us a “weighted average” of the values
of our random variable, each value weighted by its probability. Because the idea of weighting a
random variable by its probability comes up so much in Probability Theory, there is a special
notation that has developed to use this weight in equations. We use P(X = z;) to stand for the
probability that the random variable X equals the value x;. We call the function that assigns
P(z;) to the event P(X = x;) the distribution function of the random variable X. Thus, for
example, the binomial probability distribution is the distribution function for the “number of
successes” random variable in Bernoulli trials.

We define the expected value or expectation of a random variable X whose values are the
set {z1,22,... 2} to be
k
E(X) =) xP(X = ;).
i=1

Then for someone taking a ten-question test with probability .9 of getting the correct answer
on each question, the expected number of right answers is

10
Zz(lf) (9)i(.1)10.
=0

In the end of section exercises we will show a technique (that could be considered an application of
generating functions) that allows us to compute this sum directly by using the binomial theorem
and calculus. We now proceed to develop a less direct but easier way to compute this and many
other expected values.

Exercise 5.4-7 Show that if a random variable X is defined on a sample space S (you
may assume X has values x1, x9, ...x as above) then the expected value of X is
given by

E(X)= > X(s)P(s).
s:s€S
(In words, we take each member of the sample space, compute its probability, multiply
the probability by the value of the random variable and add the results.)

In Exercise 5.4-7 we asked for a proof of a fundamental lemma

Lemma 5.8 If a random variable X is defined on a (finite) sample space S, then its expected
value s given by

E(X)=Y_ X(s)P(s).

$:sES
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Proof:  Assume that the values of the random variable are x1, 2o, ... 2. Let F; stand for the
event that the value of X is x;, so that P(F;) = P(X = z;). Then, in the sum on the right-hand
side of the equation in the statement of the lemma, we can take the items in the sample space,
group them together into the events F; and and rework the sum into the definition of expectation,
as follows:

k
Y X(s)P(s) = > Y X(s)P(s)

5:8€S i=1 s:s€F;

k
= Z Z x; P(s)

i=1 s:s€Fj

k
= sz Z P(s)
=1

= s:s€F;

k
= > z;P(F)
=1
k
= Y 2 P(X =) = E(X).
=1

The proof of the lemma need not be so formal and symbolic as what we wrote; in English, it
simply says that when we compute the sum in the Lemma, we can group together all elements
of the sample space that have X-value z; and add up their probabilities; this gives us x; P(x;),
which leads us to the definition of the expected value of X.

Expected Values of Sums and Numerical Multiples

Another important point about expected value follows naturally from what we think about when
we use the word “expect” in English. If a paper grader expects to earn ten dollars grading
papers today and expects to earn twenty dollars grading papers tomorrow, then she expects to
earn thirty dollars grading papers in these two days. We could use X to stand for the amount
of money she makes grading papers today and X5 to stand for the amount of money she makes
grading papers tomorrow, so we are saying

E(X1+ X5) = E(Xy) + E(X3).

This formula holds for any sum of a pair of random variables, and more generally for any sum of
random variables on the same sample space.

Theorem 5.9 Suppose X and Y are random variables on the (finite) sample space S. Then
E(X+Y)=EX)+E(Y).

Proof: From Lemma 5.8 we may write

B(X+Y)= Y (X(s)+ Y(s)P(s) = Y. X(s)P(s) + Y Y(s)P(s) = E(X) + E(Y).

s:5€S s:5€S s:s€8
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If we double the credit we give for each question on a test, we would expect students’ scores
to double. Thus our next theorem should be no surprise. In it we use the notation ¢X for the
random variable we get from X by multiplying all its values by the number c.

Theorem 5.10 Suppose X is a random variable on a sample space S. Then for any number c,
E(cX)=cE(X).

Proof:  Left as a problem.l

Theorems 5.9 and 5.10 are very useful in proving facts about random variables. Taken to-
gether, they are typically called linearity of expectation. (The idea that the expectation of a
sum is the same as the sum of expectations is called the additivity of expectation.) The idea of
linearity will often allow us to work with expectations much more easily than if we had to work
with the underlying probabilities.

For example, on one flip of a coin, our expected number of heads is .5. Suppose we flip a
coin n times and let X; be the number of heads we see on flip 7, so that Xj is either 0 or 1. (For
example in five flips of a coin, Xo(HTHHT) = 0 while X3(HTHHT) = 1.) Then X, the total
number of heads in n flips is given by

X=X14+Xo+---X,, (525)

the sum of the number of heads on the first flip, the number on the second, and so on through
the number of heads on the last flip. But the expected value of each X; is .5. We can take the
expectation of both sides of Equation 5.25 and apply Lemma 5.9 repeatedly (or use induction)
to get that

EX) = BEXi1+Xo+--+X,)
= E(X1)+E(X2)+ -+ E(X,)
= 5+5+--+.5
= .5n

Thus in n flips of a coin, the expected number of heads is .5n. Compare the ease of this method
with the effort needed earlier to deal with the expected number of heads in ten flips! Dealing
with probability .9 or, in general with probability p poses no problem.

Exercise 5.4-8 Use the additivity of expectation to determine the expected number of
correct answers a student will get on an n question “fill in the blanks” test if he or
she knows 90% of the material in the course and the questions on the test are an
accurate and uniform sampling of the material in the course.

In Exercise 5.4-8, since the questions sample the material in the course accurately, the most
natural probability for us to assign to the event that the student gets a correct answer on a given
question is .9. We can let X; be the number of correct answers on question ¢ (that is, either 1 or
0 depending on whether or not the student gets the correct answer). Then the expected number
of right answers is the expected value of the sum of the variables X;. From Theorem 5.9 see
that in n trials with probability .9 of success, we expect to have .9n successes. This gives that
the expected number of right answers on a ten question test with probability .9 of getting each
question right is 9, as we expected. This is a special case of our next theorem, which is proved
by the same kind of computation.
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Theorem 5.11 In a Bernoulli trials process, in which each experiment has two outcomes and
probability p of success, the expected number of successes is np.

Proof: Let X; be the number of successes in the ith of n independent trials. The expected
number of successes on the ith trial (i.e. the expected value of X;) is, by definition,

p1+(1—-p)-0=p.

The number of successes X in all n trials is the sum of the random variables X;. Then by
Theorem 5.9 the expected number of successes in n independent trials is the sum of the expected
values of the n random variables X; and this sum is np.l

The Number of Trials until the First Success

Exercise 5.4-9 How many times do you expect to have to flip a coin until you first see a
head? Why? How many times to you expect to have to roll two dice until you see a
sum of seven? Why?

Our intuition suggests that we should have to flip a coin twice to see a head. However we
could conceivably flip a coin forever without seeing a head, so should we really expect to see a
head in two flips? The probability of getting a seven on two dice is 1/6. Does that mean we
should expect to have to roll the dice six times before we see a seven?

In order to analyze this kind of question we have to realize that we are stepping out of
the realm of independent trials processes on finite sample spaces. We will consider the process
of repeating independent trials with probability p of success until we have a success and then
stopping. Now the possible outcomes of our multistage process are the infinite set

{S,FS,FFS,... F'S,...},

in which we have used the notation F'S to stand for the sequence of i failures followed by a
success. Since we have an infinite sequence of outcomes, it makes sense to think about whether
we can assign an infinite sequence of probability weights to its members so that the resulting
sequence of probabilities adds to one. If so, then all our definitions make sense, and in fact
the proofs of all our theorems remain valid.® There is only one way to assign weights that is
consistent with our knowledge of (finite) independent trials processes, namely

P(S)=p, P(FS)=1-p)p, ..., P(F'S)=(1-p)p,

Thus we have to hope these weights add to one; in fact their sum is

;(1—17)]?—]?;(1_17) —pm—g—l-

Sfor those who are familiar with the concept of convergence for infinite sums (i.e. infinite series), it is worth
noting that it is the fact that probability weights cannot be negative and must add to one that makes all the sums
we need to deal with for all the theorems we have proved so far converge. That doesn’t mean all sums we might
want to deal with will converge; some random variables defined on the sample space we have described will have
infinite expected value. However those we need to deal with for the expected number of trials until success do
converge.
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Therefore we have a legitimate assignment of probabilities and the set of sequences
{F,FS,FFS,FFFS,...,F'S,...}

is a sample space with these probability weights. This probability distribution, P(F'S) = (1 —
p)ip, is called a geometric distribution because of the geometric series we used in proving the
probabilities sum to 1.

Theorem 5.12 Suppose we have a sequence of trials in which each trial has two outcomes,
success and failure, and where at each step the probability of success is p. Then the expected
number of trials until the first success is 1/p.

Proof:

We consider the random variable X which is 7 if the first success is on trial 7. (In other words,
X (F=19) is i.) The probability that the first success is on trial i is (1 — p)*~!p, since in order
for this to happen there must be ¢ — 1 failures followed by 1 success. The expected number of
trials is the expected value of X, which is, by the definition of expected value and the previous
two sentences,

[e.e]
E[number of trials] = Zp(l —p)l
=0
' oo
= pY (1—-p)hi
1=0
p oo
N Iy
l-piz
_ _p 1-p
1—p p?
1
p

To go from the third to the fourth line we used the fact that

[e.9]

S jad = ﬁ (5.26)

J=0

true for = with absolute value less than one. We proved a finite version of this equation as
Theorem 4.6; the infinite version is even easier to prove. B

Applying this theorem, we see that the expected number of times you need to flip a coin until
you get heads is 2, and the expected number of times you need to roll two dice until you get a
seven is 6.

Important Concepts, Formulas, and Theorems

1. Random Variable. A random variable for an experiment with a sample space S is a function
that assigns a number to each element of S.
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. Bernoulli Trials Process. An independent trials process with two outcomes, success and

failure, at each stage and probability p of success and 1 — p of failure at each stage is called
a Bernoulli trials process.

. Probability of a Sequence of Bernoulli Trials. In n Bernoulli trials with probability p of

success, the probability of a given sequence of k successes and n — k failures is p*(1 —p)"~*.

The Probability of k Successes in n Bernoulli Trials The probability of having exactly k
successes in a sequence of n independent trials with two outcomes and probability p of
success on each trial is

P(exactly k successes) = (Z)pk(l — p)”_k

. Binomial Probability Distribution. The probabilities of of k successes in n Bernoulli trials,

(Z)pk(l — p)" . are called binomial probabilities, or the binomial probability distribution.

Generating Function. The generating function for the sequence ag, a1, as, - . . , ay is S0y a;’,
and the generating function for an infinite sequence ag, a1, as,...,ay,... is the infinite se-
ries > 2 a;x’. The polynomial (px + 1 — p)" is the generating function for the binomial

probabilities for n Bernoulli trials with probability p of success.

Distribution Function. We call the function that assigns P(z;) to the event P(X = ;) the
distribution function of the random variable X.

. Fxpected Value. We define the expected value or expectation of a random variable X whose

values are the set {x1,xa,... 21} to be

k
E(X) =) zP(X = ;).
=1

. Another Formula for Ezpected Values. If a random variable X is defined on a (finite) sample

space S, then its expected value is given by

E(X)= Y X(s)P(s).

s:s€S

Ezpected Value of a Sum. Suppose X and Y are random variables on the (finite) sample
space S. Then
E(X+Y)=E(X)+ E(®Y).

This is called the additivity of expectation.
Ezxpected Value of a Numerical Multiple. Suppose X is a random variable on a sample space

S. Then for any number ¢, E(cX) = cE(X). This result and the additivity of expectation
together are called the linearity of expectation.

Ezxpected Number of Successes in Bernoulli Trials. In a Bernoulli trials process, in which
each experiment has two outcomes and probability p of success, the expected number of
successes is np.
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13.

Ezpected Number of Trials Until Success. Suppose we have a sequence of trials in which
each trial has two outcomes, success and failure, and where at each step the probability of
success is p. Then the expected number of trials until the first success is 1/p.

Problems

1.

10.

11.

12.

Give several random variables that might be of interest to someone rolling five dice (as one
does, for example, in the game Yatzee).

. Suppose I offer to play the following game with you if you will pay me some money. You

roll a die, and I give you a dollar for each dot that is on top. What is the maximum amount
of money a rational person might be willing to pay me in order to play this game?

. How many sixes do we expect to see on top if we roll 24 dice?
. What is the expected sum of the tops of n dice when we roll them?

. In an independent trials process consisting of six trials with probability p of success, what

is the probability that the first three trials are successes and the last three are failures?
The probability that the last three trials are successes and the first three are failures? The
probability that trials 1, 3, and 5 are successes and trials 2, 4, and 6 are failures? What is
the probability of three successes and three failures?

. What is the probability of exactly eight heads in ten flips of a coin? Of eight or more

heads?

How many times do you expect to have to role a die until you see a six on the top face?

. Assuming that the process of answering the questions on a five-question quiz is an inde-

pendent trials process and that a student has a probability of .8 of answering any given
question correctly, what is the probability of a sequence of four correct answers and one
incorrect answer? What is the probability that a student answers exactly four questions
correctly?

. What is the expected value of the constant random variable X that has X (s) = ¢ for every

member s of the sample space? We frequently just use ¢ to stand for this random variable,
and thus this question is asking for E(c).

Someone is taking a true-false test and guessing when they don’t know the answer. We are
going to compute a score by subtracting a percentage of the number of incorrect answers
from the number of correct answers. When we convert this “corrected score” to a percentage
score we want its expected value to be the percentage of the material being tested that the
test-taker knows. How can we do this?

Do Problem 10 of this section for the case that someone is taking a multiple choice test
with five choices for each answer and guesses randomly when they don’t know the answer.

Suppose we have ten independent trials with three outcomes called good, bad, and indiffer-
ent, with probabilities p, ¢, and r, respectively. What is the probability of three goods, two
bads, and five indifferents? In n independent trials with three outcomes A, B, and C, with
probabilities p, ¢, and 7, what is the probability of i As, j Bs, and k& Cs? (In this problem
we assume p+q+r=1andi+j+k=n.)
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In as many ways as you can, prove that

Prove Theorem 5.10.

Two nickels, two dimes, and two quarters are in a cup. We draw three coins, one after the
other, without replacement. What is the expected amount of money we draw on the first
draw? On the second draw? What is the expected value of the total amount of money we
draw? Does this expected value change if we draw the three coins all together?

In this exercise we will evaluate the sum

Z() (1)1

that arose in computing the expected number of right answers a person would have on a
ten question test with probability .9 of answering each question correctly. First, use the
binomial theorem and calculus to show that

1+1: ZZ<> 107,11

Substituting in z = .9 gives us almost the sum we want on the right hand side of the
equation, except that in every term of the sum the power on .9 is one too small. Use some
simple algebra to fix this and then explain why the expected number of right answers is 9.

Give an example of two random variables X and Y such that E(XY) # E(X)E(Y). Here
XY is the random variable with (XY)(s) = X(s)Y (s).

Prove that if X and Y are independent in the sense that the event that X = z and
the event that Y = y are independent for each pair of values x of X and y of Y, then
E(XY)=E(X)E(Y). See Exercise 5-17 for a definition of XY

Use calculus and the sum of a geometric series to show that
E x
i
jrl = ——5
jg() (1—x)?

as in Equation 5.26.

Give an example of a random variable on the sample space {S, F'S, FFS,..., FiS, ...} with
an infinite expected value.
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5.5 Probability Calculations in Hashing

We can use our knowledge of probability and expected values to analyze a number of interesting
aspects of hashing including:

1. expected number of items per location,

2. expected time for a search,

3. expected number of collisions,

4. expected number of empty locations,

5. expected time until all locations have at least one item,

6. expected maximum number of items per location.

Expected Number of Items per Location

Exercise 5.5-1 We are going to compute the expected number of items that hash to any
particular location in a hash table. Our model of hashing n items into a table of
size k allows us to think of the process as n independent trials, each with k£ possible
outcomes (the k locations in the table). On each trial we hash another key into the
table. If we hash n items into a table with k locations, what is the probability that
any one item hashes into location 17 Let X; be the random variable that counts the
number of items that hash to location 1 in trial ¢ (so that X; is either 0 or 1). What
is the expected value of X;? Let X be the random variable X7 + X9 + -+ + X,,.
What is the expected value of X7 What is the expected number of items that hash
to location 17 Was the fact that we were talking about location 1 special in any way?
That is, does the same expected value apply to every location?

Exercise 5.5-2 Again we are hashing n items into k£ locations. Our model of hashing is
that of Exercise 5.5-1. What is the probability that a location is empty? What is
the expected number of empty locations? Suppose we now hash n items into the
same number n of locations. What limit does the expected fraction of empty places
approach as n gets large?

In Exercise 5.5-1, the probability that any one item hashes into location 1 is 1/k, because all
k locations are equally likely. The expected value of X; is then 1/k. The expected value of X is
then n/k, the sum of n terms each equal to 1/k. Of course the same expected value applies to
any location. Thus we have proved the following theorem.

Theorem 5.13 In hashing n items into a hash table of size k, the expected number of items that
hash to any one location is n/k.
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Expected Number of Empty Locations

In Exercise 5.5-2 the probability that position ¢ will be empty after we hash 1 item into the table
will be 1 — % (Why?) In fact, we can think of our process as an independent trials process with
two outcomes: the key hashes to slot ¢ or it doesn’t. From this point of view, it is clear that the
probability of nothing hashing to slot ¢ in n trials is (1 — %)” Now consider the original sample
space again and let X; be 1 if slot ¢ is empty for a given sequence of hashes or 0 if it is not. Then
the number of empty slots for a given sequence of hashes is X7 + Xs + - - - + X}, evaluated at that
sequence. Therefore, the expected number of empty slots is, by Theorem 5.9, k(1 — %)” Thus

we have proved another nice theorem about hashing.

Theorem 5.14 In hashing n items into a hash table with k locations, the expected number of
n

empty locations is k(1 — )"

Proof: Given above.ll

If we have the same number of slots as places, the expected number of empty slots is n(1— %)”,
so the expected fraction of empty slots is (1 — %)" What does this fraction approach as n grows?
You may recall that lim, (1 + %)" is e, the base for the natural logarithm. In the problems at
the end of the section, we show you how to derive from this that lim,, (1 — %)" is e~!. Thus for
a reasonably large hash table, if we hash in as many items as we have slots, we expect a fraction
1/e of those slots to remain empty. In other words, we expect n/e empty slots. On the other
hand, we expect 7 items per location, which suggests that we should expect each slot to have an
item and therefore expect to have no empty locations. Is something wrong? No, but we simply
have to accept that our expectations about expectation just don’t always hold true. What went
wrong in that apparent contradiction is that our definition of expected value doesn’t imply that
if we have an expectation of one key per location then every location must have a key, but only
that empty locations have to be balanced out by locations with more than one key. When we
want to make a statement about expected values, we must use either our definitions or theorems
to back it up. This is another example of why we have to back up intuition about probability
with careful analysis.

Expected Number of Collisions

We say that we have a collision when we hash an item to a location that already contains an
item. How can we compute the expected number of collisions? The number of collisions will
be the number n of keys hashed minus the number of occupied locations because each occupied
location will contain one key that will not have collided in the process of being hashed. Thus, by
Theorems 5.9 and 5.10,

E(collisions) = n — E(occupied locations) = n — k + E(empty locations) (5.27)

where the last equality follows because the expected number of occupied locations is & minus the
expected number of unoccupied locations. This gives us yet another theorem.

Theorem 5.15 In hashing n items into a hash table with k locations, the expected number of

collisions is n — k + k(1 — £)".
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Proof:  We have already shown in Theorem 5.14 that the expected number of empty locations
is k(1 — %)” Substituting this into Equation 5.27 gives our formula. H

Exercise 5.5-3 In real applications, it is often the case that the hash table size is not
fixed in advance, since you don’t know, in advance, how many items you will insert.
The most common heuristic for dealing with this is to start k£, the hash table size, at
some reasonably small value, and then when n, the number of items gets to be greater
than 2k, you double the hash table size. In this exercise, we propose a different idea.
Suppose you waited until every single slot in the hash table had at least one item in
it, and then you increased the table size. What is the expected number of items that
will be in the table when you increase the size? In other words, how many items do
you expect to insert into a hash table in order to ensure that every slot has at least
one item? (Hint: Let X; be the number of items added between the time that there
are 1 — 1 occupied slots for the first time and the first time that there are 7 occupied
slots.)

For Exercise 5.5-3, the key is to let X; be the number of items added between the time that
there are i — 1 full slots for the first time and ¢ full slots for the first time. Let’s think about this
random variable. E(X;) = 1, since after one insertion there is one full slot. In fact X itself is
equal to 1.

To compute the expected value of X9, we note that Xo can take on any value greater than
1. In fact if we think about it, what we have here (until we actually hash an item to a new slot)
is an independent trials process with two outcomes, with success meaning our item hashes to an
unused slot. X5 counts the number of trials until the first success. The probability of success is
(k—1)/k. In asking for the expected value of Xy, we are asking for expected number of steps
until the first success. Thus we can apply Lemma 5.12 to get that it is k/(k — 1).

Continuing, X3 similarly counts the number of steps in an independent trials process (with
two outcomes) that stops at the first success and has probability of success (k — 2)/k. Thus the
expected number of steps until the first success is k/(k — 2).

In general, we have that X; counts the number of trials until success in an independent trials
process with probability of success (k—1i+ 1)/k and thus the expected number of steps until the
first success is k/(k — i + 1), which is the expected value of X;.

The total time until all slots are full is just X = X; 4+ --- + X. Taking expectations and
using Lemma 5.12 we get

E(X) = ) B(X))

j=1
oy k
 Hk-j+l
k
1
= k
;%k—j+1
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where the last line follows just by switching the variable of the summation, that is, letting
k —j 41 =i and summing over i.5 Now the quantity Zle % is known as a harmonic number,
and is sometimes denoted by Hy. It is well known (and you can see why in the problems at the
end of the section) that Y% , 1 = O(log k), and more precisely

1
;tInk < Hy <14k, (5.28)

and in fact,

1
5 Pk < Hp<1+hk, (5.29)

when k is large enough. As n gets large, H,, — Inn approaches a limit called Euler’s constant,
Euler’s constant is about .58. Equation 5.28 gives us that F(X) = O(klogk).

Theorem 5.16 The expected number of items needed to fill all slots of a hash table of size k is
between klnk + %k and klnk + k.

Proof: Given above.lL.

So in order to fill every slot in a hash table of size k, we need to hash roughly klInk items.
This problem is sometimes called the coupon collectors problem.

Expected maximum number of elements in a slot of a hash table

In a hash table, the time to find an item is related to the number of items in the slot where
you are looking. Thus an interesting quantity is the expected maximum length of the list of
items in a slot in a hash table. This quantity is more complicated than many of the others
we have been computing, and hence we will only try to upper bound it, rather than compute it
exactly. In doing so, we will introduce a few upper bounds and techniques that appear frequently
and are useful in many areas of mathematics and computer science. We will be able to prove
that if we hash n items into a hash table of size n, the expected length of the longest list is
O(logn/loglogn). One can also prove, although we won’t do it here, that with high probability,
there will be some list with Q(logn/loglogn) items in it, so our bound is, up to constant factors,
the best possible.

Before we start, we give some useful upper bounds. The first allows us to bound terms that
look like (1 + %)“, for any positive z, by e.

Lemma 5.17 For allz >0, (14+1)” <e.

Proof: lim, .oo(1+ 1) =¢, and 1 + (1) has positive first derivative. B

Second, we will use an approximation called Stirling’s formula,

ol — (E)W%(l +0(1/n)),

e

Snote that & — j 4+ 1 runs from k to 1 as j runs from 1 to k, so we are describing exactly the same sum.
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which tells us, roughly, that (z/e)* is a good approximation for z!. Moreover the constant in the
©(1/n) term is extremely small, so for our purposes we will just say that

X
z! = (f) 2.
e

(We use this equality only in our proof of Lemma 5.18. You will see in that Lemma that we make
the statement that /27 > 1. In fact, /27 > 2, and this is more than enough to make up for any
lack of accuracy in our approximation.) Using Stirling’s formula, we can get a bound on (?),

Lemma 5.18 Forn >t >0,

Proof:

n n!
(t) = m (5.30)
(n/e)"v2mn

(t/e)tV2mt((n — t) Je)n—ty/2x(n — t) (5.31)
B e (5.32)

tt(n — t)n=ty/2m\/t(n — t)

Now if 1 <t < n — 1, we have t(n —t) > n, so that \/t(n —t) > \/n. Further 27 > 1. We can
use these to facts to upper bound the quantity marked 5.32 by

nn

tt(n — t)n—t
When t = 1 or t = n — 1, the inequality in the statement of the lemma is n < n"/(n — 1)"!
which is true sincen —1 <n. B

We are now ready to attack the problem at hand, the expected value of the maximum list
size. Let’s start with a related quantity that we already know how to compute. Let H;; be the
event that ¢ keys hash to slot i. P(Hj) is just the probability of ¢ successes in an independent
trials process with success probability 1/n, so

P(Hy) = (?) (%)t (1 - %)n_t. (5.33)

Now we relate this known quantity to the probability of the event M; that the maximum list
size is t.

Lemma 5.19 Let M, be the event that t is the mazimum list size in hashing n items into a hash
table of size n. Let Hy; be the event that t keys hash to position 1. Then

P(Mt) S nP(Hlt)
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Proof: We begin by letting M;; be the event that the maximum list size is ¢ and this list
appears in slot 7. Observe that that since M;; is a subset of H,

P(M;) < P(Hy). (5.34)

We know that, by definition,
My = My U--- U My,

and so
P(My) = P(Myy U---U Mpy).

Therefore, since the sum of the probabilities of the individual events must be at least as large as
the probability of the union,

P(M;) < P(My) + P(Mat) + -+ - + P(Mhpy). (5.35)

(Recall that we introduced the Principle of Inclusion and Exclusion because the right hand side
overestimated the probability of the union. Note that the inequality in Equation 5.35 holds for
any union, not just this one: it is sometimes called Boole’s inequality.)

In this case, for any i and j, P(M;;) = P(M;;), since there is no reason for slot i to be more
likely than slot j to be the maximum. We can therefore write that

P(Mt) = ’I?,P(Mlt) S nP(Hlt)

Now we can use Equation 5.33 for P(Hi;) and then apply Lemma 5.18 to get that
n\ 1\ 1\
P(H = — 1-——
(Ha) <t> <n> ( n)
n" 1 t 1 n—t
— | = 1—— .
tt(n — )" (n) ( n)

We continue, using algebra, the fact that (1 — %)”_t <1 and Lemma 5.17 to get

IA

<

IN
|

We have shown the following;:



5.5. PROBABILITY CALCULATIONS IN HASHING 233
Lemma 5.20 P(M,;), the probability that the mazimum list length is t, is at most ne' /tt.

Proof:  Our sequence of equations and inequalities above showed that P(Hj;) < :—f Multiply-
ing by n and applying Lemma 5.19 gives our result.ll

Now that we have a bound on P(M;) we can compute a bound on the expected length of the

longest list, namely
n

> P(My)t.

t=0
However, if we think carefully about the bound in Lemma 5.20, we see that we have a problem.
For example when ¢ = 1, the lemma tells us that P(M7) < ne. This is vacuous, as we know that
any probability is at most 1, We could make a stronger statement that P(M;) < max{ne'/t!, 1},
but even this wouldn’t be sufficient, since it would tell us things like P(M;) + P(Mz) < 2, which
is also vacuous. All is not lost however. Our lemma causes this problem only when ¢ is small.
We will split the sum defining the expected value into two parts and bound the expectation for
each part separately. The intuition is that when we restrict ¢ to be small, then Y P(M;)t is small
because t is small (and over all ¢, - P(M;) < 1). When ¢ gets larger, Lemma 5.20 tells us that
P(M,) is very small and so the sum doesn’t get big in that case either. We will choose a way
to split the sum so that this second part of the sum is bounded by a constant. In particular we
split the sum up by

n |5logn/loglogn| n
> P(My)t < > P(My)t + > P(My)t (5.36)
t=0 t=0 t=[5logn/loglogn]

For the sum over the smaller values of ¢, we just observe that in each term ¢ < 5logn/loglogn
so that

5logn/loglogn 5logn/loglogn
> P(My)t < > P(M;)5logn/loglogn (5.37)
t=0 t=0
5logn/loglogn
= blogn/loglogn > P (M) (5.38)
t=0
< 5logn/loglogn (5.39)

(Note that we are not using Lemma 5.20 here; only the fact that the probabilities of disjoint
events cannot add to more than 1.) For the rightmost sum in Equation 5.36, we want to first
compute an upper bound on P(M,;) for t = (5logn/loglogn). Using Lemma 5.20, and doing a
bit of calculation we get that in this case P(M;) < 1/n%. Since the bound on P(M;) from Lemma
5.20 decreases as t grows, and t < n, we can bound the right sum by

n n

> P(My)t < > i?n < Er;:
n/1

<1. (5.40)
n
t=5logn/loglogn t=5logn/loglogn t=5log

SRS

oglogn

Combining Equations 5.39 and 5.40 with 5.36 we get the desired result.

Theorem 5.21 If we hash n items into a hash table of size n, the expected maximum list length
is O(logn/loglogn).
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The choice to break the sum into two pieces here—and especially the breakpoint we chose—
may have seemed like magic. What is so special about logn/loglogn? Consider the bound on
P(My). If you asked what is the value of ¢ for which the bound equals a certain value, say 1/n?,
you get the equation ne!/t! = n=2. If we try to solve the equation ne’/t' = n=2 for t, we quickly
see that we get a form that we do not know how to solve. (Try typing this into Mathematica or
Maple, to see that it can’t solve this equation either.) The equation we need to solve is somewhat
similar to the simpler equation ' = n. While this equation does not have a closed form solution,
one can show that the ¢ that satisfies this equation is roughly clogn/loglogn, for some constant
c. This is why some multiple of logn/loglogn made sense to try as the the magic value. For
values much less than logn/loglogn the bound provided on P(M,) is fairly large. Once we get
past logn/loglogn, however, the bound on P(M;) starts to get significantly smaller. The factor
of 5 was chosen by experimentation to make the second sum come out to be less than 1. We
could have chosen any number between 4 and 5 to get the same result; or we could have chosen
4 and the second sum would have grown no faster than the first.

Important Concepts, Formulas, and Theorems

1. Expected Number of Keys per Slot in Hash Table. In hashing n items into a hash table of
size k, the expected number of items that hash to any one location is n/k.

2. Expected Number of Empty Slots in Hash Table. In hashing n items into a hash table with
k locations, the expected number of empty locations is k(1 — %)”

3. Collision in Hashing. We say that we have a collision when we hash an item to a location
that already contains an item.

4. The Fxpected Number of Collisions in Hashing. In hashing n items into a hash table with
k locations, the expected number of collisions is n — k + k(1 — %)”

5. Harmonic Number. The quantity Zle % is known as a harmonic number, and is sometimes
denoted by Hj. It is a fact that that Zle % = O(log k), and more precisely

1
E—i—lnk:nggl—l—ln/{:.

6. Euler’s Constant. As n gets large, H,, — Inn approaches a limit called Euler’s constant,
Fuler’s constant is about .58.

7. Expected Number of Hashes until all Slots of a Hash Table Are Occupied. The expected
number of items needed to fill all slots of a hash table of size k is between kln k + %k and
klnk + k.

8. FEzxpected Maximum Number of Keys per Slot. If we hash n items into a hash table of size
n, the expected maximum list length is O(logn/loglogn).
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Problems

1.

10.

11.

A candy machine in a school has d different kinds of candy. Assume (for simplicity) that all
these kinds of candy are equally popular and there is a large supply of each. Suppose that ¢
children come to the machine and each purchases one package of candy. One of the kinds of
candy is a Snackers bar. What is the probability that any given child purchases a Snackers
bar? Let Y; be the number of Snackers bars that child ¢ purchases, so that Y; is either 0
or 1. What is the expected value of Y;? Let Y be the random variable Y7 + Y5 +--- + Y.
What is the expected value of Y7 What is the expected number of Snackers bars that is
purchased? Does the same result apply to any of the varieties of candy?

. Again as in the previous exercise, we have c¢ children choosing from among ample supplies

of d different kinds of candy, one package for each child, and all choices equally likely. What
is the probability that a given variety of candy is chosen by no child? What is the expected
number of kinds of candy chosen by no child? Suppose now that ¢ = d. What happens to
the expected number of kinds of candy chosen by no child?

. How many children do we expect to have to observe buying candy until someone has bought

a Snackers bar?

. How many children to we expect to have to observe buying candy until each type of candy

has been selected at least once?

. If we have 20 kinds of candy, how many children have to buy candy in order for the

probability to be at least one half that (at least) two children buy the same kind of candy?

. What is the expected number of duplications among all the candy the children have se-

lected?

. Compute the values on the left-hand and right-hand side of the inequality in Lemma 5.18

formn=2,t=0,1,2and forn=3,t=0,1,2,3.

. When we hash n items into k locations, what is the probability that all n items hash to

different locations? What is the probability that the ith item is the first collision? What
is the expected number of items we must hash until the first collision? Use a computer
program or spreadsheet to compute the expected number of items hashed into a hash table
until the first collision with £ = 20 and with & = 100.

. We have seen a number of occasions when our intuition about expected values or probability

in general fails us. When we wrote down Equation 5.27 we said that the expected number
of occupied locations is £ minus the expected number of unoccupied locations. While this
seems obvious, there is a short proof. Give the proof.

Write a computer program that prints out a table of values of the expected number of
collisions with n keys hashed into a table with k locations for interesting values of n and
k. Does this value vary much as n and k change?

Suppose you hash n items into a hash table of size k. It is natural to ask about the time
it takes to find an item in the hash table. We can divide this into two cases, one when the
item is not in the hash table (an unsuccessful search), and one when the item is in the hash
table (a successful search). Consider first the unsuccessful search. Assume the keys hashing
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to the same location are stored in a list with the most recent arrival at the beginning of the
list. Use our expected list length to bound the expected time for an unsuccessful search.
Next consider the successful search. Recall that when we insert items into a hash table, we
typically insert them at the beginning of a list, and so the time for a successful search for
item ¢ should depend on how many entries were inserted after item i. Carefully compute
the expected running time for a successful search. Assume that the item you are searching
for is randomly chosen from among the items already in the table. (Hint: The unsuccessful
search should take roughly twice as long as the successful one. Be sure to explain why this
is the case.)

Suppose I hash nlogn items into n buckets. What is the expected maximum number of
items in a bucket?

The fact that lim, (1 + %)” = e (where n varies over integers) is a consequence of the

fact that limy,_o(1 + h)% = e (where h varies over real numbers). Thus if h varies over
negative real numbers, but approaches 0, the limit still exists and equals e. What does this
tell you about lim,—, oo (1+ %)"7 Using this and rewriting (1 — %)” as (1+ }n)” show that

What is the expected number of empty slots when we hash 2k items into a hash table with
k slots? What is the expected fraction of empty slots close to when k is reasonably large?

Using whatever methods you like (hand calculations or computer), give upper and/or lower
bounds on the value of the z satisfying x* = n.

Professor Max Weinberger decides that the method proposed for computing the maximum
list size is much too complicated. He proposes the following solution. Let X; be the size of
list 7. Then what we want to compute is E(max;(X;)). Well
E(max(X;)) = max(E(X;)) = max(1) = 1.
7 7

]

What is the flaw in his solution?

Prove as tight upper and lower bounds as you can on Zle % For this purpose it is useful

to remember the definition of the natural logarithm as an integral involving 1/x and to
draw rectangles and other geometric figures above and below the curve.

Notice that Inn! = > ;Iné. Sketch a careful graph of y = Inz, and by drawing in
geometric figures above and below the graph, show that

n 1 n n
Zlni——lnng/ lnxd:zgzmi.
i=1 2 1 i=1

Based on your drawing, which inequality do you think is tighter? Use integration by parts
to evaluate the integral. What bounds on n! can you get from these inequalities? Which
one do you think is tighter? How does it compare to Stirling’s approximation? What big
Oh bound can you get on n!?
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5.6 Conditional Expectations, Recurrences and Algorithms

Probability is a very important tool in algorithm design. We have already seen two important
examples in which it is used—primality testing and hashing. In this section we will study several
more examples of probabilistic analysis in algorithms. We will focus on computing the running
time of various algorithms. When the running time of an algorithm is different for different
inputs of the same size, we can think of the running time of the algorithm as a random variable
on the sample space of inputs and analyze the expected running time of the algorithm. This us
a different understanding from studying just the worst case running time for an input of a given
size. We will then consider randomized algorithms, algorithms that depend on choosing something
randomly, and see how we can use recurrences to give bounds on their expected running times
as well.

For randomized algorithms, it will be useful to have access to a function which generates
random numbers. We will assume that we have a function randint(i,j), which generates a
random integer uniformly between i and j (inclusive) [this means it is equally likely to be any
number between ¢ and j] and rand01(), which generates a random real number, uniformly
between 0 and 1 [this means that given any two pairs of real numbers (r;,72) and (s, s2) with
ro —71 = S3— s1 and r1, ro, s1 and so all between 0 and 1, our random number is just as likely to
be between r; and ry as it is to be between s; and s3]. Functions such as randint and rand01
are called random number generators. A great deal of number theory goes into the construction
of good random number generators.

When Running Times Depend on more than Size of Inputs

Exercise 5.6-1 Let A be an array of length n — 1 (whose elements are chosen from some
ordered set), sorted into increasing order. Let b be another element of that ordered
set that we want to insert into A to get a sorted array of length n. Assuming that the
elements of A and b are chosen randomly, what is the expected number of elements
of A that have to be shifted one place to the right to let us insert b7

Exercise 5.6-2 Let A(1 : n) denote the elements in positions 1 to n of the array A. A
recursive description of insertion sort is that to sort A(1 : n), first we sort A(1: n—1),
and then we insert A(n), by shifting the elements greater than A(n) each one place to
the right and then inserting the original value of A(n) into the place we have opened
up. If n =1 we do nothing. Let S;(A(1 : j)) be the time needed to sort the portion
of A from place 1 to place j, and let I;(A(1 : j),b) be the time needed to insert the
element b into a sorted list originally in the first j positions of A to give a sorted list in
the first j + 1 positions of A. Note that S; and I; depend on the actual array A, and
not just on the value of j. Use S; and I; to describe the time needed to use insertion
sort to sort A(1 : n) in terms of the time needed to sort A(1 : n — 1). Don’t forget
that it is necessary to copy the element in position i of A into a variable b before
we move elements of A(1 : i — 1) to the right to make a place for it, because this
moving process will write over A(i). Let T'(n) be the expected value of S,; that is,
the expected running time of insertion sort on a list of n items. Write a recurrence for
T'(n) in terms of T'(n — 1) by taking expected values in the equation that corresponds
to your previous description of the time needed to use insertion sort on a particular
array. Solve your recurrence relation in big-© terms.
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If X is the random variable with X (A,b) equal to the number of items we need to move one
place to the right in order to insert b into the resulting empty slot in A, then X takes on the
values 0,1,...,n — 1 with equal probability 1/n. Thus we have

Baj= X, =, Si= =

Using Sj(A(1 : j)) to stand for the time to sort the portion of the array A from places 1 to
J by insertion sort, and I;(A(1 : j),b) to stand for the time needed to insert b into a sorted list
in the first j positions of the array A, moving all items larger than j to the right one place and
putting b into the empty slot, we can write that for insertion sort

Su(A(L: 1)) = S 1(A(L 0 — 1)) + In_1(A(L : n — 1), A(n)) + c1.

We have included the constant term c; for the time it takes to copy the value of A(n) into
some variable b, because we will overwrite A(n) in the process of moving items one place to the
right. Using the additivity of expected values, we get

E(S,) = E(Sp-1) + E(I,—1) + E(c1).
Using T'(n) for the expected time to sort A(1 : n) by insertion sort, and the result of the previous

exercise, we get
n—1

Tn)=Tn—-1)+cy + .

where we include the constant cy because the time needed to do the insertion is going to be
proportional to the number of items we have to move plus the time needed to copy the value of
A(n) into the appropriate slot (which we will assume we have included in ¢1). We can say that
T(1) = 1 (or some third constant) because with a list of size 1 we have to realize it has size 1,
and then do nothing. It might be more realistic to write

T(n)<T(n—-1)+cn

and
T(n)>T(n—1)+cn,

because the time needed to do the insertion may not be exactly proportional to the number of
items we need to move, but might depend on implementation details. By iterating the recurrence
or drawing a recursion tree, we see that T'(n) = ©(n?). (We could also give an inductive proof.)
Since the best-case time of insertion sort is ©(n) and the worst-case time is ©(n?), it is interesting
to know that the expected case is much closer to the worst-case than the best case.

Conditional Expected Values

Our next example is cooked up to introduce an idea that we often use in analyzing the expected
running times of algorithms, especially randomized algorithms.
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Exercise 5.6-3 I have two nickels and two quarters in my left pocket and 4 dimes in my
right pocket. Suppose I flip a penny and take two coins from my left pocket if it is
heads, and two coins from my right pocket if it is tails. Assuming I am equally likely
to choose any coin in my pocket at any time, what is the expected amount of money
that I draw from my pocket?

You could do this problem by drawing a tree diagram or by observing that the outcomes can
be modeled by three tuples in which the first entry is heads or tails, and the second and third
entries are coins. Thus our sample space is HNQ, HQN, HQQ, HNN,TDD The probabilities
of these outcomes are %, %, 1—12, 1—12, and % respectively. Thus our expected value is

1 1 1 1 1
- - — ]. N 2 __—2 .

Here is a method that seems even simpler. If the coin comes up heads, I have an expected
value of 15 cents on each draw, so with probability 1/2, our expected value is 30 cents. If the coin
comes up tails, I have an expected value of ten cents on each draw, so with probability 1/2 our
expected value is 20 cents. Thus it is natural to expect that our expected value is %30+ %20 =25
cents. In fact, if we group together the 4 outcomes with an H first, we see that their contribution
to the expected value is 15 cents, which is 1/2 times 30, and if we look at the single element
which has a T first, then its contribution to the sum is 10 cents, which is half of 20 cents.

In this second view of the problem, we took the probability of heads times the expected value of
our draws, given that the penny came up heads, plus the probability of tails times the expected
value of our draws, given that the penny came came up tails. In particular, we were using a
new (and as yet undefined) idea of conditional expected value. To get the conditional expected
value if our penny comes up heads, We could create a new sample space with four outcomes,
NQ,QN, NN, QQ, with probabilities % 3 , —, and %. In this sample space the expected amount
of money we draw in two draws is 30 cents (15 cents for the first draw plus 15 cents for the
second), so we would say the conditional expected value of our draws, given that the penny came
up heads, was 30 cents. With a one-element sample space {DD}, we see that we would say that
the conditional expected value of our draws, given that the penny came up tails, is 20 cents.

How do we define conditional expected value? Rather than create a new sample space as we
did above, we use the idea of a new sample space (as we did in discovering a good definition for
conditional probability) to lead us to a good definition for conditional expected value. Namely,
to get the conditional expected value of X given that an event F' has happened we use our
conditional probability weights for the elements of F', namely P(z)/P(F) is the weight for the
element = of F, and pretend F' is our sample space. Thus we define the conditional expected
value of X given F' by

EXIF)= Y X( ;)

5.41
cizeF ) ( )

Remember that we defined the expected value of a random variable X with values 1, xo, ...z

by

where X = x; stands for the event that X has the value z;. Using our standard notation for
conditional probabilities, P(X = x;|F') stands for the conditional probability of the event X = z;
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given the event F. This lets us rewrite Equation 5.41 as

k
E(X|F) =Y x;P(X = x|F).
=1

Theorem 5.22 Let X be a random variable defined on a sample space S and let Fy, Fa, ... F,
be disjoint events whose union is S (i.e. a partition of S). Then

B(X) = Y. E(X|F)P(F).
i=1

Proof:  The proof is simply an exercise in applying definitions. H

Randomized algorithms

Exercise 5.6-4 Consider an algorithm that, given a list of n numbers, prints them all out.
Then it picks a random integer between 1 and 3. If the number is 1 or 2, it stops.
If the number is 3 it starts again from the beginning. What is the expected running
time of this algorithm?

Exercise 5.6-5 Consider the following variant on the previous algorithm:

funnyprint (n)
if (n==1)
return
for i=1 ton
print ¢
x = randint(1,n)
if (x> n/2)
funnyprint(n/2)
else
return

What is the expected running time of this algorithm?

For Exercise 5.6-4, with probability 2/3 we will print out the numbers and quit, and with
probability 1/3 we will run the algorithm again. Using Theorem 5.22, we see that if T'(n) is the
expected running time on a list of length n, then there is a constant ¢ such that

T(n) = %cn—l— %(cn+T(n)),

which gives us 27'(n) = cn. This simplifies to T'(n) = 3cn.

Another view is that we have an independent trials process, with success probability 2/3
where we stop at the first success, and for each round of the independent trials process we spend
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©(n) time. Letting T be the running time (note that 7" is a random variable on the sample space
1,2, 3 with probabilities % for each member) and R be the number of rounds, we have that

T=R-0O(n)

and so
E(T)= E(R)O(n).

Note that we are applying Theorem 5.10 since in this context ©(n) behaves as if it were a
constant”, since n does not depend on R. By Lemma 5.12, we have that E(R) = 3/2 and so
E(T) = 06(n).

In Exercise 5.6-5, we have a recursive algorithm, and so it is appropriate to write down a
recurrence. We can let T'(n) stand for the expected running time of the algorithm on an input of
size n. Notice how we are changing back and forth between letting T' stand for the running time
of an algorithm and the expected running time of an algorithm. Usually we use T to stand for
the quantity of most interest to us, either running time if that makes sense, or expected running
time (or maybe worst-case running time) if the actual running time might vary over different
inputs of size n. The nice thing will be that once we write down a recurrence for the expected
running time of an algorithm, the methods for solving it will be those for we have already learned
for solving recurrences. For the problem at hand, we immediately get that with probability 1/2
we will be spending n units of time (we should really say ©(n) time), and then terminating, and
with probability 1/2 we will spend n units of time and then recurse on a problem of size n/2.
Thus using Theorem 5.22, we get that

1
T(n)=n+ §T(n/2)
Including a base case of T'(1) = 1, we get that

iT(n/2)+n ifn>1
)2
T(”)_{ i itn=1

A simple proof by induction shows that T'(n) = ©(n). Note that the Master Theorem (as we
originally stated it) doesn’t apply here, since a < 1. However, one could also observe that the
solution to this recurrence is no more than the solution to the recurrence T'(n) = T(n/2) + n,
and then apply the Master Theorem.

Selection revisited

We now return to the selection algorithm from Section 4.6. The purpose of the algorithm is to
select the ith smallest element in a set with some underlying order. Recall that in this algorithm,
we first picked an an element p in the middle half of the set, that is, one whose value was
simultaneously larger than at least 1/4 of the items and smaller than at least 1/4 of the items.
We used p to partition the items into two sets and then recursed on one of the two sets. If you
recall, we worked very hard to find an item in the middle half, so that our partitioning would
work well. It is natural to try instead to just pick a partition element at random, because, with
probability 1/2, this element will be in the middle half. We can extend this idea to the following
algorithm:

"What we mean here is that T > Rcin for some constant ¢; and T° < Rcan for some other constant co. Then
we apply Theorem 5.10 to both these inequalities, using the fact that if X > Y, then E(X) > E(Y) as well.
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RandomSelect(A,i,n)
(selects the ith smallest element in set A, where n = |A] )
if (n=1)

return the one item in A

else
p = randomElement(A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
If H is empty

put p in H
if (i <L)
Return RandomSelect(L,i,|L|)

else
Return RandomSelect(H,i— |L|,|H]|)

Here randomElement(A) returns one element from A uniformly at random. We use this
element as our partition element; that is, we use it to divide A into sets L and H with every
element less than the partition element in L and every element greater than it in H. We add the
special case when H is empty, to ensure that both recursive problems have size strictly less than
n. This simplifies a detailed analysis, but is not strictly necessary. At the end of this section we
will show how to get a recurrence that describes fairly precisely the time needed to carry out this
algorithm. However, by being a bit less precise, we can still get the same big-O upper bound
with less work.

When we choose our partition element, half the time it will be between %n and %n. Then

when we partition our set into H and L, each of these sets will have no more than %n elements.
The other half of the time each of H and L will have no more than n elements. In any case, the

time to partition our set into H and L is O(n). Thus we may write

ITGn)+iTMm) +bn ifn>1
214 (7 2
T(”)S{d ifn=1.

We may rewrite the recursive part of the recurrence as
1 1 3
~“T(n) < =T~ b
T =3 (4") o
or

T(n)<T (%n) +2m=T (Zn) +b'n.

Notice that it is possible (but unlikely) that each time our algorithm chooses a pivot element,
it chooses the worst one possible, in which case the selection process could take n rounds, and
thus take time ©(n?). Why, then, is it of interest? If involves far less computation than finding
the median of medians, and its expected running time is still ©(n). Thus it is reasonable to
suspect that on the average, it would be significantly faster than the deterministic process. In
fact, with good implementations of both algorithms, this will be the case.

Exercise 5.6-6 Why does every solution to the recurrence

T(n)<T (%n) + b'n.
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have T'(n) = O(n)?

By the master theorem we know that any solution to this recurrence is O(n), giving a proof
of our next Theorem.

Theorem 5.23 Algorithm RandomSelect has expected running time O(n).

Quicksort

There are many algorithms that will efficiently sort a list of n numbers. The two most common
sorting algorithms that are guaranteed to run in O(nlogn) time are MergeSort and HeapSort.
However, there is another algorithm, Quicksort, which, while having a worst-case running time of
O(n?), has an expected running time of O(nlogn). Moreover, when implemented well, it tends to
have a faster running time than MergeSort or HeapSort. Since many computer operating systems
and programs come with quicksort built in, it has become the sort of choice in many applications.
In this section, we will see why it has expected running time O(nlogn). We will not concern
ourselves with the low-level implementation issues that make this algorithm the fastest one, but
just with a high-level description.

Quicksort actually works similarly to the RecursiveSelect algorithm of the previous subsection.
We pick a random element, and then use it to partition the set of items into two sets L and H.
In this case, we don’t recurse on one or the other, but recurse on both, sorting each one. After
both L and H have been sorted, we just concatenate them to get a sorted list. (In fact, quicksort
is usually done “in place” by pointer manipulation and so the concatenation just happens.) Here
is a pseudocode description of quicksort.

Quicksort (A,n)
if (n=1)
return the one item in A

else
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let ¢ =|L|
If H is empty
put p in H
A1 = QuickSort(H,h)
Ay = QuickSort(L,¥)
return the concatenation of A; and Ao

There is an analysis of quicksort similar to the detailed analysis of RecursiveSelect at the end
of the section, and this analysis is a problem at the end of the section. Instead, based on the
preceding analysis of RandomSelect we will think about modifying the algorithm a bit in order
to make the analysis easier. First, consider what would happen if the random element was the
median each time. Then we would be solving two subproblems of size n/2, and would have the
recurrence

) 2T(n/2)+O(n) ifn>1
Tn) = { o) ifn—1
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and we know by the master theorem that all solutions to this recurrence have T'(n) = O(nlogn).
In fact, we don’t need such an even division to guarantee such performance.

Exercise 5.6-7 Suppose you had a recurrence of the form

) T(apn) +T((1 —ap)n) +0O(n) ifn>1
T(”)—{ o() i1

where a,, is between 1/4 and 3/4. Show that all solutions of a recurrence of this form
have T'(n) = O(nlogn). What do we really need to assume about a, in order to
prove this upper bound?

We can prove that T'(n) = O(nlogn) by induction, or via a recursion tree, noting that there
are O(logn) levels, and each level has at most O(n) work. (The details of the recursion tree are
complicated somewhat by the fact that a,, varies with n, while the details of an inductive proof
simply use the fact that a,, and 1 — a,, are both no more than 3/4.) So long as we know there
is some positive number a < 1 such that a, < a for every n, then we know we have at most
log(1 /qy m levels in a recursion tree, with at most cn units of work per level for some constant c,
and thus we have the same upper bound in big-O terms.

What does this tell us? As long as our problem splits into two pieces, each having size at least
1/4 of the items, quicksort will run in O(nlogn) time. Given this, we will modify our algorithm
to enforce this condition. That is, if we choose a pivot element p that is not in the middle half,
we will just pick another one. This leads to the following algorithm:

Slower Quicksort(A,n)
if (n=1)
return the one item in A

else
Repeat
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let ¢ =[]
Until (|H|>n/4) and (|L| >n/4)
A; = QuickSort(H,h)
Ay = QuickSort(L,¥?)
return the concatenation of A; and A,

Now let’s analyze this algorithm. Let r be the number of times we execute the loop to pick
p, and let a,n be the position of the pivot element. Then if 7'(n) is the expected running time
for a list of length n, then for some constant b

T(n) < E(r)bn+T(apn) +T((1 — an)n),

since each iteration of the loop takes O(n) time. Note that we take the expectation of r, because
T'(n) stands for the expected running time on a problem of size n. Fortunately, E(r) is simple to
compute, it is just the expected time until the first success in an independent trials process with
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success probability 1/2. This is 2. So we get that the running time of Slower Quicksort satisfies

the recurrence
T(apn) +T((1 —ap))n+bn ifn>1
T(")S{d iftn=1"

where a,, is between 1/4 and 3/4. Thus by Exercise 5.6-7 the running time of this algorithm is
O(nlogn).

As another variant on the same theme, observe that looping until we have(|H| > n/4 and
|L| > n/4, is effectively the same as choosing p, finding H and L and then calling Slower
Quicksort(An) once again if either H or L has size less than n/4. Then since with probability
1/2 the element p is between n/4 and 3n/4, we can write

ST() + 5 (T(ann) + T((1 — an)n) + bm)

T(n) <
which simplifies to
T(n) <T(apn)+T((1—ay)n) + 2bn,

T(n) < T(apn) +T((1 — ap)n) + b'n.

Again by Exercise 5.6-7 the running time of this algorithm is O(nlogn).

Further, it is straightforward to see that the expected running time of Slower Quicksort is no
less than half that of Quicksort (and, incidentally, no more than twice that of quicksort) and so
we have shown:

Theorem 5.24 Quicksort has expected running time O(nlogn).

A more exact analysis of RandomSelect

Recall that our analysis of the RandomSelect was based on using T'(n) as an upper bound for
T(|H|) or T(|L|) if either the set H or the set L had more than 3n/4 elements. Here we show
how one can avoid this assumption. The kinds of computations we do here are the kind we would
need to do if we wanted to try to actually get bounds on the constants implicit in our big-O
bounds.

Exercise 5.6-8 Explain why, if we pick the kth element as the random element in Ran-
domSelect (k # n), our recursive problem is of size no more than max{k,n — k}.

If we pick the kth element, then we recurse either on the set L, which has size k, or on the
set H which has size n — k. Both of these sizes are at most max{k,n — k}. (If we pick the nth
element, then £ = n and thus L actually has size k — 1 and H has size n — k + 1.)

Now let X be the random variable equal to the rank of the chosen random element (e.g. if the
random element is the third smallest, X = 3.) Using Theorem 5.22 and the solution to Exercise
5.6-8, we can write that

ST P(X = k)(T(max{k,n — k}) + bn) + P(X = n)(T(max{l,n — 1} +bn) ifn>1
d it n=1.

T(n)g{
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Since X is chosen uniformly between 1 and n, P(X = k) = 1/n for all k. Ignoring the base case
for a minute, we get that

T(n) < 3 %(T(max{k‘, n—k}) + bn) + %(T(n “ 1)+ bm)
n—1
(Z T(max{k,n — k‘})) +bn + %(T(n — 1) +bn).

Now if n is odd and we write out >_7~1 T'(max{k,n — k}), we get
Tn—1)+Tn—-2)+---+T([n/2])+T[n/2])+---+T(n—-2)+T(n—1),

which is just 2 Z;%nm T(k). If n is even we write out >_7_; T(max{k,n — k}), we get
T(n—1)+T(n—2)+ - +T(n/2) + T(L+n/2) + -+ T(n—2) + T(n— 1),

which is less than 2 Z;}l /2 T'(k). Thus we can replace our recurrence by

Tn) < { j (SHons T(k)) + 2T (n — 1) +bn i 0>l (5.42)

If n is odd, the lower limit of the sum is a half-integer, so the possible integer values of the dummy
variable k run from [n/2] to n — 1. Since this is the natural way to interpret a fractional lower
limit, and since it corresponds to what we wrote in both the n even and n odd case above, we
adopt this convention.

Exercise 5.6-9 Show that every solution to the recurrence in Equation 5.42 has T'(n) =

O(n).

We can prove this by induction. We try to prove that T'(n) < cn for some constant c¢. By the
natural inductive hypothesis, we get that

n—1 1
( Z ck) —I—ﬁc(n—l)—}-bn

k=n/2

T(n) <

S

-z - Zeln—1
- > ck— > ck —l—nc(n ) +bn

k=1 k=1
_ n_q\n
< gf(” br _ (5 )2>+c+m
n 2 2
QCﬁ_ﬂ
= =4 2 tctbn
n 2
Sent Cvb
= —cn+=-+bn
4 2
1
= cn—(ch—bn—g)

Notice that so far, we have only assumed that there is some constant ¢ such that T'(k) < ck for
k < n. We can choose a larger ¢ than the one given to us by this assumption without changing
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the inequality T'(k) < ck. By choosing ¢ so that %cn — bn — § is nonnegative (for example ¢ > 8b
makes this term at least bn — 2b which is nonnegative for n > 2), we conclude the proof, and
have another proof of Theorem 5.23.

This kind of careful analysis arises when we are trying to get an estimate of the constant in
a big-O bound (which we decided not to do in this case).

Important Concepts, Formulas, and Theorems

1.

Ezxpected Running Time. When the running time of an algorithm is different for different
inputs of the same size, we can think of the running time of the algorithm as a random vari-
able on the sample space of inputs and analyze the expected running time of the algorithm.
This us a different understanding from studying just the worst case running time.

Randomized Algorithm. Arandomized algorithm is an algorithm that depends on choosing
something randomly.

. Random Number Generator. A random number generator is a procedure that generates a

number that appears to be chosen at random. Usually the designer of a random number
generator tries to generate numbers that appear to be uniformly distributed.

. Insertion Sort. A recursive description of insertion sort is that to sort A(1 : n), first we

sort A(1:n—1), and then we insert A(n), by shifting the elements greater than A(n) each
one place to the right and then inserting the original value of A(n) into the place we have
opened up. If n =1 we do nothing.

. Ezpected Running Time of Insertion Sort. If T'(n) is the expected time to use insertion sort

on a list of length n, then there are constants ¢ and ¢ such that T'(n) < T'(n— 1) 4+ ¢n and
T(n) > T(n — 1) + ¢n,. This means that T(n) = ©(n?). However the best case running
time of insertion sort is ©(n).

Conditional Fxpected Value. We define the conditional expected value of X given F by

E(X|F) =3 ,.cF X(iﬁ)%. This is equivalent to E(X|F) = Y% | 2;P(X = x| F).

Randomized Selection Algorithm. In the randomized selection algorithm to select the ith
smallest element of a set A, we randomly choose a pivot element p in A, divide the rest
of A into those elements that come before p (in the underlying order of A) and those that
come after, put the pivot into the smaller set, and then recursively apply the randomized
selection algorithm to find the appropriate element of the appropriate set.

. Running Time of Randomized Select. Algorithm RandomSelect has expected running time

O(n). Because it does less computation than the deterministic selection algorithm, on
the average a good implementation will run faster than a good implementation of the
deterministic algorithm, but the worst case behavior is ©(n?).

Quicksort. Quicksort is a sorting algorithm in which we randomly choose a pivot element
pin A, divide the rest of A into those elements that come before p (in the underlying order
of A) and those that come after, put the pivot into the smaller set, and then recursively
apply the Quicksort algorithm to sort each of the smaller sets, and concatenate the two
sorted lists. We do nothing if a set has size one.
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Running Time of Quicksort. Quicksort has expected running time O(nlogn). It has worst
case running time ©(n?). Good implementations of Quicksort have proved to be faster on
the average than good implementations of other sorting algorithms.

Problems

1.

Given an array A of length n (chosen from some set that has an underlying ordering),
we can select the largest element of the array by starting out setting L = A(1), and then
comparing L to the remaining elements of the array one at a time, replacing L by A(i) if
A(7) is larger than L. Assume that the elements of A are randomly chosen. For i > 1, let
X; be 1 if element i of A is larger than any element of A(1:4 — 1). Let X; = 1. Then
what does X1 + X9 + --- + X, have to do with the number of times we assign a value to
L? What is the expected number of times we assign a value to L?

. Let A(i : j) denote the array of items in positions ¢ through j of the Array A. In selection

sort, we use the method of Exercise 5.6-1 to find the largest element of the array A and its
position k in the array, then we exchange the elements in position k£ and n of Array A, and
we apply the same procedure recursively to the array A(1:n —1). (Actually we do this if
n > 1; if n = 1 we do nothing.) What is the expected total number of times we assign a
value to L in the algorithm selection sort?

. Show that if H, stands for the nth harmonic number, then

H,+H, 1+ -+ Hy=0(nlogn).

. In a card game, we remove the Jacks, Queens, Kings, and Aces from a deck of ordinary

cards and shuffle them. You draw a card. If it is an Ace, you are paid a dollar and the game
is repeated. If it is a Jack, you are paid two dollars and the game ends; if it is a Queen,
you are paid three dollars and the game ends; and if it is a King, you are paid four dollars
and the game ends. What is the maximum amount of money a rational person would pay
to play this game?

. Why does every solution to T'(n) < T'(3n) + bn have T'(n) = O(n)?

. Show that if in Algorithm Random Select we remove the instruction

If H is empty
put p in H,

then if 7'(n) is the expected running time of the algorithm, there is a constant b such that
T'(n) satisfies the recurrence

) n—1

> T(k)+ bn.

k=n/2

T(n)én—l

Show that if T'(n) satisfies this recurrence, then T'(n) = O(n).
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7.

10.

11.

12.

13.

14.

15.

Suppose you have a recurrence of the form
T(n) <T(apn)+T((1—ap)n)+bnifn>1,
where a,, is between % and %. Show that all solutions to this recurrence are of the form

T(n) = O(nlogn).

. Prove Theorem 5.22.

. A tighter (up to constant factors) analysis of quicksort is possible by using ideas very

similar to those that we used for the randomized selection algorithm. More precisely, we
use Theorem 5.6.1, similarly to the way we used it for select. Write down the recurrence
you get when you do this. Show that this recurrence has solution O(nlogn). In order to
do this, you will probably want to prove that T'(n) < c¢inlogn — can for some constants ¢;
and cso.

It is also possible to write a version of rhe randomized Selection algorithm analogous to
Slower Quicksort. That is, when we pick out the random pivot element, we check if it is in
the middle half and discard it if it is not. Write this modified selection algorithm, give a
recurrence for its running time, and show that this recurrence has solution O(n).

One idea that is often used in selection is that instead of choosing a random pivot element,
we choose three random pivot elements and then use the median of these three as our pivot.
What is the probability that a randomly chosen pivot element is in the middle half? What
is the probability that the median of three randomly chosen pivot elements is in the middle
half? Does this justify the choice of using the median of three as pivot?

Is the expected running time of Quicksort 2(nlogn)?

A random binary search tree on n keys is formed by first randomly ordering the keys, and
then inserting them in that order. Explain why in at least half the random binary search
trees, both subtrees of the root have between in and %n keys. If T'(n) is the expected
height of a random binary search tree on n keys, explain why T'(n) < %T(n) + %T(%n) +1.
(Think about the definition of a binary tree. It has a root, and the root has two subtrees!
What did we say about the possible sizes of those subtrees?) What is the expected height
of a one node binary search tree? Show that the expected height of a random binary search

tree is O(logn).

The expected time for an unsuccessful search in a random binary search tree on n keys (see
Problem 13 for a definition) is the expected depth of a leaf node. Arguing as in Problem
13 and the second proof of Theorem 5.6.2, find a recurrence that gives an upper bound on
the expected depth of a leaf node in a binary search tree and use it to find a big Oh upper
bound on the expected depth of a leaf node.

The expected time for a successful search in a random binary search tree on n nodes (see
problem 13 for a definition) is the expected depth of a node of the tree. With probability
% the node is the root, which has depth 0; otherwise the expected depth is one plus the
expected depth of one of its subtrees. Argue as in Problem 13 and the first proof of
Theorem 5.23 to show that if T'(n) is the expected depth of a node in a binary search tree,
then T(n) < 21 (1T(n) + £T(3n)) + 1. What big Oh upper bound does this give you on
the expected depth of a node in a random binary search tree on n nodes?
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16. Consider the following code for searching an array A for the maximum item:

max = —oo
for i=1 ton
if (A[i] > max)
maz = Ali

If A initially consists of n nodes in a random order, what is the expected number of times
that the line maz = A[i] is executed? (Hint: Let X; be the number of times that max = A[]
is executed in the ith iteration of the loop.)

17. You are a contestant in the game show “Let’s make a Deal.” In this game show, there are
three curtains. Behind one of the curtains is a new car, and behind the other two are cans
of spam. You get to pick one of the curtains. After you pick that curtain, the emcee, Monte
Hall, who we assume knows where the car is, reveals what is behind one of the curtains
that you did not pick, showing you some cans of spam. He then asks you if you would like
to switch your choice of curtain. Should you switch? Why or why not? Please answer this
question carefully. You have all the tools needed to answer it, but several math Ph.D.’s are
on record (in Parade Magazine) giving the wrong answer.
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5.7 Probability Distributions and Variance

Distributions of random variables

We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,
the expected number of heads is 50. But to what extent do we expect to see 50 heads. Would
it be surprising to see 55, 60 or 65 heads instead? To answer this kind of question, we have to
analyze how much we expect a random variable to deviate from its expected value. We will first
see how to analyze graphically how the values of a random variable are distributed around its
expected value. The distribution function D of a random variable X is the function on the values
of X defined by
D(z) = P(X = z).

You probably recognize the distribution function from the role it played in the definition of
expected value. The distribution function of X assigns to each value of X the probability that
X achieves that value. When the values of X are integers, it is convenient to visualize the
distribution function with a diagram called a histogram. In Figure 5.8 we show histograms for
the distribution of the “number of heads” random variable for ten flips of a coin and the “number
of right answers” random variable for someone taking a ten question test with probability .8 of
getting a correct answer. What is a histogram? Those we have drawn are graphs which show for
for each integer value x of X a rectangle of width 1, centered at x, whose height (and thus area)
is proportional to the probability P(X = z). Histograms can be drawn with non-unit width
rectangles. When people draw a rectangle with a base ranging from = = a to « = b, the area of
the rectangle is the probability that X is between a and b.

Figure 5.8: Two histograms.
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From the histograms you can see the difference in the two distributions. You can also see
that we can expect the number of heads to be somewhat near the expected number, though as
few heads as 2 or as many as 8 are not out of the question. We see that the number of right
answers tends to be clustered between 6 and ten, so in this case we can expect to be reasonably
close to the expected value. With more coin flips or more questions, however, will the results
spread out? Relatively speaking, should we expect to be closer to or farther from the expected
value? In Figure 5.9 we show the results of 25 coin flips or 25 questions. The expected number of
heads is 12.5. The histogram makes it clear that we can expect the vast majority of our results
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to have between 9 and 16 heads. Essentially all the results lie between 4 and 20 Thus the results
are not spread as broadly (relatively speaking) as they were with just ten flips. Once again the
test score histogram seems even more tightly packed around its expected value. Essentially all
the scores lie between 14 and 25. While we can still tell the difference between the shapes of the
histograms, they have become somewhat similar in appearance.

Figure 5.9: Histograms of 25 trials
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In Figure 5.10 we have shown the thirty most relevant values for 100 flips of a coin and a 100
question test. Now the two histograms have almost the same shape, though the test histogram is
still more tightly packed around its expected value. The number of heads has virtually no chance
of deviating by more than 15 from its expected value, and the test score has almost no chance
of deviating by more than 11 from the expected value. Thus the spread has only doubled, even
though the number of trials has quadrupled. In both cases the curve formed by the tops of the
rectangles seems quite similar to the bell shaped curve called the normal curve that arises in so
many areas of science. In the test-taking curve, though, you can see a bit of difference between
the lower left-hand side and the lower right hand side.

Since we needed about 30 values to see the most relevant probabilities for these curves, while
we needed 15 values to see most of the relevant probabilities for independent trials with 25 items,

Figure 5.10: One hundred independent trials
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Figure 5.11: Four hundred independent trials
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we might predict that we would need only about 60 values to see essentially all the results in
four hundred trials. As Figure 5.11 shows, this is indeed the case. The test taking distribution
is still more tightly packed than the coin flipping distribution, but we have to examine it closely
to find any asymmetry. These experiments are convincing, and they suggest that the spread of
a distribution (for independent trials) grows as the square root of the number of trials, because
each time we quadruple the number of elements, we double the spread. They also suggest there
is some common kind of bell-shaped limiting distribution function for at least the distribution of
successes in independent trials with two outcomes. However without a theoretical foundation we
don’t know how far the truth of our observations extends. Thus we seek an algebraic expression
of our observations. This algebraic measure should somehow measure the difference between a
random variable and its expected value.

Variance

Exercise 5.7-1 Suppose the X is the number of heads in four flips of a coin. Let Y
be the random variable X — 2, the difference between X and its expected value.
Compute E(Y). Doe it effectively measure how much we expect to see X deviate
from its expected value? Compute E(Y?2). Try repeating the process with X being
the number of heads in ten flips of a coin and Y being X — 5.

Before answering these questions, we state a trivial, but useful lemma (which appeared as
Problem 9 in Section 4 of this chapter and corollary showing that the expected value of an
expectation is that expectation.

Lemma 5.25 If X is a random variable that always takes on the value ¢, then E(X) = c.

Proof: E(X)=P(X=c¢)-c=1-c=c. 1

We can think of a constant ¢ as a random variable that always takes on the value ¢. When
we do, we will just write E(c) for the expected value of this random variable, in which case our
lemma says that F(c) = ¢. This lemma has an important corollary.
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Corollary 5.26 E(E(X)) = E(X).

Proof:  When we think of E(X) as a random variable, it has a constant value, u. By Lemma
525 E(E(x))=E(p) =p=E(x). &

Returning to Exercise 5.7-1, we can use linearity of expectation and Corollary 5.26 to show
that

E(X — E(X)) = E(X) — B(B(X)) = E(X) — E(X) = 0. (5.43)

Thus this is not a particularly useful measure of how close a random variable is to its expectation.
If a random variable is sometimes above its expectation and sometimes below, you would like
these two differences to somehow add together, rather than cancel each other out. This suggests
we try to convert the values of X — E(X) to positive numbers in some way and then take the
expectation of these positive numbers as our measure of spread. There are two natural ways
to make numbers positive, taking their absolute value and squaring them. It turns our that to
prove things about the spread of expected values, squaring is more useful. Could we have guessed
that? Perhaps, since we see that the spread seems to grow with the square root, and the square
root isn’t related to the absolute value in the way it is related to the squaring function. On the
other hand, as you saw in the example, computing expected values of these squares from what
we know now is time consuming. A bit of theory will make it easier.

We define the variance V(X) of a random variable X as the expected value of (X — E(X))2.
We can also express this as a sum over the individual elements of the sample space S and get
that

V(X)=E(X - EX))?= Y P(s)(X(s) - E(X))*. (5.44)

s:8€8

Now let’s apply this definition and compute the variance in the number X of heads in four
flips of a coin. We have

VOO = (0-2P 1+ (1-2 5 + 2-2F- 5+ 3-2% 1 + (-2 5 =1

Computing the variance for ten flips of a coin involves some very inconvenient arithmetic. It
would be nice to have a computational technique that would save us from having to figure out
large sums if we want to compute the variance for ten or even 100 or 400 flips of a coin to check
our intuition about how the spread of a distribution grows. We saw before that the expected
value of a sum of random variables is the sum of the expected values of the random variables.
This was very useful in making computations.

Exercise 5.7-2 What is the variance for the number of heads in one flip of a coin? What
is the sum of the variances for four independent trials of one flip of a coin?

Exercise 5.7-3 We have a nickel and quarter in a cup. We withdraw one coin. What is
the expected amount of money we withdraw? What is the variance? We withdraw
two coins, one after the other without replacement. What is the expected amount of
money we withdraw? What is the variance? What is the expected amount of money
and variance for the first draw? For the second draw?
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Exercise 5.7-4 Compute the variance for the number of right answers when we answer
one question with probability .8 of getting the right answer (note that the number
of right answers is either 0 or 1, but the expected value need not be). Compute the
variance for the number of right answers when we answer 5 questions with probability
.8 of getting the right answer. Do you see a relationship?

In Exercise 5.7-2 we can compute the variance

1 1 1 1 1

X)=(0—-2)2. 24 (1—-2).2 =2,
Thus we see that the variance for one flip is 1/4 and sum of the variances for four flips is 1. In
Exercise 5.7-4 we see that for one question the variance is

V(X)=.2(0-.8)% + .8(1—.8)*=.16
For five questions the variance is

42.(.2)° +3%.5.(2)1-(8) +22-10-(.2)>- (.8)2 + 12-10-(.2)%- (.8)% +
02-5-(2)L-(8) +12.(8)5=18

The result is five times the variance for one question.

For Exercise 5.7-3 the expected amount of money for one draw is $.15. The variance is
(.05 —.15)%- .5 + (.25 —.15)% . .5 = .01.

For removing both coins, one after the other, the expected amount of money is $.30 and the
variance is 0. Finally the expected value and variance on the first draw are $.15 and .01 and the
expected value and variance on the second draw are $.15 and .01.

It would be nice if we had a simple method for computing variance by using a rule like “the
expected value of a sum is the sum of the expected values.” However Exercise 5.7-3 shows that
the variance of a sum is not always the sum of the variances. On the other hand, Exercise 5.7-2
and Exercise 5.7-4 suggest such a result might be true for a sum of variances in independent trials
processes. In fact slightly more is true. We say random variables X and Y are independent when
the event that X has value x is independent of the event that Y has value y, regardless of the
choice of z and y. For example, in n flips of a coin, the number of heads on flip 4 (which is 0 or 1) is
independent of the number of heads on flip j. To show that the variance of a sum of independent
random variables is the sum of their variances, we first need to show that the expected value of
the product of two independent random variables is the product of their expected values.

Lemma 5.27 If X and Y are independent random wvariables on a sample space S with values
T1,T9,...,TE and Y1,Y2, - - ., Ym TESpectively, then
E(XY)=EX)E(Y).

Proof: We prove the lemma by the following series of equalities. In going from (5.45) to
(5.46), we use the fact that X and Y are independent; the rest of the equations follow from
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definitions and algebra.

E(X)E(Y)
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Theorem 5.28 If X and Y are independent random variables then

VIX+Y)=V(X)+ V().

Proof:  Using the definitions, algebra and linearity of expectation we have

VIX+Y) = B(X+Y)-EX+Y))?

|
&

E(X —E(X)+Y - E(Y))?

(5.45)

(5.46)

E

(X —E(X))*+2(X — E(X))(Y —E(Y)) + (Y — E(Y))?)
X —EX))?4+2E(X —EX)(Y —E(Y))+E(Y — E(Y))?

Now the first and last terms and just the definitions of V(X) and V(Y") respectively. Note also
that if X and Y are independent and b and ¢ are constants, then X —b and Y — ¢ are independent
(See Problem 8 at the end of this section.) Thus we can apply Lemma 5.27 to the middle term

to obtain

= V(X)+2E(X — E(X))E(Y — E(Y)) + V(Y).

Now we apply Equation 5.43 to the middle term to show that it is 0. This proves the theorem. B

With this theorem, computing the variance for ten flips of a coin is easy; as usual we have
the random variable X; that is 1 or 0 depending on whether or not the coin comes up heads. We
saw that the variance of X; is 1/4, so the variance for X; + Xo + --- + X3¢0 is 10/4 = 2.5.

Exercise 5.7-5 Find the variance for 100 flips of a coin and 400 flips of a coin.

Exercise 5.7-6 The variance in the previous problem grew by a factor of four when the
number of trials grew by a factor of 4, while the spread we observed in our histograms
grew by a factor of 2. Can you suggest a natural measure of spread that fixes this

problem?
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For Exercise 5.7-5 recall that the variance for one flip was 1/4. Therefore the variance for 100
flips is 25 and the variance for 400 flips is 100. Since this measure grows linearly with the size,
we can take its square root to give a measure of spread that grows with the square root of the
quiz size, as our observed “spread” did in the histograms. Taking the square root actually makes
intuitive sense, because it “corrects” for the fact that we were measuring expected squared spread
rather than expected spread.

The square root of the variance of a random variable is called the standard deviation of the
random variable and is denoted by o, or o(X) when there is a chance for confusion as to what
random variable we are discussing. Thus the standard deviation for 100 flips is 5 and for 400 flips
is 10. Notice that in both the 100 flip case and the 400 flip case, the “spread” we observed in the
histogram was 43 standard deviations from the expected value. What about for 25 flips? For
25 flips the standard deviation will be 5/2, so +3 standard deviations from the expected value
is a range of 15 points, again what we observed. For the test scores the variance is .16 for one
question, so the standard deviation for 25 questions will be 2, giving us a range of 12 points. For
100 questions the standard deviation will be 4, and for 400 questions the standard deviation will
be 8. Notice again how three standard deviations relate to the spread we see in the histograms.

Our observed relationship between the spread and the standard deviation is no accident. A
consequence of a theorem of probability known as the central limit theorem is that the percentage
of results within one standard deviation of the mean in a relatively large number of independent
trials with two outcomes is about 68%; the percentage within two standard deviations of the

mean is about 95.5%, and the percentage within three standard deviations of the mean is about
99.7%.

What the central limit theorem says is that the sum of independent random variables with
the same distribution function is approximated well by saying that the probability that the sum
is between a and b is an appropriately chosen multiple of [ é’ e~ dg (where ¢ is an appropriate
constant) when the number of random variables we are adding is sufficiently large.® The distri-
bution given by that multiple of the integral is called the normal distribution. Since many of
the things we observe in nature can be thought of as the outcome of multistage processes, and
the quantities we measure are often the result of adding some quantity at each stage, the central
limit theorem “explains” why we should expect to see normal distributions for so many of the
things we do measure. While weights can be thought of as the sum of the weight change due to
eating and exercise each week, say, this is not a natural interpretation for blood pressures. Thus
while we shouldn’t be particularly surprised that weights are normally distributed, we don’t have
the same basis for predicting that blood pressures would be normally distributed, even though
they are!

Exercise 5.7-7 If we want to be 95% sure that the number of heads in n flips of a coin is
within £1% of the expected value, how big does n have to be?

Exercise 5.7-8 What is the variance and standard deviation for the number of right an-
swers for someone taking a 100 question short answer test where each answer is graded
either correct or incorrect if the person knows 80% of the subject material for the test
the test and answers correctly each question she knows? Should we be surprised if
such a student scores 90 or above on the test?

8Still more precisely, if we let 14 be the expected value of the random variable X; and ¢ be its standard deviation
(all X; have the same expected value and standard distribution since they have the same distribution) and scale

the sum of our random variables by Z = L\ﬁx’ﬁ"“, then the probability that a < Z < b is fab ﬁeﬂ“’z/z dx.

o\ N
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Recall that for one flip of a coin the variance is 1/4, so that for n flips it is n/4. Thus for n
flips the standard deviation is y/n/2. We expect that 95% of our outcomes will be within 2
standard deviations of the mean (people always round 95.5 to 95) so we are asking when two
standard deviations are 1% of n/2. Thus we want an n such that 2y/n/2 = .01(.5n), or such that
Vn=5-10"3n, or n = 25-107%n2. This gives us n = 10°/25 = 40, 000.

For Exercise 5.7-8, the expected number of correct answers on any given question is .8. The
variance for each answer is .8(1 —.8)% +.2(0 — .8)? = .8 -.04+ .2 - .64 = .032 +.128 = .16. Notice
this is .8 - (1 — .8). The total score is the sum of the random variables giving the number of
points on each question, and assuming the questions are independent of each other, the variance
of their sum is the sum of their variances, or 16. Thus the standard deviation is 4. Since 90% is
2.5 standard deviations above the expected value, the probability of getting that a score that far
from the expected value is somewhere between .05 and .003 by the Central Limit Theorem. (In
fact it is just a bit more than .01). Assuming that someone is just as likely to be 2.5 standard
deviations below the expected score as above, which is not exactly right but close, we see that
it is quite unlikely that someone who knows 80% of the material would score 90% or above on
the test. Thus we should be surprised by such a score, and take the score as evidence that the
student likely knows more than 80% of the material.

Coin flipping and test taking are two special cases of Bernoulli trials. With the same kind of
computations we used for the test score random variable, we can prove the following.

Theorem 5.29 In Bernoulli trials with probability p of success, the variance for one trial is
p(1 —p) and for n trials is np(1 — p), so the standard deviation for n trials is \/np(1 — p).

Proof:  You are asked to give the proof in Problem 7.1

Important Concepts, Formulas, and Theorems

1. Histogram. Histograms are graphs which show for for each integer value x of a random
variable X a rectangle of width 1, centered at z, whose height (and thus area) is proportional
to the probability P(X = x). Histograms can be drawn with non-unit width rectangles.
When people draw a rectangle with a base ranging from = a to x = b, the area of the
rectangle is the probability that X is between a and b.

2. Ezxpected Value of a Constant. If X is a random variable that always takes on the value c,
then F(X) = ¢. In particular, E(E(X)) = E(X).

3. Variance. We define the variance V(X) of a random variable X as the expected value of
(X — E(X))?. We can also express this as a sum over the individual elements of the sample
space S and get that V(X) = E(X — E(X))? = ¥ ,..e5 P(s)(X(s) — E(X))2

4. Independent Random Variables. We say random variables X and Y are independent when
the event that X has value x is independent of the event that Y has value y, regardless of
the choice of z and y.

5. Ezpected Product of Independent Random Variables. If X and Y are independent random
variables on a sample space S, then E(XY) = E(X)E(Y).
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6. Variance of Sum of Independent Random Variables. If X and Y are independent random
variables then V(X +Y) = V(X) + V(Y).

7. Standard deviation. The square root of the variance of a random variable is called the
standard deviation of the random variable and is denoted by o, or ¢(X) when there is a
chance for confusion as to what random variable we are discussing.

8. Variance and Standard Deviation for Bernoulli Trials. In Bernoulli trials with probability
p of success, the variance for one trial is p(1 —p) and for n trials is np(1—p), so the standard
deviation for n trials is \/np(1 — p).

9. Central Limit Theorem. The central limit theorem says that the sum of independent ran-
dom variables with the same distribution function is approximated well by saying that the
probability that the random variable is between a and b is an appropriately chosen multiple
of [ : e—ca’ dx, for some constant ¢, when the number of random variables we are adding is
sufficiently large. This implies that the probability that a sum of independent random vari-
ables is within one, two, or three standard deviations of its expected value is approximately
.68, .955, and .997.

Problems

1. Suppose someone who knows 60% of the material covered in a chapter of a textbook is
taking a five question objective (each answer is either right or wrong, not multiple choice
or true-false) quiz. Let X be the random variable that for each possible quiz, gives the
number of questions the student answers correctly. What is the expected value of the
random variable X — 3? What is the expected value of (X — 3)2? What is the variance of
X7

2. In Problem 1 let X; be the number of correct answers the student gets on question 7, so
that X; is either zero or one. What is the expected value of X;? What is the variance of
X;?7 How does the sum of the variances of X; through X5 relate to the variance of X for
Problem 17

3. We have a dime and a fifty cent piece in a cup. We withdraw one coin. What is the
expected amount of money we withdraw? What is the variance? Now we draw a second
coin, without replacing the first. What is the expected amount of money we withdraw?
What is the variance? Suppose instead we consider withdrawing two coins from the cup
together. What is the expected amount of money we withdraw, and what is the variance?
What does this example show about whether the variance of a sum of random variables is
the sum of their variances.

4. If the quiz in Problem 1 has 100 questions, what is the expected number of right answers,
the variance of the expected number of right answers, and the standard deviation of the
number of right answers?

5. Estimate the probability that a person who knows 60% of the material gets a grade strictly
between 50 and 70 in the test of Exercise 5.7-4
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. What is the variance in the number of right answers for someone who knows 80% of the

material on which a 25 question quiz is based? What if the quiz has 100 questions? 400
questions? How can we ”correct” these variances for the fact that the “spread” in the
histogram for the number of right answers random variable only doubled when we multiplied
the number of questions in a test by 47

Prove Theorem 5.29.

. Show that if X and Y are independent and b and ¢ are constant, then X —b and Y — ¢ are

independent.

. We have a nickel, dime and quarter in a cup. We withdraw two coins, first one and then

the second, without replacement. What is the expected amount of money and variance for
the first draw? For the second draw? For the sum of both draws?

Show that the variance for n independent trials with two outcomes and probability p of
success is given by np(1 —p). What is the standard deviation? What are the corresponding
values for the number of failures random variable?

What are the variance and standard deviation for the sum of the tops of n dice that we
roll?

How many questions need to be on a short answer test for us to be 95% sure that someone
who knows 80% of the course material gets a grade between 75% and 85%?7

Is a score of 70% on a 100 question true-false test consistent with the hypothesis that the
test taker was just guessing? What about a 10 question true-false test? (This is not a plug
and chug problem; you have to come up with your own definition of “consistent with.”)

Given a random variable X, how does the variance of c¢X relate to that of X7

Draw a graph of the equation y = z(1 — z) for = between 0 and 1. What is the maximum
value of y? Why does this show that the variance (see Problem 10 in this section) of the

“number of successes” random variable for n independent trials is less than or equal to
n/4?

This problem develops an important law of probability known as Chebyshev’s law. Suppose
we are given a real number > 0 and we want to estimate the probability that the difference
| X (z) — E(X)| of a random variable from its expected value is more than r.

(a) Let S = {x1,22,...,2,} be the sample space, and let E = {xy,z2,...,x} be the set
of all z such that | X (z) — E(X)| > r. By using the formula that defines V' (X), show

that
k

V(X) > > P(x)r® = P(E)r?

(b) Show that the probability that | X (x) — E(X)| > r is no more than V(X)/r?. This is
called Chebyshev’s law.

Use Problem 15 of this section to show that in n independent trials with probability p of

success,
P ( # of successes — np S ) <
r
n — ) = 4nr?
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18.

19.

20.

This problem derives an intuitive law of probability known as the law of large numbers from
Chebyshev’s law. Informally, the law of large numbers says if you repeat an experiment
many times, the fraction of the time that an event occurs is very likely to be close to the
probability of the event. In particular, we shall prove that for any positive number s, no
matter how small, by making the number n independent trials in a sequence of independent
trials large enough, we can make the probability that the number X of successes is between
np —ns and np + ns as close to 1 as we choose. For example, we can make the probability
that the number of successes is within 1% (or 0.1 per cent) of the expected number as close
to 1 as we wish.

a) Show that the probability that | X () — np| > sn is no more than p(1 — s2n.
p Yy p| = p p

(b) Explain why this means that we can make the probability that X (z) is between np—sn
and np + sn as close to 1 as we want by making n large.

On a true-false test, the score is often computed by subtracting the number of wrong
answers from the number of right ones and converting that number to a percentage of the
number of questions. What is the expected score on a true-false test graded this way of
someone who knows 80% of the material in a course? How does this scheme change the
standard deviation in comparison with an objective test? What must you do to the number
of questions to be able to be a certain percent sure that someone who knows 80% gets a
grade within 5 points of the expected percentage score?

Another way to bound the deviance from the expectation is known as Markov’s inequality.
This inequality says that if X is a random variable taking only non-negative values, then,
for any k > 1,

P(X > kE(X)) <

=

Prove this inequality.
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Chapter 6

Graphs

6.1 Graphs

In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a
graph. Many situations in the applications of discrete mathematics may be modeled by the use
of a graph, and many algorithms have their most natural description in terms of graphs. It is for
this reason that graphs are important to the computer scientist. Graph theory is an ideal subject
for developing a deeper understanding of proof by induction because induction, especially strong
induction, seems to enter into the majority of proofs in graph theory.

Exercise 6.1-1 In Figure 6.1, you see a stylized map of some cities in the eastern United
States (Boston, New York, Pittsburgh, Cincinnati, Chicago, Memphis, New Orleans,
Atlanta, Washington DC, and Miami). A company has major offices with data pro-
cessing centers in each of these cities, and as its operations have grown, it has leased
dedicated communication lines between certain pairs of these cities to allow for effi-
cient communication among the computer systems in the various cities. Each grey
dot in the figure stands for a data center, and each line in the figure stands for a
dedicated communication link. What is the minimum number of links that could be
used in sending a message from B (Boston) to NO (New Orleans)? Give a route with
this number of links.

Exercise 6.1-2 Which city or cities has or have the most communication links emanating
from them?

Exercise 6.1-3 What is the total number of communication links in the figure?

The picture in Figure 6.1 is a drawing of what we call a “graph”. A graph consists of a set
of wvertices and a set of edges with the property that each edge has two (not necessarily different)
vertices associated with it and called its endpoints. We say the edge joins the endpoints, and
we say two endpoints are adjacent if they are joined by an edge. When vertex is an endpoint
of an edge, we say the edge and the vertex are incident. Several more examples of graphs are
given in Figure 6.2. To draw a graph, we draw a point (in our case a grey circle) in the plane
for each vertex, and then for each edge we draw a (possibly curved) line between the points that
correspond to the endpoints of the edge. The only vertices that may be touched by the line

263
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Figure 6.1: A stylized map of some eastern US cities.

representing an edge are the endpoints of the edge. Notice that in graph (d) of Figure 6.2 we
have three edges joining the vertices marked 1 and 2 and two edges joining the vertices marked 2
and 3. We also have one edge that joins the vertex marked 6 to itself. This edge has two identical
endpoints. The graph in Figure 6.1 and the first three graphs in Figure 6.2 are called simple
graphs. A simple graph is one that has at most one edge joining each pair of distinct vertices, and
no edges joining a vertex to itself.! You’ll note in Figure 6.2 that we sometimes label the vertices
of the graph and we sometimes don’t. We label the vertices when we want to give them meaning,

!The terminology of graph theory has not yet been standardized, because it is a relatively young subject. The
terminology we are using here is the most popular terminology in computer science, but some graph theorists
would reserve the word graph for what we have just called a simple graph and would use the word multigraph for
what we called a graph.

Figure 6.2: Some examples of graphs

1 @@ (L

(a) (b) ()
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as in Figure 6.1 or when we know we will want to refer to them as in graph (d) of Figure 6.2.
We say that graph (d) in Figure 6.2 has a “loop” at vertex 6 and multiple edges joining vertices
1 and 2 and vertices 2 and 3. More precisely, an edge that joins a vertex to itself is called a loop
and we say we have multiple edges between vertices x and y if there is more than one edge joining
x and y. If there is an edge from vertex x to vertex y in a simple graph, we denote it by {x,y}.
Thus {P, W} denotes the edge between Pittsburgh and Washington in Figure 6.1 Sometimes it
will be helpful to have a symbol to stand for a graph. We use the phrase “Let G = (V| E)” as a
shorthand for “Let G stand for a graph with vertex set V' and edge set E.”

The drawings in parts (b) and (c) of Figure 6.2 are different drawings of the same graph. The
graph consists of five vertices and one edge between each pair of distinct vertices. It is called
the complete graph on five vertices and is denoted by K5. In general, a complete graph on n
vertices is a graph with n vertices that has an edge between each two of the vertices. We use
K, to stand for a complete graph on n vertices. These two drawings are intended to illustrate
that there are many different ways we can draw a given graph. The two drawings illustrate two
different ideas. Drawing (b) illustrates the fact that each vertex is adjacent to each other vertex
and suggests that there is a high degree of symmetry. Drawing (c) illustrates the fact that it is
possible to draw the graph so that only one pair of edges crosses; other than that the only places
where edges come together are at their endpoints. In fact, it is impossible to draw K5 so that no
edges cross, a fact that we shall explain later in this chapter.

In Exercise 6.1-1 the links referred to are edges of the graph and the cities are the vertices of
the graph. It is possible to get from the vertex for Boston to the vertex for New Orleans by using
three communication links, namely the edge from Boston to Chicago, the edge from Chicago
to Memphis, and the edge from Memphis to New Orleans. We call an alternating sequence of
vertices and edges in a graph a path if it starts and ends with a vertex, and each edge joins the
vertex before it in the sequence to the vertex after it in the sequence.? If a is the first vertex in
the path and b is the last vertex in the path, then we say the path is a path from a to b. Thus the
path we found from Boston to New Orleans is B{B,CH}CH{CH,ME}, ME{ME,NO}NO.
Because the graph is simple, we can also use the shorter notation B,CH, M E, NO to describe
the same path, because there is exactly one edge between successive vertices in this list. The
length of a path is the number of edges it has, so our path from Boston to New Orleans has length
3. The length of a shortest path between two vertices in a graph is called the distance between
them. Thus the distance from Boston to New Orleans in the graph of Figure 6.1 is three. By
inspecting the map we see that there is no shorter path from Boston to New Orleans. Notice
that no vertex or edge is repeated on our path from Boston to New Orleans. A path is called a
simple path if it has no repeated vertices or edges.?

The degree of a vertex

In Exercise 6.1-2, the city with the most communication links is Atlanta (A). We say the vertex
A has “degree” 6 because 6 edges emanate from it. More generally the degree of a vertex in a
graph is the number of times it is incident with edges of the graph; that is, the degree of a vertex
x is the number of edges from x to other vertices plus twice the number of loops at vertex x. In

2 Again, the terminology we are using here is the most popular terminology in computer science, but what we
just defined as a path would be called a walk by most graph theorists.

3Most graph theorists reserve the word path for what we are calling a simple path, but again we are using the
language most popular in computer science.
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graph (d) of Figure 6.2 vertex 2 has degree 5, and vertex 6 has degree 4. In a graph like the one
in Figure 6.1, it is somewhat difficult to count the edges just because you can forget which ones
you've counted and which ones you haven’t.

Exercise 6.1-4 Is there a relationship between the number of edges in a graph and the
degrees of the vertices? If so, find it. Hint: computing degrees of vertices and
number of edges in some relatively small examples of graphs should help you discover
a formula. To find one proof, imagine a wild west movie in which the villain is hiding
under the front porch of a cabin. A posse rides up and is talking to the owner of the
cabin, and the bad guy can just barely look out from underneath the porch and count
the horses hoofs. If he counts the hooves accurately, what can he do to figure out the
number of horses, and thus presumably the size of the posse?

In Exercise 6.1-4, examples such as those in Figure 6.2 convince us that the sum of the degrees
of the vertices is twice the number of edges. How can we prove this? One way is to count the
total number of incidences between vertices and edges (similar to counting the horses hooves in
the hint). Each edge has exactly two incidences, so the total number of incidences is twice the
number of edges. But the degree of a vertex is the number of incidences it has, so the sum of the
degrees of the vertices is also the total number of of incidences. Therefore the sum of the degrees
of the vertices of a graph is twice the number of edges. Thus to compute the number of edges of
a graph, we can sum the degrees of the vertices and divide by two. (In the case of the hint, the
horses correspond to edges and the hooves to endpoints.) There is another proof of this result
that uses induction.

Theorem 6.1 Suppose a graph has a finite number of edges. Then the sum of the degrees of the
vertices is twice the number of edges.

Proof: = We induct on the number of edges of the graph. If a graph has no edges, then each
vertex has degree zero and the sum of the degrees is zero, which is twice the number of edges.
Now suppose e > 0 and the theorem is true whenever a graph has fewer than e edges. Let G be
a graph with e edges and let € be an edge of G.* Let G’ be the graph (on the same vertex set
as G) we get by deleting e from the edge set E of G. Then G has e — 1 edges, and so by our
inductive hypothesis, the sum of the degrees of the vertices of G’ is twice e — 1. Now there are
two possible cases. Either e was a loop, in which case one vertex of G’ has degree two less in
G’ than it has in G. Otherwise e has two distinct endpoints, in which case exactly two vertices
of G’ have degree one less than their degree in G. Thus in both cases the sum of the degrees of
the vertices in G’ is two less than the sum of the degrees of the vertices in G, so the sum of the
degrees of the vertices in G is (2e — 2) + 2 = 2e. Thus the truth of the theorem for graphs with
e — 1 edges implies the truth of the theorem for graphs with e edges. Therefore, by the principle
of mathematical induction, the theorem is true for a graph with any finite number of edges. B

There are a couple instructive points in the proof of the theorem. First, since it wasn’t clear
from the outset whether we would need to use strong or weak induction, we made the inductive
hypothesis we would normally make for strong induction. However in the course of the proof, we

“4Since it is very handy to have e stand for the number of edges of a graph, we will use Greek letters such as
epsilon (€) to stand for edges of a graph. It is also handy to use v to stand for the number of vertices of a graph,
so we use other letters near the end of the alphabet, such as w, x, y,and z to stand for vertices.
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saw that we only needed to use weak induction, so that is how we wrote our conclusion. This is
not a mistake, because we used our inductive hypothesis correctly. We just didn’t need to use it
for every possible value it covered.

Second, instead of saying that we would take a graph with e — 1 edges and add an edge to
get a graph with e edges, we said that we would take a graph with e edges and remove an edge
to get a graph with e — 1 edges. This is because we need to prove that the result holds for every
graph with e edges. By using the second approach we avoided the need to say that “every graph
with e edges may be built up from a graph with e — 1 edges by adding an edge,” because in the
second approach we started with an arbitrary graph on e edges. In the first approach, we would
have proved that the theorem was true for all graphs that could be built from an e —1 edge graph
by adding an edge, and we would have had to explicitly say that every graph with e edges could
be built in this way.

In Exercise 3 the sum of the degrees of the vertices is (working from left to right)
24+44+5+6+5+2+5+4+2 =40,

and so the graph has 20 edges.

Connectivity

All of the examples we have seen so far have a property that is not common to all graphs, namely
that there is a path from every vertex to every other vertex.

Exercise 6.1-5 The company with the computer network in Figure 6.1 needs to reduce
its expenses. It is currently leasing each of the communication lines shown in the
Figure. Since it can send information from one city to another through one or more
intermediate cities, it decides to only lease the minimum number of communication
lines it needs to be able to send a message from any city to any other city by using
any number of intermediate cities. What is the minimum number of lines it needs to
lease? Give two examples of subsets of the edge set with this number of edges that
will allow communication between any two cities and two examples of a subset of the
edge set with this number of edges that will not allow communication between any
two cities.

Some experimentation with the graph convinces that if we keep eight or fewer edges, there is
no way we can communicate among the cities (we will explain this more precisely later on), but
that there are quite a few sets of nine edges that suffice for communication among all the cities.
In Figure 6.3 we show two sets of nine edges each that allow us to communicate among all the
cities and two sets of nine edges that do not allow us to communicate among all the cities.

Notice that in graphs (a) and (b) it is possible to get from any vertex to any other vertex
by a path. A graph is called connected there is a path between each two vertices of the graph.
Notice that in graph (c) it is not possible to find a path from Atlanta to Boston, for example,
and in graph (d) it is not possible to find a path from Miami to any of the other vertices. Thus
these graphs are not connected; we call them disconnected. In graph (d) we say that Miami is
an isolated vertex.
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Figure 6.3: Selecting nine edges from the stylized map of some eastern US cities.

() N\,

We say two vertices are connected if there is a path between them, so a graph is connected
if each two of its vertices are connected. Thus in Graph (c) the vertices for Boston and New
Orleans are connected. The relationship of being connected is an equivalence relation (in the
sense of Section 1.4). To show this we would have to show that this relationship divides the set
of vertices up into mutually exclusive classes; that is, that it partitions the vertices of the graph.
The class containing Boston, for example is all vertices connected to Boston. If two vertices are
in that set, they both have paths to Boston, so there is a path between them using Boston as
an intermediate vertex. If a vertex x is in the set containing Boston and another vertex y is
not, then they cannot be connected or else the path from y to x and then on to Boston would
connect y to Boston, which would mean y was in the class containing Boston after all. Thus
the relation of being connected partitions the vertex set of the graph into disjoint classes, so it
is an equivalence relation. Though we made this argument with respect to the vertex Boston
in the specific case of graph (c) of Figure 6.3, it is a perfectly general argument that applies
to arbitrary vertices in arbitrary graphs. We call the equivalence relation of being connected
to the connectivity relation. There can be no edge of a graph between two vertices in different
equivalence classes of the connectivity relation because then everything in one class would be
connected to everything in the other class, so the two classes would have to be the same. Thus
we also end up with a partition of the edges into disjoint sets. If a graph has edge set F, and
C' is an equivalence class of the connectivity relation, then we use E(C) to denote the set of
edges whose endpoints are both in C. Since no edge connects vertices in different equivalence
classes, each edge must be in some set E(C). The graph consisting of an equivalence class C'
of the connectivity relation together with the edges E(C) is called a connected component of
our original graph. From now on our emphasis will be on connected components rather than
on equivalence classes of the connectivity relation. Notice that graphs (c) and (d) of Figure 6.3
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each have two connected components. In graph (c) the vertex sets of the connected components
are {NO,ME,CH,CI,P,NY,B} and {A,W, MI}. In graph (d) the connected components are
{NO,ME,CH,B,NY,P,CI,W,A} and {MI}. Two other examples of graphs with multiple
connected components are shown in Figure 6.4.

Figure 6.4: A simple graph with three connected components and a graph with four connected
components.

X A< Lo 0D %

Cycles

In graphs (c) and (d) of Figure 6.3 we see a feature that we don’t see in graphs (a) and (b),
namely a path that leads from a vertex back to itself. A path that starts and ends at the same
vertex is called a closed path. A closed path with at least one edge is called a cycle if, except for
the last vertex, all of its vertices are different. The closed paths we see in graphs (c) and (d) of
Figure 6.3 are cycles. Not only do we say that {NO, ME,CH,B,NY, P,CI,W, A, NO} is a cycle
in in graph (d) of Figure 6.3, but we also say it is a cycle in the graph of Figure 6.1. The way we
distinguish between these situations is to say the cycle {NO, ME,CH,B,NY, P,CI,W, A, NO}
is an induced cycle in Figure 6.3 but not in Figure 6.1. More generally, a graph H is called a
subgraph of the graph G if all the vertices and edges of H are vertices and edges of G, and we call
H an induced subgraph of G if every vertex of H is a vertex of G, and every edge of G connecting
vertices of H is an edge of H. Thus the first graph of Figure 6.4 has an induced K4 and an
induced cycle on three vertices.

We don’t normally distinguish which point on a cycle really is the starting point; for example
we consider the cycle {A, W, M1, A} to be the same as the cycle {W, M1, A,/W}. Notice that
there are cycles with one edge and cycles with two edges in the second graph of Figure 6.4. We
call a graph G a cycle on n vertices or an n-cycle and denote it by C,, if it has a cycle that
contains all the vertices and edges of G and a path on n vertices and denote it by P, if it has a
path that contains all the vertices and edges of G. Thus drawing (a) of Figure 6.2 is a drawing
of Cy. The second graph of Figure 6.4 has an induced P35 and an induced Cs as subgraphs.

Trees

The graphs in parts (a) and (b) of Figure 6.3 are called trees. We have redrawn them slightly in
Figure 6.5 so that you can see why they are called trees. We've said these two graphs are called
trees, but we haven’t given a definition of trees. In the examples in Figure 6.3, the graphs we
have called trees are connected and have no cycles.

Definition 6.1 A connected graph with no cycles is called a tree.
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Figure 6.5: A visual explanation of the name tree.
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Other Properties of Trees

In coming to our definition of a tree, we left out a lot of other properties of trees we could have
discovered by a further analysis of Figure 6.3

Exercise 6.1-6 Given two vertices in a tree, how many distinct simple paths can we find
between the two vertices?

Exercise 6.1-7 Is it possible to delete an edge from a tree and have it remain connected?

Exercise 6.1-8 If G = (V, E) is a graph and we add an edge that joins vertices of V', what
can happen to the number of connected components?

Exercise 6.1-9 How many edges does a tree with v vertices have?

Exercise 6.1-10 Does every tree have a vertex of degree 17 If the answer is yes, explain
why. If the answer is no, try to find additional conditions that will guarantee that a
tree satisfying these conditions has a vertex of degree 1.

For Exercise 6.1-6, suppose we had two distinct paths from a vertex x to a vertex y. They
begin with the same vertex  and might have some more edges in common as in Figure 6.6. Let
w be the last vertex after (or including) x the paths share before they become different. The
paths must come together again at y, but they might come together earlier. Let z be the first
vertex the paths have in common after w. Then there are two paths from w to z that have only
w and z in common. Taking one of these paths from w to z and the other from z to w gives us a
cycle, and so the graph is not a tree. We have shown that if a graph has two distinct paths from
T to y, then it is not a tree. By contrapositive inference, then, if a graph is a tree, it does not
have two distinct paths between two vertices z and y. We state this result as a theorem.

Theorem 6.2 There is exactly one path between each two vertices in a tree.
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Figure 6.6: A graph with multiple paths from x to y.

Proof: By the definition of a tree, there is at least one path between each two vertices. By
our argument above, there is at most one path between each two vertices. Thus there is exactly
one path. H

For Exercise 6.1-7, note that if € is an edge from x to y, then x, €,y is the unique path from
x to y in the tree. Suppose we delete € from the edge set of the tree. If there were still a path
from z to y in the resulting graph, it would also be a path from x to y in the tree, which would
contradict Theorem 6.2. Thus the only possibility is that there is no path between x and y in
the resulting graph, so it is not connected and is therefore not a tree.

For Exercise 6.1-8, if the endpoints are in the same connected component, then the number
of connected components won’t change. If the endpoints of the edge are in different connected
components, then the number of connected components can go down by one. Since an edge has
two endpoints, it is impossible for the number of connected components to go down by more than
one when we add an edge. This paragraph and the previous one lead us to the following useful
lemma.

Lemma 6.3 Removing one edge from the edge set of a tree gives a graph with two connected
components, each of which is a tree.

Proof: Suppose as before the lemma that € is an edge from x to y. We have seen that the
graph G we get by deleting € from the edge set of the tree is not connected, so it has at least two
connected components. But adding the edge back in can only reduce the number of connected
compponents by one. Therefore G has exactly two connected components. Since neither has any
cycles, both are trees. B

In Exercise 6.1-9, our trees with ten vertices had nine edges. If we draw a tree on two vertices
it will have one edge; if we draw a tree on three vertices it will have two edges. There are two
different looking trees on four vertices as shown in Figure 6.7, and each has three edges. On the

Figure 6.7: Two trees on four vertices.

O O O O
(a) <b>O\I/O

basis of these examples we conjecture that a tree on n vertices has n — 1 edges. One approach
to proving this is to try to use induction. To do so, we have to see how to build up every tree
from smaller trees or how to take a tree and break it into smaller ones. Then in either case we
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have to figure out how use the truth of our conjecture for the smaller trees to imply its truth for
the larger trees. A mistake that people often make at this stage is to assume that every tree can
be built from smaller ones by adding a vertex of degree 1. While that is true for finite trees with
more than one vertex (which is the point of Exercise 6.1-10), we haven’t proved it yet, so we can’t
yet use it in proofs of other theorems. Another approach to using induction is to ask whether
there is a natural way to break a tree into two smaller trees. There is: we just showed in Lemma
6.3 that if you remove an edge e from the edge set of a tree, you get two connected components
that are trees. We may assume inductively that the number of edges of each of these trees is one
less than its number of vertices. Thus if the graph with these two connected components has v
vertices, then it has v — 2 edges. Adding e back in gives us a graph with v — 1 edges, so except
for the fact that we have not done a base case, we have proved the following theorem.

Theorem 6.4 For all integers v > 1, a tree with v vertices has v — 1 edges.

Proof: If a tree has one vertex, it can have no edges, for any edge would have to connect that
vertex to itself and would thus give a cycle. A tree with two or more vertices must have an edge
in order to be connected. We have shown before the statement of the theorem how to use the
deletion of an edge to complete an inductive proof that a tree with v vertices has v — 1 edges,
and so for all v > 1, a tree with v vertices has v — 1 edges. B

Finally, for Exercise 6.1-10 we can now give a contrapositive argument to show that a finite
tree with more than one vertex has a vertex of degree one. Suppose instead that G is a graph
that is connected and all vertices of G have degree two or more. Then the sum of the degrees of
the vertices is at least 2v, and so by Theorem 6.1 the number of edges is at least v. Therefore by
Theorem 6.4 G is not a tree. Then by contrapositive inference, if T" is a tree, then T" must have
at least one vertex of degree one. This corollary to Theorem 6.4 is so useful that we state it as a
corollary.

Corollary 6.5 A finite tree with more than one vertex has at least one vertexr of degree one.

Important Concepts, Formulas, and Theorems

1. Graph. A graph consists of a set of vertices and a set of edges with the property that each
edge has two (not necessarily different) vertices associated with it and called its endpoints.

2. Edge; Adjacent. We say an edge in a graph joins its endpoints, and we say two endpoints
are adjacent if they are joined by an edge.

3. Incident. When a vertex is an endpoint of an edge, we say the edge and the vertex are
incident.

4. Drawing of a Graph. To draw a graph, we draw a point in the plane for each vertex, and
then for each edge we draw a (possibly curved) line between the points that correspond to
the endpoints of the edge. Lines that correspond to edges may only touch the vertices that
are their endpoints.

5. Simple Graph. A simple graph is one that has at most one edge joining each pair of distinct
vertices, and no edges joining a vertex to itself.
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. Length, Distance. The length of a path is the number of edges. The distance between two

vertices in a graph is the length of a shortest path between them.

. Loop; Multiple Edges. An edge that joins a vertex to itself is called a loop and we say we

have multiple edges between vertices x and y if there is more than one edge joining x and y.

. Notation for a Graph. We use the phrase “Let G = (V, E)” as a shorthand for “Let G

stand for a graph with vertex set V' and edge set F.”

. Notation for Edges. In a simple graph we use the notation {x,y} for an edge from z to y.

In any graph, when we want to use a letter to denote an edge we use a Greek letter like €
so that we can save e to stand for the number of edges of the graph.

Complete Graph on n vertices. A complete graph on n vertices is a graph with n vertices
that has an edge between each two of the vertices. We use K, to stand for a complete
graph on n vertices.

Path. We call an alternating sequence of vertices and edges in a graph a path if it starts and
ends with a vertex, and each edge joins the vertex before it in the sequence to the vertex
after it in the sequence.

Simple Path. A path is called a simple path if it has no repeated vertices or edges.

Degree of a Vertex. The degree of a vertex in a graph is the number of times it is incident
with edges of the graph; that is, the degree of a vertex x is the number of edges from x to
other vertices plus twice the number of loops at vertex .

Sum of Degrees of Vertices. The sum of the degrees of the vertices in a graph with a finite
number of edges is twice the number of edges.

Connected. A graph is called connected there is a path between each two vertices of the
graph. We say two vertices are connected if there is a path between them, so a graph is
connected if each two of its vertices are connected. The relationship of being connected is
an equivalence relation on the vertices of a graph.

Connected Component. If C is a subset of the vertex set of a graph, we use E(C) to
stand for the set of all edges both of whose endpoints are in C. The graph consisting of an
equivalence class C' of the connectivity relation together with the edges E(C) is called a
connected component of our original graph.

Closed Path. A path that starts and ends at the same vertex is called a closed path.

Cycle. A closed path with at least one edge is called a cycle if, except for the last vertex,
all of its vertices are different.

Tree. A connected graph with no cycles is called a tree.
Important Properties of Trees.

(a) There is a unique path between each two vertices in a tree.
(b) A tree on v vertices has v — 1 edges.

(c¢) Every finite tree with at least two vertices has a vertex of degree one.
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Problems

1. Find the shortest path you can from vertex 1 to vertex 5 in Figure 6.8.

Figure 6.8: A graph.

2. Find the longest simple path you can from vertex 1 to vertex 5 in Figure 6.8.

3. Find the vertex of largest degree in Figure 6.8. What is it’s degree?

Figure 6.9: A graph with a number of connected components.
b <o L0 >

4. How many connected components does the graph in Figure 6.9 have?
5. Find all induced cycles in the graph of Figure 6.9.
6. What is the size of the largest induced K, in Figure 6.97

7. Find the largest induced K, (in words, the largest complete subgraph) you can in Fig-
ure 6.8.

8. Find the size of the largest induced P, in the graph in Figure 6.9.

9. A graph with no cycles is called a forest. Show that if a forest has v vertices, e edges, and
¢ connected components, then v = e + c.

10. What can you say about a five vertex simple graph in which every vertex has degree four?
11. Find a drawing of Kg in which only three pairs of edges cross.

12. Either prove true or find a counter-example. A graph is a tree if there is one and only one
simple path between each pair of vertices.

13. Is there some number m such that if a graph with v vertices is connected and has m edges,
then it is a tree? If so, what is m in terms of v?
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Is there some number m such that a graph on n vertices is a tree if and only if it has m
edges and has no cycles.

Suppose that a graph G is connected, but for each edge, deleting that edge leaves a discon-
nected graph. What can you say about G'7 Prove it.

Show that each tree on four vertices can be drawn with one of the two drawings in Fig-
ure 6.7.

Draw the minimum number of drawings of trees you can so that each tree on five vertices
has one of those drawings. Explain why you have drawn all possible trees.

Draw the minimum number of drawings of trees you can so that each tree on six vertices has
one of those drawings. Explaining why you have drawn all possible drawings is optional.

Find the longest induced cycle you can in Figure 6.8.
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6.2 Spanning Trees and Rooted Trees

Spanning Trees

We introduced trees with the example of choosing a minimum-sized set of edges that would
connect all the vertices in the graph of Figure 6.1. That led us to discuss trees. In fact the kinds
of trees that solve our original problem have a special name. A tree whose edge set is a subset of
the edge set of the graph G is called a spanning tree of G if the tree has exactly the same vertex
set as G. Thus the graphs (a) and (b) of Figure 6.3 are spanning trees of the graph of Figure
6.1.

Exercise 6.2-1 Does every connected graph have a spanning tree? Either give a proof or
a counter-example.

Exercise 6.2-2 Give an algorithm that determines whether a graph has a spanning tree,
finds such a tree if it exists, and takes time bounded above by a polynomial in v and
e, where v is the number of vertices, and e is the number of edges.

For Exercise 6.2-1, if the graph has no cycles but is connected, it is a tree, and thus is its own
spanning tree. This makes a good base step for a proof by induction on the number of cycles of
the graph that every connected graph has a spanning tree. Let ¢ > 0 and suppose inductively that
when a connected graph has fewer than c cycles, then the graph has a spanning tree. Suppose that
G is a graph with ¢ cycles. Choose a cycle of G and choose an edge of that cycle. Deleting that
edge (but not its endpoints) reduces the number of cycles by at least one, and so our inductive
hypothesis implies that the resulting graph has a spanning tree. But then that spanning tree
is also a spanning tree of G. Therefore by the principle of mathematical induction, every finite
connected graph has a spanning tree. We have proved the following theorem.

Theorem 6.6 FEach finite connected graph has a spanning tree.

Proof:  The proof is given before the statement of the theorem.l

In Exercise 6.2-2, we want an algorithm for determining whether a graph has a spanning tree.
One natural approach would be to convert the inductive proof of Theorem 6.6 into a recursive
algorithm. Doing it in the obvious way, however, would mean that we would have to search for
cycles in our graph. A natural way to look for a cycle is to look at each subset of the vertex set
and see if that subset is a cycle of the graph. Since there are 2V subsets of the vertex set, we
could not guarantee that an algorithm that works in this way would find a spanning tree in time
which is big Oh of a polynomial in v and e. In an algorithms course you will learn a much faster
(and much more sophisticated) way to implement this approach. We will use another approach,
describing a quite general algorithm which we can then specialize in several different ways for
different purposes.

The idea of the algorithm is to build up, one vertex at a time, a tree that is a subgraph (not
necessarily an induced subgraph) of the graph G = (V, E). (A subgraph of G that is a tree is
called a subtree of G.) We start with some vertex, say zg. If there are no edges leaving the vertex
and the graph has more than one vertex, we know the graph is not connected and we therefore
don’t have a spanning tree. Otherwise, we can choose an edge €; that connects xy to another
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vertex x1. Thus {xg,x1} is the vertex set of a subtree of G. Now if there are no edges that
connect some vertex in the set {zg,z1} to a vertex not in that set, then {zg,z1} is a connected
component of G. In this case, either G is not connected and has no spanning tree, or it just has
two vertices and we have a spanning tree. However if there is an edge that connects some vertex
in the set {zg,z1} to a vertex not in that set, we can use this edge to continue building a tree.
This suggests an inductive approach to building up the vertex set S of a subtree of our graph
one vertex at a time. For the base case of the algorithm, we let S = {x¢}. For the inductive step,
given S, we choose an edge € that leads from a vertex in .S to a vertex in V — S and add it to the
edge set E’ of the subtree if such an edge exists. If no such edge exists, we stop. If V' =S when
we stop then E’ is the edge set of a spanning tree. (We can prove inductively that E’ is the edge
set of a tree on S, because adding a vertex of degree one to a tree gives a tree.) If V' # S when
we stop, G is not connected and does not have a spanning tree.

To describe the algorithm a bit more precisely, we give pseudocode.

Spantree(V,E)

// Assume that V is the vertex set of the graph.

// Assume that E is an array with |V| entries, and entry i of E is the set of
// edges incident with the vertex in position i of V.

(1) i=0;
(2) Choose a vertex z9 in V.
3 S={xo}

(4) While there is an edge from a vertex in S to a vertex not in S
(5) i=i+1

(6) Choose an edge ¢ from a vertex y in S to a vertex x; not in §
(7) S == S U {.TZ}

(8) E' =F Ug

9@ Ifi=|V|]-1

(10) return E’

(11) Else

(12) Print "The graph is not connected."

The way in which the vertex x; and the edge ¢; are chosen was deliberately left vague because
there are several different ways to specify x; and ¢; that accomplish several different purposes.
However, with some natural assumptions, we can still give a big Oh bound on how long the
algorithm takes. Presumably we will need to consider at most all v vertices of the graph in order
to choose z;, and so assuming we decide whether or not to use a vertex in constant time, this
step of the algorithm will take O(v) time. Presumably we will need to consider at most all e
edges of our graph in order to choose ¢;, and so assuming we decide whether or not to use an
edge in constant time, this step of the algorithm takes at most O(e) time. Given the generality
of the condition of the while loop that begins in line 4, determining whether that condition is
true might also take O(e) time. Since we repeat the While loop at most v times, all executions
of the While loop should take at most O(ve) time. Since line 9 requires us to compute |V, it
takes O(v) steps, and all the other lines take constant time. Thus, with the assumptions we have
made, the algorithm takes O(ve 4+ v + e) = O(ve) time.
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Breadth First Search

Notice that algorithm Spantree will continue as long as a vertex in S is connected to a vertex
not in S. Thus when it stops, S will be the vertex set of a connected component of the graph
and E’ will be the edge set of a spanning tree of this connected component. This suggests that
one use that we might make of algorithm Spantree is to find connected components of graphs.
If we want the connected component containing a specific vertex x, then we make this choice of
xg in Line 2. Suppose this is our goal for the algorithm, and suppose that we also want to make
the algorithm run as quickly as possible. We could guarantee a faster running time if we could
arrange our choice of ¢; so that we examined each edge no more than some constant number of
times between the start and the end of the algorithm. One way to achieve this is to first use all
edges incident with xg as ¢;s, then consider all edges incident with x1, using them as ¢; if we can,
and so on.

We can describe this process inductively. We begin by putting vertex zp in S and (except
for loops or multiple edges) all edges incident with z¢ in E’. Then given vertices 0 through 4,
all of whose edges we have examined and either accepted or (permanently) rejected as an €;, we
examine the edges leaving vertex ¢ + 1. For each of these edges that is incident with a vertex
not already in S, we add the edge and that vertex to the tree. Otherwise we reject that edge.
Eventually we reach a point where we have examined all the edges leaving all the vertices in 5,
and we stop.

To give a pseudocode description of the algorithm, we assume that we are given an array V
that contains the names of the vertices. There are a number of ways to keep track of the edge
set of a graph in a computer. One way is to give a list, called an adjacency list, for each vertex
listing all vertices adjacent to it. In the case of multiple edges, we list each adjacency as many
times as there are edges that give the adjacency. In our pseudocode we implement this idea with
the array F that gives in position ¢ a list of all locations in the array V of vertices adjacent in G
to vertex V[i].

In our pseudocode we also use an array “Edge” to list the edges of the set we called E’ in
algorithm Spantree, an array “Vertex” to list the positions in V' of the vertices in the set S in the
algorithm Spantree, an array “Vertexname” to keep track of the names of the vertices we add to
the set S, and an array “Intree” to keep track of whether the vertex in position ¢ of V is in S.
Because we want our pseudocode to be easily translatable into a computer language, we avoid
subscripts, and use x to stand for the place in the array V that holds the name of the vertex
where we are to start the search, i.e. the vertex xg.

BFSpantree(xz,V ,E)

// Assume that V is an array with v entries, the names of the vertices,

// and that = is the location in V of the name of the vertex with which we want
// to start the tree.

// Assume that E is an array with v entries, each a list of the positions

// in V of the names of vertices adjacent to the corresponding entry of V.
(1) i=0; k=0 ; Intree[x] =1; Vertex[0] = z; Vertexname[0] = V[z]
(2) While i<=k

(3) i=i+1
4 For each j in the list E[Vertex[il]
(5 If Intree[j] # 1

(6) k=k+1
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(7 Edge[k] = {V[Vertex[i]], V[j]}
(8 Intree[j] =1

(9 Vertex[k] = j

(10) Vertexnamelk] = V[j].

(11) Print "Connected component"

(12) return Vertexname[O : k]

(13) print "Spanning tree edges of connected component"
(14) return Edge[l : k]

Notice that the pseudocode allows us to deal with loops and multiple edges through the test
whether vertex j is in the tree in Line 5. However the primary purpose of this line is to make
sure that we do not examine edges that point from vertex i back to a vertex that is already in
the tree.

This algorithm requires that we execute the “For” loop that starts in Line 4 once for each
edge incident with vertex i. The “While” loop that starts in Line 2 is executed at most once
for each vertex. Thus we execute the “For” loop at most twice for each edge, and carry out the
other steps of the “While” loop at most once for each vertex, so that the time to carry out this
algorithm is O(V + E).

The algorithm carries out what is known as a “breadth first search”® of the graph centered at
V[z]. The reason for the phrase “breadth first” is because each time we start to work on a new
vertex, we examine all its edges (thus exploring the graph broadly at this point) before going on
to another vertex. As a result, we first add all vertices at distance 1 from V[z] to S, then all
vertices at distance 2 and so on. When we choose a vertex V[Vertex[k]] to put into the set S
in Line 9, we are effectively labelling it as vertex k. We call k the breadth first number of the
vertex V[j] and denote it as BEN (V[j])°. The breadth first number of a vertex arises twice in
the breadth first search algorithm. The breadth first search number of a vertex is assigned to
that vertex when it is added to the tree, and (see Problem 7) is the number of vertices that have
been previously added. But it then determines when a vertex of the tree is used to add other
vertices to the tree: the vertices are taken in order of their breadth first number for the purpose
of examining all incident edges to see which ones allow us to add new vertices, and thus new
edges, to the tree.

This leads us to one more description of breadth first search. We create a breadth first search
tree centered at xg in the following way. We put the vertex x in the tree and give it breadth first
number zero. Then we process the vertices in the tree in the order of their breadth first number
as follows: We consider each edge leaving the vertex. If it is incident with a vertex z not in the
tree, we put the edge into the edge set of the tree, we put z into the vertex set of the tree, and
we assign z a breadth first number one more than that of the vertex most recently added to the
tree. We continue in this way until all vertices in the tree have been processed.

We can use the idea of breadth first number to make our remark about the distances of
vertices from xy more precise.

Lemma 6.7 After a breadth first search of a graph G centered at Vx|, if d(Vz],V[z]) >
d(V[z],Vy]), then BFN(V|z]) >BFN(V[y]).

®This terminology is due to Robert Tarjan who introduced the idea in his PhD thesis.
5In words, we say that the breadth first number of a vertex is k if it is the kth vertex added to a breadth-first
search tree, counting the initial vertex = as the zeroth vertex added to the tree
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Proof:  We will prove this in a way that mirrors our algorithm. We shall show by induction
that for each nonnegative k, all vertices of distance k from xy are added to the spanning tree
(that is, assigned a breadth first number and put into the set S) after all vertices of distance
k — 1 and before any vertices of distance k + 1. When k = 1 this follows because S starts as the
set Vx| and all vertices adjacent to V[x] are next added to the tree before any other vertices.
Now assume that n > 1 and all vertices of distance n from V[z] are added to the tree after all
vertices of distance n — 1 from V[z] and before any vertices of distance n + 1. Suppose some
vertex of distance n added to the tree has breadth first number m. Then when ¢ reaches m in
Line 3 of our pseudocode we examine edges leaving vertex V[Vertex|[m]] in the “For loop.” Since,
by the inductive hypothesis, all vertices of distance n — 1 or less from V[z] are added to the tree
before vertex V[Vertex[m]], when we examine vertices V[j] adjacent to vertex V[Vertex[m]|, we
will have Intree[j] = 1 for these vertices. Since each vertex of distance n from V[z] is adjacent to
some vertex V[z] of distance n — 1 from V[z], and BEN[V[z]] < m (by the inductive hypothesis),
any vertex of distance n from V[z] and adjacent to vertex V[Vertex[m|] will have Intree[j] = 1.
Since any vertex adjacent to vertex V[Vertex[m]] is of distance at most n + 1 from V], every
vertex we add to the tree from vertex V[Vertex|m]|| will have distance n + 1 from the tree. Thus
every vertex added to the tree from a vertex of distance n from V[z] will have distance n + 1
from V[z]. Further, all vertices of distance n + 1 are adjacent to some vertex of distance n from
Vz], so each vertex of distance n+ 1 is added to the tree from a vertex of distance n. Note that
no vertices of distance n + 2 from vertex V]z] are added to the tree from vertices of distance n
from vertex V[z]. Note also that all vertices of distance n + 1 are added to the tree from vertices
of distance n from vertex V[z]. Therefore all vertices with distance n + 1 from V[z| are added to
the tree after all edges of distance n from V[z]| and before any edges of distance n + 2 from V{z].
Therefore by the principle of mathematical induction, for every positive integer k, all vertices
of distance k from V[x] are added to the tree before any vertices of distance k + 1 from vertex
V[z] and after all vertices of distance k — 1 from vertex V[z]. Therefore since the breadth first
number of a vertex is the number of the stage of the algorithm in which it was added to the tree,
if d(V[z],V]z]) > d(V[z],V]y]), then BFN(V[z]) >BFN(V[y]). ®

Although we introduced breadth first search for the purpose of having an algorithm that
quickly determines a spanning tree of a graph or a spanning tree of the connected component of
a graph containing a given vertex, the algorithm does more for us.

Exercise 6.2-3 How does the distance from V[z] to V[y] in a breadth first search centered
at V[z] in a graph G relate to the distance from V[z] to V[y] in G?

In fact the unique path from V[z] to V]y] in a breadth first search spanning tree of a graph G
is a shortest path in G, so the distance from V[z] to another vertex in G is the same as their
distance in a breadth first search spanning tree centered at V|[x]. This makes it easy to compute
the distance between a vertex V[z] and all other vertices in a graph.

Theorem 6.8 The unique path from Vx| in a breadth first search spanning tree centered at the
vertex Vx| of a graph G to a vertex V[y| is a shortest path from V[z] to V]y] in G.

Proof: = We prove the theorem by induction on the distance from V[z] to V[y]. Fix a breadth
first search tree of G centered at V[x]. If the distance is 0, then the single vertex V'[z] is a shortest
path from V[z] to V[z] in G and the unique path in the tree. Assume that & > 0 and that when
distance from Vx] to V[y| is less than k, the path from V[z] to V[y| in the tree is a shortest
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path from V[z]| to V[y] in G. Now suppose that the distance from V]z] to V[y] is k. Suppose
that a shortest path from Vx| to V[y| has V[z] and V]y] as its last two vertices. Suppose that
the unique path from V[z] to V[y] in the tree has V[2/] and V[y| as its last two vertices. Then
BFN(V[2']) < BFN(Vz]), because otherwise we would have added V[y] to the tree from vertex
V[z]. Then by the contrapositive of Lemma 6.7, the distance from V]z| to V[2] is less than or
equal to that from Vx| to V[z]. But then by the inductive hypothesis, the distance from V]
to V[2'] is the length of the unique path in the tree, and by our previous comment is less than or
equal to the distance from Vz] to V[z]. However then the length of the unique path from Vz]
to V[y| in the tree is no more than the distance from V[z] to V[y], so the two are equal. By the
principle of mathematical induction, the distance from V[x] to V[y] is the length of the unique
path in the tree for every vertex y of the graph. H

Rooted Trees

A breadth first search spanning tree of a graph is not simply a tree, but a tree with a selected
vertex, namely V[z]. It is one example of what we call a rooted tree. A rooted tree consists of a
tree with a selected vertex, called a root, in the tree. Another kind of rooted tree you have likely
seen is a binary search tree. It is fascinating how much additional structure is provided to a tree
when we select a vertex and call it a root. In Figure 6.10 we show a tree with a chosen vertex
and the result of redrawing the tree in a more standard way, with the root at the top and all the
edges sloping down, as you might expect to see with a family tree.

Figure 6.10: Two different views of the same rooted tree.

r

We adopt the language of family trees—ancestor, descendant, parent, and child—to describe
rooted trees in general. In Figure 6.10, we say that vertex j is a child of vertex i, and a descendant
of vertex r as well as a descendant of vertices f and i. We say vertex f is an ancestor of vertex
i. Vertex r is the parent of vertices a, b, ¢, and f. Each of those four vertices is a child of vertex
r. Vertex r is an ancestor of all the other vertices in the tree. In general, in a rooted tree with
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root 7, a vertex x is an ancestor of a vertex y, and vertex y is a descendant of vertex x if z and y
are different and x is on the unique path from the root to y. Vertex x is a parent of vertex y and
y is a child of vertex = in a rooted tree if x is the unique vertex adjacent to y on the unique path
from r to y. A vertex can have only one parent, but many ancestors. A vertex with no children
is called a leaf vertex or an external verter; other vertices are called internal vertices.

Exercise 6.2-4 Prove that a vertex in a rooted tree can have at most one parent. Does
every vertex in a rooted tree have a parent?

In Exercise 6.2-4, suppose x is not the root. Then, because there is a unique path between a
vertex x and the root of a rooted tree and there is a unique vertex on that path adjacent to x,
each vertex other than the root has a unique parent. The root, however, has no parent.

Exercise 6.2-5 A binary tree is a special kind of rooted tree that has some additional
structure that makes it tremendously useful as a data structure. In order to describe
the idea of a binary tree it is useful to think of a tree with no vertices, which we call
the null tree or empty tree. Then we can recursively describe a binary tree as

e an empty tree, or

e a structure consisting of a root vertex, a binary tree called the left subtree of the
root and a disjoint binary tree called the right subtree of the root, with an edge
connecting the root of the left subtree to the root vertex and an edge connecting
the root of the right subtree to the root vertex.

Then a single vertex is a binary tree with an empty right subtree and an empty left
subtree. A rooted tree with two vertices can occur in two ways as a binary tree, either
with a root and a left subtree consisting of one vertex or as a root and a right subtree
consisting of one vertex. Draw all binary trees on four vertices in which the root node
has an empty right child. Draw all binary trees on four vertices in which the root has
a nonempty left child and a nonempty right child.

Exercise 6.2-6 A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children (a vertex with two empty children is called a leaf.)
Are there any full binary trees on an even number of vertices? Prove that what you
say is correct.

For Exercise 6.2-5 we have five binary trees shown in Figure 6.11 for the first question. Then

Figure 6.11: The four-vertex binary trees whose root has an empty right child.

VRS I

in Figure 6.12 we have four more trees as the answer to the second question.
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Figure 6.12: The four-vertex binary trees whose root has both a left and a right child.

A G R

For Exercise 6.2-6, it is possible to have a full binary tree with zero vertices, so there is one
such binary tree. But, if a full binary tree is not empty, it must have odd number of vertices. We
can prove this inductively. A full binary tree with 1 vertex has an odd number of vertices. Now
suppose inductively that n > 1 and any full binary tree with fewer than n vertices has an odd
number of vertices. For a full binary tree with n > 1 vertices, the root must have two nonempty
children. Thus removing the root gives us two binary trees, rooted at the children of the original
root, each with fewer than n vertices. By the definition of full, each of the subtrees rooted in the
two children must be full binary tree. The number of vertices of the original tree is one more
than the total number of vertices of these two trees. This is a sum of three odd numbers, so it
must be odd. Thus, by the principle of mathematical induction, if a full binary tree is not empty,
it must have odd number of vertices.

The definition we gave of a binary tree was a inductive one, because the inductive definition
makes it easy for us to prove things about binary trees. We remove the root, apply the inductive
hypothesis to the binary tree or trees that result, and then use that information to prove our
result for the original tree. We could have defined a binary tree as a special kind of rooted tree,
such that

e each vertex has at most two children,
e cach child is specified to be a left or right child, and

e a vertex has at most one of each kind of child.

While it works, this definition is less convenient than the inductive definition.

There is a similar inductive definition of a rooted tree. Since we have already defined rooted
trees, we will call the object we are defining an r-tree. The inductive definition states that an
r-tree is either a single vertex, called a root, or a graph consisting of a vertex called a root and
a set of disjoint r-trees, each of which has its root attached by an edge to the original root. We
can then prove as a theorem that a graph is an r-tree if and only if it is a rooted tree. Sometimes
inductive proofs for rooted trees are easier if we use the method of removing the root and applying
the inductive hypothesis to the rooted trees that result, as we did for binary trees in our solution
of Exercise 6.2-6.

Important Concepts, Formulas, and Theorems

1. Spanning Tree. A tree whose edge set is a subset of the edge set of the graph G is called a
spanning tree of G if the tree has exactly the same vertex set as G.

2. Breadth First Search. We create a breadth first search tree centered at zg in the following
way. We put the vertex zg in the tree and give it breadth first number zero. Then we
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process the vertices in the tree in the order of their breadth first number as follows: We
consider each edge leaving the vertex. If it is incident with a vertex z not in the tree, we
put the edge into the edge set of the tree, we put z into the vertex set of the tree, and we
assign z a breadth first number one more than that of the vertex most recently added to
the tree. We continue in this way until all vertices in the tree have been processed.

3. Breadth first number. The breadth first number of a vertex in a breadth first search tree
is the number of vertices that were already in the tree when the vertex was added to the
vertex set of the tree.

4. Breadth first search and distances. The distance from a vertex y to a vertex x may be
computed by doing a breadth first search centered at z and then computing the distance
from y to x in the breadth first search tree. In particular, the path from x to y in a breadth
first search tree of G centered at x is a shortest path from z to y in G.

5. Rooted tree. A rooted tree consists of a tree with a selected vertex, called a root, in the tree.

6. Ancestor, Descendant. In a rooted tree with root r, a vertex x is an ancestor of a vertex
y, and vertex y is a descendant of vertex x if x and y are different and z is on the unique
path from the root to y.

7. Parent, Child. In a rooted tree with root r, vertex x is a parent of vertex y and y is a child
of vertex z in if x is the unique vertex adjacent to y on the unique path from r to y.

8. Leaf (External) Vertex. A vertex with no children in a rooted tree is called a leaf vertex or
an external vertez.

9. Internal Vertexr A vertex of a rooted tree that is not a leaf vertex is called an internal vertex.

10. Binary Tree We recursively describe a binary tree as
e an empty tree (a tree with no vertices), or
e a structure consisting of a root vertex, a binary tree called the left subtree of the root
and a binary tree called the right subtree of the root, with an edge connecting the
root of the left subtree to the root vertex and an edge connecting the root of the right
subtree to the root vertex.
11. Full Binary Tree A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children.

Problems

1. Find all spanning trees (list their edge sets) of the graph in Figure 6.13.

2. Show that a finite graph is connected if and only if it has a spanning tree.

3. Draw all rooted trees on 5 vertices. The order and the place in which you write the vertices

down on the page is unimportant. If you would like to label the vertices (as we did in the
graph in Figure 6.10), that is fine, but don’t give two different ways of labelling or drawing
the same tree.
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Figure 6.13: A graph.
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. Draw all rooted trees on 6 vertices with four leaf vertices. If you would like to label the

vertices (as we did in the graph in Figure 6.10), that is fine, but don’t give two different
ways of labelling or drawing the same tree.

. Find a tree with more than one vertex that has the property that all the rooted trees you

get by picking different vertices as roots are different as rooted trees. (Two rooted trees are
the same (isomorphic), if they each have one vertex or if you can label them so that they
have the same (labelled) root and the same (labelled) subtrees.)

. Create a breadth first search tree centered at vertex 12 for the graph in Figure 6.8 and use

it to compute the distance of each vertex from vertex 12. Give the breadth first number
for each vertex.

It may seem clear to some people that the breadth first number of a vertex is the number
of vertices previously added to the tree. However the breadth first number was not actually
defined in this way. Give a proof that the breadth first number of a vertex is the number
of vertices previously added to the tree.

. A(left, right) child of a vertex in a binary tree is the root of a (left, right) subtree of that

vertex. A binary tree is a full binary tree if each vertex has either two nonempty children
or two empty children (a vertex with two empty children is called a leaf.) Draw all full
binary trees on seven vertices.

. The depth of a node in a rooted tree is defined to be the number of edges on the (unique)

path to the root. A binary tree is complete if it is full (see Problem 8) and all its leaves
have the same depth. How many vertices does a complete binary tree of depth 1 have?
Depth 27 Depth d? (Proof required for depth d.)

The height of a rooted or binary tree with one vertex is 0; otherwise it is 1 plus the maximum
of the heights of its subtrees. Based on Exercise 6.2-9, what is the minimum height of any
binary tree on n vertices? (Please prove this.)

A binary tree is complete if it is full and all its leaves have the same depth (see Exercise
6.2-8 and Exercise 6.2-9). A vertex that is not a leaf vertex is called an internal vertex.
What is the relationship between the number I of internal vertices and the number L of
leaf vertices in a complete binary tree. A full binary tree? (Proof please.)

The internal path length of a binary tree is the sum, taken over all internal (see Exercise
6.2-11) vertices of the tree, of the depth of the vertex. The external path length of a binary
tree is the sum, taken over all leaf vertices of the tree, of the depth of the vertex. Show
that in a full binary tree with n internal vertices, internal path length ¢ and external path
length e, we have e = i + 2n.
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Prove that a graph is an r-tree, as defined at the end of the section if and only if it is a
rooted tree.

Use the inductive definition of a rooted tree (r-tree) given at the end of the section to prove
once again that a rooted tree with n vertices has n — 1 edges if n > 1.

In Figure 6.14 we have added numbers to the edges of the graph of Figure 6.1 to give
what is usually called a weighted graph—the name for a graph with numbers, often called
weights associated with its edges. We use w(e) to stand for the weight of the edge e. These
numbers represent the lease fees in thousands of dollars for the communication lines the
edges represent. Since the company is choosing a spanning tree from the graph to save
money, it is natural that it would want to choose the spanning tree with minimum total
cost. To be precise, a minimum spanning tree in a weighted graph is a spanning tree of the
graph such that the sum of the weights on the edges of the spanning tree is a minimum
among all spanning trees of the graph.

Figure 6.14: A stylized map of some eastern US cities.

Give an algorithm to select a spanning tree of minimum total weight from a weighted graph
and apply it to find a minimum spanning tree of the weighted graph in Figure 6.14. Show
that your algorithm works and analyze how much time it takes.
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6.3 Eulerian and Hamiltonian Paths and Tours

Eulerian Tours and Trails

Exercise 6.3-1 In an article generally acknowledged to be one of the origins of the graph
theory 7 Leonhard Euler (pronounced Oiler) described a geographic problem that
he offered as an elementary example of what he called “the geometry of position.”
The problem, known as the “Konigsberg Bridge Problem,” concerns the town of
Kénigsberg in Prussia (now Kaliningrad in Russia), which is shown in a schematic
map (circa 1700) in Figure 6.15. Euler tells us that the citizens amused themselves

Figure 6.15: A schematic map of Konigsberg

Point

by trying to find a walk through town that crossed each of the seven bridges once and
only once (and, hopefully, ended where it started). Is such a walk possible?

In Exercise 6.3-1, such a walk will enter a land mass on a bridge and leave it on a different bridge,
so except for the starting and ending point, the walk requires two new bridges each time it enters
and leaves a land mass. Thus each of these land masses must be at the end of an even number
of bridges. However, as we see from Figure 6.15 each land mass is at the end of an odd number
of bridges. Therefore no such walk is possible.

We can represent the map in Exercise 6.3-1 more compactly with the graph in Figure 6.16.
In graph theoretic terminology Euler’s question asks whether there is a path, starting and ending

Figure 6.16: A graph to replace the schematic map of Koénigsberg

Right Bank

Point Island

Left Bank

"Reprinted in Graph Theory 1736-1936 by Biggs, Lloyd and Wilson (Clarendon, 1976)
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at the same vertex, that uses each edge exactly once.

Exercise 6.3-2 Determine whether the graph in Figure 6.1 has a closed path that includes
each edge of the graph exactly once, and find one if it does.

Exercise 6.3-3 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at the same place, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Fulerian
Tour or Fulerian Circuit.

Exercise 6.3-4 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at different places, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Fulerian
Trail

Exercise 6.3-5 Determine whether the graph in Figure 6.1 has an Eulerain Trail and find
one if it does.

The graph in Figure 6.1 cannot have a closed path that includes each edge exactly once
because if the initial vertex of the path were P, then the number of edges incident with P would
have to be one at the beginning of the path, plus two for each time P appears before the end
of the path, plus one more for the time P would appear at the end of the path, so the degree
of P would have to be even. But if P were not the initial vertex of a closed path including all
the edges, each time we entered P on one edge, we would have to leave it on a second edge, so
the number of edges incident with P would have to be even. Thus in Exercise 6.3-2 there is no
closed path that includes each edge exactly once.

Notice that, just as we argued for a walk through Konigsberg, in any graph with an Eulerian
Circuit, each vertex except for the starting-finishing one will be paired with two new edges (those
preceding and following it on the path) each time it appears on the path. Therefore each of these
vertices is incident with an even number of edges. Further, the starting vertex is incident with
one edge at the beginning of the path and is incident with a different edge at the end of the path.
Each other time it occurs, it will be paired with two edges. Thus this vertex is incident with an
even number of edges as well. Therefore a natural condition a graph must satisfy if it has an
Fulerian Tour is that each vertex has even degree. But Exercise 6.3-3 asked us for the strongest
condition we could find that a graph with an Eulerian Tour would satisfy. How do we know
whether this is as strong a condition as we could devise? In fact it isn’t, the graph in Figure 6.17
clearly has no Fulerian Tour because it is disconnected, but every vertex has even degree.

Figure 6.17: This graph has no Eulerian Tour, even though each vertex has even degree.

The point that Figure 6.17 makes is that in order to have an Eulerian Tour, a graph must be
connected as well as having only vertices of even degree. Thus perhaps the strongest condition



6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 289

we can find for having an Eulerian Tour is that the graph is connected and every vertex has even
degree. Again, the question comes up “How do we show this condition is as strong as possible,
if indeed it is?” We showed a condition was not as strong as possible by giving an example of
a graph that satisfied the condition but did not have an Eulerian Tour. What if we could show
that no such example is possible, i.e. we could prove that a graph which is connected and in
which every vertex has even degree does have an Eulerian Tour? Then we would have shown our
condition is as strong as possible.

Theorem 6.9 A graph has an Eulerian Tour if and only if it is connected and each vertex has
even degree.

Proof: A graph must be connected to have an Eulerian tour, because there must be a path
that includes each vertex, so each two vertices are joined by a path. Similarly, as explained earlier,
each vertex must have even degree in order for a graph to have an Eulerian Tour. Therefore we
need only show that if a graph is connected and each vertex has even degree, then it has an
FEulerain Tour. We do so with a recursive construction. If G has one vertex and no edges, we
have an Eulerian tour consisting of one vertex and no edges. So suppose G is connected, has at
least one edge, and each vertex of G has even degree. Now, given distinct vertices xg, =1, ...,
x; and edges €1, €2, ..., € such that xzgejxy ... €x; is a path, choose an edge €¢;41 from z; to
a vertex x;y1. If w11 is zg, stop. Eventually this process must stop because G is finite, and
(since each vertex in G has even degree) when we enter a vertex other than z, there will be an
edge on which we can leave it. This gives us a closed path C. Delete the edges of this closed
path from the edge set of G. This gives us a graph G’ in which each vertex has even degree,
because we have removed two edges incident with each vertex of the closed path (or else we have
removed a loop). However, G’ need not be connected. Each connected component of G’ is a
connected graph in which each vertex has even degree. Further, each connected component of
G’ contains at least one element x;. (Suppose a connected component C' contained no z;. Since
G is connected, for each i, there is a path in G from each vertex in C to z;. Choose the shortest
such path, and suppose it connects a vertex y in C' to x;. Then no edge in the path can be in
the closed path, or else we would have a shorter path from y to a different vertex x;. Therefore
removing the edges of the closed path leaves y connected to xz; in C, so that C' contains an
x; after all, a contradiction.) We may assume inductively that each connected component has
fewer edges than GG, so each connected component has an Eulerian Tour. Now we may begin to
recursively construct an Eulerian Tour of G by starting at z;, and taking an Eulerian Tour of
the connected component containing x;. Then given a sequence x;, x1, ..., xy such that the
Eulerian tour we have constructed so far includes the vertices x; through xj, the vertices and
edges of the connected components of G’ containing the vertices zj, through xj, the edges €;41
through €, we add the edge ex11 and the vertex x;y1 to our tour, and if the vertices and edges of
the connected component of G’ containing x,1 are not already in our tour, we add an Eulerian
Tour of the connected component of G’ containing x;11 to our tour. When we add the last edge
and vertex of our closed path to the path we have been constructing, every vertex and edge of the
graph will have to be in the path we have constructed, because every vertex is in some connected
component of G, and every edge is either an edge of the first closed path or an edge of some
connected component of G’. Therefore if G is connected and each vertex of G has even degree,
then G has an Eulerian Tour. B

A graph with an Eulerian Tour is called an Fulerian Graph.
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In Exercise 6.3-4, each vertex other than the initial and final vertices of the walk must have
even degree by the same reasoning we used for Eulerian tours. But the initial vertex must have
odd degree, because the first time we encounter it in our Eulerian Trail it is incident with one
edge in the path, but each succeeding time it is incident with two edges in the path. Similarly
the final vertex must have odd degree. This makes it natural to guess the following theorem.

Theorem 6.10 A graph G has an Fulerian Trail if and only if G is connected and all but two
of the vertices of G have even degree.

Proof:  We have already shown that if G has an Eulerian Trail, then all but two vertices of G
have even degree and these two vertices have odd degree.

Now suppose that G is a connected graph in which all but two vertices have even degree.
Suppose the two vertices of odd degree are x and y. Add an edge € joining x and y to the edge
set of G to get G’. Then G’ has an Eulerian Tour by Theorem 6.9. One of the edges of the tour
is the added edge. We may traverse the tour starting with any vertex and any edge following
that vertex in the tour, so we may begin the tour with either zey or yex. By removing the first
vertex and e from the tour, we get an Eulerian Trail. H

By Theorem 6.10, there is no Eulerian Trail in Exercise 6.3-5.

Notice that our proof of Theorem 6.9 gives us a recursive algorithm for constructing a Tour.
Namely, we find a closed walk W starting and ending at a vertex we choose, identify the connected
components of the graph G — W that results from removing the closed walk, and then follow our
closed walk, pausing each time we enter a new connected component of G — W to recursively
construct an Eulerian Tour of the component and traverse it before returning to following our
closed walk. It is possible that the closed walk we remove has only one edge (or in the case of a
simple graph, some very small number of edges), and the number of steps needed for a breadth
first search is ©(e’), where €’ the number of edges in the graph we are searching. Thus our
construction could take ©(e) steps, each of which involves examining ©(e) edges, and therefore
our algorithm takes O(e?) time. (We get a big Oh bound and not a big Theta bound because it
is also possible that the closed walk we find the first time is an Eulerian tour.)

It is an interesting observation on the progress of mathematical reasoning that Euler made a
big deal in his paper of explaining why it is necessary for each land mass to have an even number
of bridges, but seemed to consider the process of constructing the path rather self-evident, as if it
was hardly worth comment. For us, on the other hand, proving that the construction is possible
if each land mass has an even number of bridges (that is, showing that the condition that each
land mass has an even number of bridges is a sufficient condition for the existence of an Eulerian
tour) was a much more significant effort than proving that having an Eulerian tour requires that
each land mass has an even number of bridges. The standards of what is required in order to
back up a mathematical claim have changed over the years.

Hamiltonian Paths and Cycles

A natural question to ask in light of our work on Eulerian tours is whether we can state necessary
and sufficient conditions for a graph to have a closed path that includes each vertex exactly once
(except for the beginning and end). An answer to this question would have the potential to be
quite useful. For example, a salesperson might have to plan a trip through a number of cities
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which are connected by a network of airline routes. Planning the trip so the salesperson would
travel through a city only when stopping there for a sales call would minimize the number of flights
the needed. This question came up in a game, called “around the world,” designed by William
Rowan Hamilton. In this game the vertices of the graph were the vertices of a dodecahedron (a
twelve sided solid in which each side is a pentagon), and the edges were the edges of the solid.
The object was to design a trip that started at one vertex and visited each vertex once and then
returned to the starting vertex along an edge. Hamilton suggested that players could take turns,
one choosing the first five cities on a tour, and the other trying to complete the tour. It is because
of this game that a cycle that includes each vertex of the graph exactly once (thinking of the
first and last vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called
Hamiltonian if it has a Hamiltonian cycle.. A Hamiltonian Path is a simple path that includes
each vertex of the graph exactly once. It turns out that nobody yet knows (and as we shall explain
briefly at the end of the section, it may be reasonable to expect that nobody will find) uesful
necessary and sufficient conditions for a graph to have a Hamiltonian Cycle or a Hamiltonian
Path that are significantly easier to verify than trying all permutations of the vertices to see if
taking the vertices in the order of that permutation to see if that order defines a Hamiltonian
Cycle or Path. For this reason this branch of graph theory has evolved into theorems that give
sufficient conditions for a graph to have a Hamiltonian Cycle or Path; that is theorems that say
all graphs of a certain type have Hamiltonian Cycles or Paths, but do not characterize all graphs
that have Hamiltonian Cycles of Paths.

Exercise 6.3-6 Describe all values of n such that a complete graph on n vertices has a
Hamiltonian Path. Describe all values of n such that a complete graph on n vertices
has a Hamiltonian Cycle.

Exercise 6.3-7 Determine whether the graph of Figure 6.1 has a Hamiltonian Cycle or
Path, and determine one if it does.

Exercise 6.3-8 Try to find an interesting condition involving the degrees of the vertices
of a simple graph that guarantees that the graph will have a Hamiltonian cycle.
Does your condition apply to graphs that are not simple? (There is more than one
reasonable answer to this exercise.)

In Exercise 6.3-6, the path consisting of one vertex and no edges is a Hamiltonian path but
not a Hamiltonian cycle in the complete graph on one vertex. (Recall that a path consisting of
one vertex and no edges is not a cycle.) Similarly, the path with one edge in the complete graph
K> is a Hamiltonian path but not a Hamiltonian cycle, and since K5 has only one edge, there
is no Hamiltonian cycle in the Ks. In the complete graph K, any permutation of the vertices
is a list of the vertices of a Hamiltonian path, and if n > 3, such a Hamiltonian Path from x
to x,, followed by the edge from x, to 1 and the vertex x; is a Hamiltonian Cycle. Thus each
complete graph has a Hamiltonian Path, and each complete graph with more than three vertices
has a Hamiltonian Cycle.

In Exercise 6.3-7, the path with vertices NO, A, MI, W, P, NY, B, CH, CL, and MFE is a
Hamiltonian Path, and adding the edge from M E to NO gives a Hamiltonian Cycle.

Based on our observation that the complete graph on n vertices has a Hamiltonian Cycle if
n > 2, we might let our condition be that the degree of each vertex is one less than the number
of vertices, but this would be uninteresting since it would simply restate what we already know
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for complete graphs. The reason why we could say that K, has a Hamiltonian Cycle when n > 3
was that when we entered a vertex, there was always an edge left on which we could leave the
vertex. However the condition that each vertex has degree n — 1 is stronger than we needed,
because until we were at the second-last vertex of the cycle, we had more choices than we needed
for edges on which to leave the vertex. On the other hand, it might seem that even if n were
rather large, the condition that each vertex should have degree n — 2 would not be sufficient to
guarantee a Hamiltonian cycle, because when we got to the second last vertex on the cycle, all
of the n — 2 vertices it is adjacent to might already be on the cycle and different from the first
vertex, so we would not have an edge on which we could leave that vertex. However there is the
possibility that when we had some choices earlier, we might have made a different choice and
thus included this vertex earlier on the cycle, giving us a different set of choices at the second
last vertex. In fact, if n > 3 and each vertex has degree at least n — 2, then we could choose
vertices for a path more or less as we did for the complete graph until we arrived at vertex n — 1
on the path. Then we could complete a Hamiltonian path unless z,,_1 was adjacent only to the
first n — 2 vertices on the path. In this last case, the first n — 1 vertices would form a cycle,
because x,_1 would be adjacent to x1. Suppose y was the vertex not yet on the path. Since y
has degree n — 2 and y is not adjacent to x,_1, y would have to be adjacent to the first n — 2
vertices on the path. Then since n > 3, we could take the path ziyzs...z,—_121 and we would
have a Hamiltonian cycle. Of course unless n were four, we could also insert y between x2 and
x3 (or any z;—1 and x; such that i < n — 1, so we would still have a great deal of flexibility.
To push this kind of reasoning further, we will introduce a new technique that often appears in
graph theory. We will point out our use of the technique after the proof.

Theorem 6.11 (Dirac) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

Proof:  Suppose, for the sake of contradiction that there is a graph (G with no Hamiltonian
Cycle in which each vertex has degree at least v/2. If we add edges joining existing vertices to
G1, each vertex will still have degree at least v/2. If add all possible edges to G; we will get a
complete graph, and it will have a Hamiltonian cycle. Thus if we continue adding edges to G,
we will at some point reach a graph that does have a Hamiltonian cycle. Instead, we add edges to
(1 until we reach a graph Go that has no Hamiltonian cycle but has the property that if we add
any edge to Go, we get a Hamiltonian cycle. We say G is mazimal with respect to not having
a Hamiltonian cycle. Suppose x and y are not adjacent in G2. Then adding an edge between
x and y to G2 gives a graph with a Hamiltonian cycle, and z and y must be connected by the
added edge in this Hamiltonian cycle. (Otherwise G2 would have a Hamiltonian cycle.) Thus G,
has a Hamiltonian path xjxs...x, that starts at * = x; and ends at y = z,. Further x and y
are not adjacent.

Before we stated our theorem we considered a case where we had a cycle on f — 1 vertices
and were going to put an extra vertex into it between two adjacent vertices. Now we have a path
on f vertices from x = 1 to y = x5, and we want to convert it to a cycle. If we had that y
is adjacent to some vertex x; on the path while x is adjacent to x;11, then we could construct
the Hamiltonian cycle z12; 1127512 ... 2f2;2;—1 ... x271. But we are assuming our graph does not
have a Hamiltonian cycle. Thus for each z; that = is adjacent to on the path zizs...z,, y is not
adjacent to z;_1. Since all vertices are on the path, x is adjacent to at least v/2 vertices among
x9 through x,. Thus y is not adjacent to at least v/2 vertices among x; through x,_1. But there
are only v — 1 vertices, namely x; through z,_1, vertices y could be adjacent to, since it is not
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adjacent to itself. Thus y is adjacent at most v — 1 —v/2 = v/2 — 1 vertices, a contradiction.
Therefore if each vertex of a simple graph has degree at least v/2, the graph has a Hamiltonian
Cycle. B The new tachnique was that of assuming we had a maximal graph (Gz) that did not
have our desired property and then using this maximal graph in a proof by contradiction.

Exercise 6.3-9 Suppose v = 2k and consider a graph G consisting of two complete graphs,
one with k vertices, x1,...z; and one with k + 1 vertices, x,...To,. Notice that we
get a graph with exactly 2k vertices, because the two complete graphs have one vertex
in common. How do the degrees of the vertices relate to v? Does the graph you get
have a Hamiltonian cycle? What does this say about whether we can reduce the lower
bound on the degree in Theorem 6.117

Exercise 6.3-10 In the previous exercise, is there a similar example in the case v = 2k+417

In Exercise 6.3-9, the vertices that lie in the complete graph with k vertices, with the exception
of z, have degree k — 1. Since v/2 = k, this graph does not satisfy the hypothesis of Dirac’s
theorem which assumes that every vertex of the graph has degree at least v/2. We show the case
in which k£ = 3 in Figure 6.18.

Figure 6.18: The vertices of Ky are white or grey; those of K3 are black or grey.

You can see that the graph in Figure 6.18 has no Hamiltonian cycle as follows. If an attempt
at a Hamiltonian cycle begins at a white vertex, after crossing the grey vertex to include the
black ones, it can never return to a white vertex without using the grey one a second time. The
situation is similar if we tried to begin a Hamiltonian cycle at a black vertex. If we try to begin
a Hamiltonian cycle at the grey vertex, we would next have to include all white vertices or all
black vertices in our cycle and would then be stymied because we would have to take our path
through the grey vertex a second time to change colors between white and black. As long as
k > 2, the same argument shows that our graph has no Hamiltonian cycle. Thus the lower bound
of v/2 in Dirac’s theorem is tight; that is, we have a way to construct a graph with minimum
degree v/2 — 1 (when v is even) for which there is no Hamiltonian cycle. If v = 2k 4+ 1 we might
consider two complete graphs of size k£ + 1, joined at a single vertex. Each vertex other than
the one at which they are joined would have degree k, and we would have k < k+ 1/2 = v/2,
so again the minimum degree would be less than v/2. The same kind of argument that we used
with the graph in Figure 6.18 would show that as long as k£ > 1, we have no Hamiltonian cycle.

If you analyze our proof of Dirac’s theorem, you will see that we really used only a consequence
of the condition that all vertices have degree at least v/2, namely that for any two vertices, the
sum of their degrees is at least n.

Theorem 6.12 (Ore) If G is a v-vertex simple graph with n > 3 such that for each two nonad-
jacent vertices x and y the sum of the degrees of x and y is at least v, then G has a Hamiltonian
cycle.
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Proof: See Problem 13. ®

NP-Complete Problems

As we began the study of Hamiltonian Cycles, we mentioned that the problem of determining
whether a graph has a Hamiltonian Cycle seems significantly more difficult than the problem
of determining whether a graph has a Eulerian Tour. On the surface these two problems have
significant similarities.

e Both problems whether a graph has a particular property. (Does this graph have a Hamil-
tonian/Eulerian closed path?) The answer is simply yes or no.

e For both problems, there is additional information we can provide that makes it relatively
easy to check a yes answer if there is one. (The additional information is a closed path. We
simply check whether the closed path includes each edge or each vertex exactly once.)

But there is a striking difference between the two problems as well. It is reasonably easy to
find an Eulerian path in a graph that has one (we saw that the time to use the algorithm implicit
in the proof of Theorem 6.9 is O(e?) where e is the number of edges of the graph. However,
nobody knows how to actually find a permutation of the vertices that is a Hamiltonian path
without checking essentially all permutations of the vertices.® This puts us in an interesting
position. Although if someone gets lucky and guesses a permutation that is a Hamiltonian path,
we can quickly verify the person’s claim to have a Hamiltonian path, but in a graph of reasonably
large size we have no practical method for finding a Hamiltonian path.

This difference is the essential difference between the class P of problems said to be solvable in
polynomial time and the class NP of problems said to be solvable in nondeterministic polynomial
time. We are not going to describe these problem classes in their full generality. A course in formal
languages or perhaps algorithms is a more appropriate place for such a discussion. However in
order to give a sense of the difference between these kinds of problems, we will talk about them
in the context of graph theory. A question about whether a graph has a certain property is called
a graph decision problem. Two examples are the question of whether a graph has an Eulerian
tour and the question of whether a graph has a Hamiltonian cycle.

A graph decision problem has a yes/no answer. A P-algorithm or polynomial time algorithm
for a property takes a graph as input and in time O(nk), where k is a positive integer independent
of the input graph and n is a measure of the amount of information needed to specify the input
graph, it outputs the answer “yes” if and only if the graph does have the property. We say the
algorithm accepts the graph if it answers yes. (Notice we don’t specify what the algorithm does
if the graph does not have the property, except that it doesn’t output yes.) We say a property
of graphs is in the class P if there is a P-algorithm that accepts exactly the graphs with the

property.

An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and O(n/)
additional information, and in time O(n*), where k and j are positive integers independent of

8We say essentially because one can eliminate some permutations immediately; for example if there is no edge
between the first two elements of the permutation, then not only can we ignore the rest of this permutation, but we
may ignore any other permutation that starts in this way. However nobody has managed to find a sub-exponential
time algorithm for solving the Hamiltonian cycle problem.
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the the input graph and n is a measure of the amount of information needed to specify the input
graph, outputs the answer yes if and only if it can use the additional information to determine that
the graph has the property. For example for the property of being Hamiltonian, the algorithm
might input a graph and a permutation of the vertex set of the graph. The algorithm would then
check the permutation to see if it lists the vertices in the order of a Hamiltonian cycle and output
“yes” if it does. We say the algorithm accepts a graph if there is additional information it can use
with the graph as an input to output “yes.” We call such an algorithm nondeterministic, because
whether or not it accepts a graph is determined not merely by the graph but by the additional
information as well. In particular, the algorithm might or might not accept every graph with the
given property. We say a property is in the class NP if there is an NP-algorithm that accepts
exactly the graphs with the property. Since graph decision problems ask us to decide whether
or not a graph has a given problem, we adopt the notation P and NP to describe problems as
well. We say a decision problem is in P or NP if the graph property it asks us to decide is in P
or NP respectively.

When we say that a nondeterministic algorithm uses the additional information, we are think-
ing of “use” in a very loose way. In particular, for a graph decision problem in P, the algorithm
could simply ignore the additional information and use the polynomial time algorithm to de-
termine whether the answer should be yes. Thus every graph property in P is also in NP as
well. The question as to whether P and NP are the same class of problems has vexed computer
scientists since it was introduced in 1968.

Some problems in NP, like the Hamiltonian path problem have an exciting feature: any
instance? of any problem in NP can be translated in O(n*) steps, where n and k are as before,
into O(n) instances of the Hamilton path problem, where j is independent of n and k. In
particular, the answer to the original problem is yess if and only if the answer to one of the
Hamiltonian path problems is yes. The translation preserves whether or not the graph in the
original instance of the problem is accepted. We say that the Hamiltonian Path problem is NP-
complete. More generally, a problem in NP if called NP-complete if, for each other problem
in NP, we can devise an algorithm for the second problem that has O(n*) steps (where n is a
measure of the size of the input graph, and k is independent of n), including counting as one step
solving an instance of the first problem, and accepts exactly the instances of the second problem
that have a yes answer. The question of whether a graph has a clique (a subgraph that is a
complete graph) of size j is another problem in NP that is NP-complete. In particular, if one
NP complete problem has a polynomial time algorithm, every problem in NP is in P. Thus we
can determine in polynomial time whether an arbitrary graph has a Hamiltonian path if and only
if we can determine in polynomial time whether an arbitrary graph has a clique of (an arbitrary)
size j. Literally hundreds of interesting problems are NP-complete. Thus a polynomial time
solution to any one of them would provide a polynomial time solution to all of them. For this
reason, many computer scientists consider a demonstration that a problem is NP-complete to be
a demonstration that it is unlikely to be solved by a polynomial time algorithm.

This brief discussion of NP-completeness is intended to give the reader a sense of the nature
and importance of the subject. We restricted ourselves to graph problems for two reasons. First,
we expect the reader to have a sense of what a graph problem is. Second, no treatment of graph
theory is complete without at least some explanation of how some problems seem to be much more
intractable than others. However, there are NP-complete problems throughout mathematics and

9 An instance of a problem is a case of the problem in which all parameters are specified; for example a particular
instance of the Hamiltonian Cycle problem is a case of the problem for a particular graph.
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computer science. Providing a real understanding of the subject would require much more time
than is available in an introductory course in discrete mathematics.

Important Concepts, Formulas, and Theorems

1.

10.

11.

12.

13.

A graph that has a path, starting and ending at the same place, that includes each vertex
at least once and each edge once and only once is called an FEulerian Graph. Such a path
is known as an Fulerian Tour or Eulerian Circuit.

. A graph has an Eulerian Tour if and only if it is connected and each vertex has even degree.

. A path that includes each vertex of the graph at least once and each edge of the graph

exactly once, but has different first and last endpoints, is known as an Fulerian Trail

. A graph G has an Eulerian Trail if and only if G is connected and all but two of the vertices

of G have even degree.

. A cycle that includes each vertex of a graph exactly once (thinking of the first and last

vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called Hamiltonian
if it has a Hamiltonian cycle.

. A Hamiltonian Path is a simple path that includes each vertex of the graph exactly once.

(Dirac’s Theorem) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

(Ore’s Theorem) If G is a v-vertex simple graph with v > 3 such that for each two non-
adjacent vertices x and y the sum of the degrees of x and y is at least v, then G has a
Hamiltonian cycle.

. A question about whether a graph has a certain property is called a graph decision problem.

A P-algorithm or polynomial time algorithm for a property takes a graph as input and in
time O(n*), where k is a positive integer independent of the input graph and n is a measure
of the amount of information needed to specify the input graph, it outputs the answer “yes”
if and only if the graph does have the property. We say the algorithm accepts the graph if
it answers yes.

We say a property of graphs is in the class P if there is a P-algorithm that accepts exactly
the graphs with the property.

An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and
O(n?) additional information, and in time O(n*), where k and j are positive integers
independent of the the input graph and n is a measure of the amount of information
needed to specify the input graph, outputs the answer yes if and only if it can use the
additional information to determine that the graph has the property.

A graph decision problem in NP if called NP-complete if, for each other problem in NP,
we can devise an algorithm for the second problem that has O(n*) steps (where n is a
measure of the size of the input graph, and & is independent of n), including counting as
one step solving an instance of the first problem, and accepts exactly the instances of the
second problem that have a yes answer.
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Figure 6.19: Some graphs

Problems

1. For each graph in Figure 6.19, either explain why the graph does not have an Eulerian
circuit or find an Eulerian Circuit.

2. For each graph in Figure 6.20, either explain why the graph does not have an Eulerian Trail
or find an Eulerian Trail.

Figure 6.20: Some more graphs

3. What is the minimum number of new bridges that would have to be built in K&nigsberg
and where could they be built in order to give a graph with an Eulerian circuit?

4. If we built a new bridge in Konigsberg between the Island and the top and bottom banks
of the river, could we take a walk that crosses all the bridges and uses none twice? Either
explain where could we start and end in that case or why we couldn’t do it.

5. For which values of n does the complete graph on n vertices have an Eulerian Circuit?

6. The hypercube graph @, has as its vertex set the n-tuples of zeros and ones. Two of these
vertices are adjacent if and only if they are different in one position. The name comes from
the fact that ()3 can be drawn in three dimensional space as a cube. For what values of n
is @, Eulerian?

7. For what values of n is the hypercube graph @,, (see Problem 6) Hamiltonian?

8. Give an example of a graph which has a Hamiltonian cycle but no Eulerian Circuit and a
graph which has an Eulerian Circuit but no Hamiltonian Cycle.
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16.
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. The complete bipartite graph K, , is a graph with m 4 n vertices. These vertices are

divided into a set of size m and a set of size n. We call these sets the parts of the graph.
Within each of these sets there are no edges. But between each pair of vertices in different
sets, there is an edge. The graph Ky 4 is pictured in part (d) of Figure 6.19.

(a) For what values of m and n is K, , Eulerian?
(b) For which values of m and n is K, , Hamiltonian?

Show that the edge set of a graph in which each vertex has even degree may be partitioned
into edge sets of cycles of the graph.

A cut-vertex of a graph is a vertex whose removal (along with all edges incident with it)
increases the number of connected components of the graph. Describe any circumstances
under which a graph with a cut vertex can be Hamiltonian.

Which of the graphs in Figure 6.21 satisfy the hypotheses of Dirac’s Theorem? of Ore’s
Theorem? Which have Hamiltonian cycles?

Figure 6.21: Which of these graphs have Hamiltonian Cycles?
(a) (b) (©) (d)

Prove Theorem 6.12.

The Hamiltonian Path problem is the problem of determining whether a graph has a Hamil-
tonian Path. Explain why this problem is in NP. Explain why the problem of determining
whether a graph has a Hamiltonian Path is NP-complete.

The k-Path problem is the problem of determining whether a graph on n vertices has a
path of length k, where k is allowed to depend on n. Show that the k-Path problem is
NP-complete.

We form the Hamiltonian closure of a graph by constructing a sequence of graphs G; with
Gy = G, and G; formed from G;_; by adding an edge between two nonadjacent vertices
whose degree sum is at least nv. When we reach a G; to which we cannot add such an
edge, we call it a Hamiltonian Closure of GG. Prove that a Hamiltonian Closure of a simple
graph G is Hamiltonian if and only if G is.

Show that a simple connected graph has one and only one Hamiltonian closure.
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6.4 Matching Theory

The idea of a matching

Suppose a school board is deciding among applicants for faculty positions. The school board has
positions for teachers in a number of different grades, a position for an assistant librarian, two
coaching positions, and for high school math and English teachers. They have many applicants,
each of whom can fill more than one of the positions. They would like to know whether they can
fill all the positions with people who have applied for jobs and have been judged as qualified.

Exercise 6.4-1 Table 6.1 shows a sample of the kinds of applications a school district might
get for its positions. An x below an applicant’s number means that that applicant

Table 6.1: Some sample job application data

213
X

job\ applicant 516|789

assistant librarian
second grade

third grade

high school math
high school English
asst baseball coach
asst football coach X

X

“oW oK
w
I T T -

S I e

qualifies for the position to the left of the x. Thus candidate 1 is qualified to teach
second grade, third grade, and be an assistant librarian. The coaches teach physical
education when they are not coaching, so a coach can’t also hold one of the listed
teaching positions. Draw a graph in which the vertices are labelled 1 through 9 for
the applicants, and s, t, [, m, e, b, and f for the positions. Draw an edge from an
applicant to a position if that applicant can fill that position. Use the graph to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

Exercise 6.4-2 Table 6.2 shows a second sample of the kinds of applications a school
district might get for its positions. Draw a graph as before and use it to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

The graph of the data in Table 6.1 is shown in Figure 6.22.

From the figure it is clear that [:1, s:2, t:4, m:5, e:6, b:7, f:8 is one assignment of jobs to people
that works. This assignment picks out a set of edges that share no endpoints. For example, the
edge from [ to 1 has no endpoint among s, t, m, e, b, f, 2, 3, 4, 5, 6, 7, or 8. A set of edges
in a graph that share no endpoints is called a matching of the graph. Thus we have a matching
between jobs and people that can fill the jobs. Since we don’t want to assign two jobs to one
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Table 6.2: Some other sample job application data

job\ applicant 112345671819
library assistant X | x

second grade X | x|x 8
third grade X | x| x X X
high school math X | x|x

high school English X | x

asst baseball coach X | X |x|x
asst football coach X | x| x

Figure 6.22: A graph of the data from Table 6.1.

1 2 3 4 > 6 7 8 9

person or two people to one job, this is exactly the sort of solution we were looking for. Notice
that the edge from [ to 1 is a matching all by itself, so we weren’t simply looking for a matching;
we were looking for a matching that fills all the jobs. A matching is said to saturate a set X of
vertices if every vertex in X is matched. We wanted a matching that saturates the jobs. In this
case a matching that saturates all the jobs is a matching that is as big as possible, so it is also a
mazimum matching, that is, a matching that is at least as big as any other matching.

The graph in Figure 6.22 is an example of a “bipartite graph.” A graph is called bipartite
whenever its vertex set can be partitioned into two sets X and Y so that each edge connects a
vertex in X with a vertex in Y. We can think of the jobs as the set X and the applicants as
the set Y. Each of the two sets is called a part of the graph. A part of a bipartite graph is an
example of an “independent set.” A subset of the vertex set of a graph is called independent if
no two of its vertices are connected by an edge. (In particular, a vertex connected to itself by a
loop is in no independent set.) Thus a graph is bipartite if and only if its vertex set is a union of
two independent sets.

In a bipartite graph, it is sometimes easy to pick a maximum matching out just by staring at
a drawing of the graph. However that is not always the case. Figure 6.23 is a graph of the data
in Table 6.2. Staring at this Figure gives us many matchings, but no matching that saturates
the set of jobs. But staring is not a proof, unless we can describe what we are staring at very
well. Perhaps you tried to construct a matching by matching [ to 4, s to 2, £ to 7, m to 5, e to 6,
b to 7, and then were frustrated when you got to f and 4, 5 and 6 were already used. You may
then have gone back and tried to redo your earlier choices so as to keep one of 4, 5, or 6 free, and
found you couldn’t do so. This is because jobs I, m, e, and f are adjacent only to people 4, 5,
and 6. Thus there are only three people qualified for these four jobs, and so there is no way we
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Figure 6.23: A graph of the data of Table 6.2.

can fill them all.

We call the set N(S) of all vertices adjacent to at least one vertex of S the neighborhood of S
or the neighbors of S. In these terms, there is no matching that saturates a part X of a bipartite
graph if there is some subset S of X such that the set N(S) of neighbors of S is smaller than S.
We call the set N(.S) of all vertices adjacent to at least one vertex of S the neighborhood of S or
the neighbors of S. In symbols, we can summarize as follows.

Lemma 6.13 If we can find a subset S of a part X of a bipartite graph G such that |[N(S)| < |S],
then there is no matching of G that saturates X.

Proof: A matching that saturates X must saturate S. But if there is such a matching,
each element of S must be matched to a different vertex, and this vertex cannot be in S since
S C X. Therefore there are edges from vertices in S to at least |S| different vertices not in S, so
IN(S)| > |S]|, a contradiction. Thus there is no such matching.®

This gives a proof that there is no matching that saturates all the jobs, so the matching that
matches matching [ to 4, s to 2, t to 7, m to 5, e to 6, b to 7 is a maximum matching for the
graph in Figure 6.23.

Another method you may have used to prove that there is no larger matching than the one
we found is the following. When we matched [ to 4, we may have noted that 4 is an endpoint of
quite a few edges. Then when we matched s to 2, we may have noted that s is an endpoint of
quite a few edges, and so is t. In fact, 4, s, and ¢ touch 12 edges of the graph, and there are only
23 edges in the graph. If we could find three more vertices that touch the remaining edges of the
graph, we would have six vertices that among them are incident with every edge. A set of vertices
such that at least one of them is incident with each edge of a graph G is called a vertex cover
of the edges of G, or a vertex cover of G for short. What does this have to do with a matching?
Fach matching edge would have to touch one, or perhaps two of the vertices in a vertex cover of
the edges. Thus the number of edges in a matching is always less than the number of vertices in
a vertex cover of the edges of a graph. Thus if we can find a vertex cover of size six in our graph
in Figure 6.23, we will know that there is no matching that saturates the set of jobs since there
are seven jobs. For future reference, we state our result about the size of a matching and the size
of a vertex cover as a lemma.

Lemma 6.14 The size of a matching in a graph G is no more than the size of a vertex cover of

G.
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Proof:  Given in the preceding discussion.ll

We have seen that 4, s, and ¢ are good candidates for being members of a relatively small
vertex cover of the graph in Figure 6.23, since they cover more than half the edges of the graph.
Continuing through the edges we first examined, we see that m, 6, and b are good candidates
for a small vertex cover as well. In fact, {4,s,t,m,6,b} do form a vertex cover. Since we have
a vertex cover of size six, we know a maximum matching has size no more than six. Since we
have already found a six-edge matching, that is a maximum matching. Therefore with the data
in Table 6.2, it is not possible to fill all the jobs.

Making matchings bigger

Practical problems involving matchings will usually lead us to search for the largest possible
matching in a graph. To see how to use a matching to create a larger one, we will assume we
have two matchings of the same graph and see how they differ, especially how a larger one differs
from a smaller one.

Exercise 6.4-3 In the graph G of Figure 6.22, let M; be the matching {I,1}, {s,2}, {t,4},
{m,5}, {e,6}, {b,9}, {f,8}, and let My be the matching {l,4}, {s,2} {¢,1}, {m,6},
{e,7} {b,8}. Recall that for sets S; and Sy the symmetric difference of S; and Ss,
denoted by S1AS; is (S1 U S2) — (S1 N S3). Compute the set My AM; and draw the
graph with the same vertex set as G and edge set MjAMs;. Use different colors or
textures for the edges from M7 and Mj so you can see their interaction. Describe the
kinds of graphs you see as connected components as succinctly as possible.

Exercise 6.4-4 In Exercise 6.4-3, one of the connected components suggests a way to
modify Ms by removing one or more edges and substituting one or more edges from
M, that will give you a larger matching M} related to Ms. In particular, this larger
matching should saturate everything M, saturates and more. What is M) and what
else does it saturate?

Exercise 6.4-5 Consider the matching M = {s,1},{t,4},{m,6},{b,8} in the graph of
Figure 6.23. How does it relate to the simple path whose vertices are 3, s, 1,t,4,m, 6, f?
Say as much as you can about the set M’ that you obtain from M by deleting the
edges of M that are in the path and adding to the result the edges of the path that
are not in M.

In Exercise 6.4-3

MiAMy = {1,1},{1,4},{¢t,4},{t, 1},{m,5},{m,6},{e, 6}, {e, 7}, {b,8},{f, 8}, {b,9}.

We have drawn the graph in Figure 6.24. We show the edges of Ms as dashed. As you see,
it comsists of a cycle with four edges, alternating between edges of My and Ms, a path with four
edges, alternating between edges of M7 and M-, and a path with three edges, alternating between
edges of M1 and My. We call a simple path or cycle an alternating path or alternating cycle for
a matching M of a graph G if its edges alternate between edges in M and edges not in M. Thus
our connected components were alternating paths and cycles for both M; and Ms,. The example
we just discussed shows all the ways in which two matchings can differ in the following sense.
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Figure 6.24: The graph for Exercise 6.4-3.

Lemma 6.15 (Berge) If My and Ms are matchings of a graph G = (V, E) then the connected
components of M1AMsy are cycles with an even number of vertices and simple paths. Further,
the the cycles and paths are alternating cycles and paths for both My and M.

Proof: Each vertex of the graph (V, M1AM>) has degree 0, 1, or two. If a component has
no cycles it is a tree, and the only kind of tree that has vertices of degree 1 and two is a simple
path. If a component has a cycle, then it can not have any edges other the edges of the cycle
incident with its vertices because the graph would then have a vertex of degree 3 or more. Thus
the component must be a cycle. If two edges of a path or cycle in (V, M;AM;) share a vertex,
they cannot come from the same matching, since two edges in the same matching do not share
a vertex. Thus alternating edges of a path or cycle of (V, M;AM>s) must come from different
matchings. B

Corollary 6.16 If M, and My are matchings of a graph G = (V, E) and |Ma| < |M;|, then there
1 an alternating path for My and Moy that starts and ends with vertices saturated by Ms but not
by Ml.

Proof: Since an even alternating cycle and an even alternating path in (V, M;AM>) have
equal numbers of edges from M; and Ms, at least one component must be an alternating path
with more edges from M; than Ma, because otherwise | M| < |M;|. Since this is a component of
(V, M1 AMsy), its endpoints lie only in edges of My, so they are saturated by My but not M. B

The path with three edges in Exercise 6.4-3 has two edges of M; and one edge of My. We see
that if we remove {b, 8} from M> and add {b,9} and {f, 8}, we get the matching

My = {{1,4},{s,2},{t, 1}, {m, 6}, {e, 7}, {b, 9}, {, 8}}.

This answers the question of Exercise 6.4-4. Notice that this matching saturates everything My
does, and also saturates vertices f and 9.

In Figure 6.25 we have shown the matching edges of the path in Exercise 6.4-5 in bold and
the non-matching edges of the path as dashed. The edge of the matching not in the path is
shown in zig-zag. Notice that the dashed edges and the zig-zag edge form a matching which is
larger than M and saturates all the vertices that M does in addition to 3 and f. The path begins
and ends with unmatched vertices, namely 3 and f, and and alternates between matching edges
and non-matching edges. All but the first and last vertices of such a path lie on matching edges
of the path and the endpoints of the path do not lie on matching edges. Thus no edges of the
matching that are not path-edges will be incident with vertices on the path. Thus if we delete all
the matching edges of the path from M and add all the other edges of the path to M, we will get
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Figure 6.25: The path and matching of Exercise 6.4-5.

a new matching, because by taking every second edge of a simple path, we get edges that do not
have endpoints in common. An alternating path is called an augmenting path for a matching M
if it begins and ends with M-unsaturated vertices. That is, it is an alternating path that begins
and ends with unmatched vertices. Our preceding discussion suggests the proof of the following
theorem.

Theorem 6.17 (Berge) A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P), then
we can create a larger matching by deleting the edges in M N E(P) from M and adding in the
edges of E(P) — M.

Proof: First if there is a matching M; larger than M, then by Corollary 6.16 there is an
augmenting path for M. Thus if a matching has maximum size, it has no augmenting path.
Further, as in our discussion of Exercise 6.4-5, if there is an augmenting path for M, then there
is a larger matching for M. Finally, this discussion showed that if P is an augmenting path, we
can get such a larger matching by deleting the edges in M N E(P) and adding in the edges of
E(P)—M.m

Corollary 6.18 While the larger matching of Theorem 6.17 may not contain M as a subset, it
does saturate all the vertices that M saturates and two additional vertices.

Proof: Every vertex incident with an edge in M is incident with some edge of the larger
matching, and each of the two endpoints of the augmenting path is also incident with a matching
edge. Because we may have removed edges of M to get the larger matching, it may not contain
Mn

Matching in Bipartite Graphs

While our examples have all been bipartite, all our lemmas, corollaries and theorems about
matchings have been about general graphs. In fact, it some of the results can be strengthened in
bipartite graphs. For example, Lemma 6.14 tells us that the size of a matching is no more than
the size of a vertex cover. We shall soon see that in a bipartite graph, the size of a maximum
matching actually equals the size of a minimum vertex cover.
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Searching for Augmenting Paths in Bipartite Graphs

We have seen that if we can find an augmenting path for a matching M in a graph G, then
we can create a bigger matching. Since our goal from the outset has been to create the largest
matching possible, this helps us achieve that goal. However, you may ask, how do we find an
augmenting path? Recall that a breadth-first search tree centered at a vertex x in a graph
contains a path, in fact a shortest path, from x to every vertex y to which it is connected. Thus
it seems that we ought to be able to alternate between matching edges and non-matching edges
when doing a breadth-first search and find alternating paths. In particular, if we add vertex 7 to
our tree by using a matching edge, then any edge we use to add a vertex from vertex i should
be a non-matching edge. And if we add vertex i to our tree by using a non-matching edge, then
any edge we use to add a vertex from vertex i should be a matching edge. (Thus there is just
one such edge.) Because not all edges are available to us to use in adding vertices to the tree, the
tree we get will not necessarily be a spanning tree of our original graph. However we can hope
that if there is an augmenting path starting at vertex x and ending at vertex y, then we will find
it by using breadth first search starting from x in this alternating manner.

Exercise 6.4-6 Given the matching {s, 2}, {t,4},{b, 7}{f,8} of the graph in Figure 6.22
use breadth-first search starting at vertex 1 in an alternating way to search for an
augmenting path starting at vertex 1. Use the augmenting path you get to create a
larger matching.

Exercise 6.4-7 Continue using the method of Exercise 6.4-6 until you find a matching of
maximum size.

Exercise 6.4-8 Apply breadth-first search from vertex 0 in an alternating way to graph (a)
in Figure 6.26. Does this method find an augmenting path? Is there an augmenting
path?

Figure 6.26: Matching edges are shown in bold in these graphs.

For Exercise 6.4-6, if we begin at vertex 1, we add vertices [,s and t to our tree, giving them
breadth-first numbers 1,2, and 3. Since [ is not incident with a matching edge, we cannot continue
the search from there. Since vertex s is incident with matching edge {s,2}, we can use this edge
to add vertex 2 to the tree and give it breadth-first number 4. This is the only vertex we can
add from [ since we can only use matching edges to add vertices from [. Similarly, from ¢ we
can add vertex 4 by using the matching edge {¢,4} and giving it breadth-first number 5. All
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vertices adjacent to vertex 2 have already been added to the tree, but from vertex 4 we can use
non-matching edges to add vertices m and e to our tree, giving them breadth first numbers 6 and
7. Now we can only use matching edges to add vertices to the tree from m or e, but there are
no matching edges incident with them, so our alternating search tree stops here. Since m and e
are unmatched, we know we have a path in our tree from vertex 1 to vertex m and a path from
vertex 1 to vertex e. The vertex sequence of the path from 1 to m is 1s2t4m Thus our matching

becomes {1, s}, {2,t}, {4, m}, {b,7},{f,8}.

For Exercise 6.4-7 find another unmatched vertex and repeat the search. Working from
vertex [, say, we start a tree by using the edges {l,1},{l,3},{l,4} to add vertices 1, 3, and 4.
We could continue working on the tree, but since we see that [{l,3}3 is an augmenting path,
we use it to add the edge {l,3} to the matching, short-circuiting the tree-construction process.
Thus our matching becomes {1, s},{2,t}, {l,3}, {4, m}, {b, 7}{f,8}. The next unmatched vertex
we see might be vertex 5. Starting from it, we add m and f to our tree, giving them breadth
first numbers 1 and 2. From m we have the matching edge {m,4}, and from f we have the
matching edge {f,8}, so we use them to add the vertices 4 and 8 to the tree. From vertex 4
we add [, s, t, and e to the tree, and from vertex 8 we add vertex b to the tree. All these
vertices except e are in matching edges. Since e is not in a matching edge, we have discovered
a vertex connected by an augmenting path to vertex 5. The path in the tree from vertex 5
to vertex e has vertex sequence bmde, and using this augmenting path gives us the matching
{1,s},{2,t},{1,3},{5,m},{4,e},{b,7},{f,8}. Since we now have a matching whose size is the
same as the size of a vertex cover, namely the bottom part of the graph in Figure 6.22, we have
a matching of maximum size.

For Exercise 6.4-8 we start at vertex 0 and add vertex 1. From vertex 1 we use our matching
edge to add vertex 2. From vertex 2 we use our two non-matching edges to add vertices 3 and
4. However, vertices 3 and 4 are incident with the same matching edge, so we cannot use that
matching edge to add any vertices to the tree, and we must stop without finding an augmenting
path. From staring at the picture, we see there is an augmenting path, namely 012435, and it
gives us the matching {{0,1},{2,4},{3,5}}. We would have similar difficulties in discovering
either of the augmenting paths in part (b) of Figure 6.26.

It turns out to be the odd cycles in Figure 6.26 that prevent us from finding augmenting paths
by our modification of breadth-first search. We shall demonstrate this by describing an algorithm
which is a variation on the alternating breadth-first search we were using in solving our exercises.
This algorithm takes a bipartite graph and a matching and either gives us an augmenting path
or constructs a vertex cover whose size is the same as the size of the matching.

The Augmentation-Cover algorithm

We begin with a bipartite graph with parts X and Y and a matching M. We label the unmatched
vertices in X with the label a (which stands for alternating). We number them in sequence as
we label them. Starting with ¢ = 1 and taking labeled vertices in order of the numbers we have
assigned them, we use vertex number i to do additional labelling as follows.

1. If vertex 7 is in X, we label all unlabeled vertices adjacent to it with the label a and the
name of vertex 7. Then we number these newly labeled vertices, continuing our sequence
of numbers without interruption.
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2. If vertex ¢ is in Y, and it is incident with an edge of M, its neighbor in the matching edge
cannot yet be labeled. We label this neighbor with the label ¢ and the name of vertex i.

3. If vertex ¢ is in Y and it is not incident with an edge of M, then we have discovered an
augmenting path: the path from vertex i to the vertex we used to add it (and recorded
at vertex i) and so on back to one of the unlabeled vertices in X. It is alternating by our
labeling method, and it starts and ends with unsaturated vertices, so it is augmenting.

If we can continue the labelling process until no more labeling is possible and we do not find an
augmenting path, then we let A be the set of labeled vertices. The set C' = (X — A)U (Y N A)
then turns out to be a vertex cover whose size is the size of M. We call this algorithm the
augmentation-cover algorithm.

Theorem 6.19 (Ko6nig and Egervary) In a bipartite graph with parts X and Y, the size of
a maximum sized matching equals the size of a minimum-sized vertex cover.

Proof: In light of Berge’s Theorem, if the augmentation-cover algorithm gives us an augment-
ing path, then the matching is not maximum sized, and in light of Lemma 6.14, if we can prove
that the set C' the algorithm gives us when there is no augmenting path is a vertex cover whose
size is the size of the matching, we will have proved the theorem. To see that C is a vertex cover,
note that every edge incident with a vertex in X N A is covered, because its endpoint in Y has
been marked with an a and so is in Y N A. But every other edge must be covered by X — A
because in a bipartite graph, each edge must be incident with a vertex in each part. Therefore
C is a vertex cover. If an element of Y N A, were not matched, it would be an endpoint of an
augmenting path, and so all elements of Y N A are incident with matching edges. But every
vertex of X — A is matched because A includes all unmatched vertices of X. By step 2 of the
augmentation-cover algorithm, if € is a matching edge with an endpoint in Y N A, then the other
endpoint must be in A. Therefore each matching edge contains only one member of C. Therefore
the size of a maximum matching is the size of C. B

Corollary 6.20 The augmentation-cover algorithm applied to a bipartite graph and a matching
of that graph produces either an augmenting path for the matching or a minimum vertex cover
whose size equals the size of the matching.

Before we proved the Konig-Egarvary Theorem, we knew that if we could find a matching and
a vertex cover of the same size, then we had a maximum sized matching and a minimum sized
vertex cover. However it is possible that in some graphs we can’t test for whether a matching
is as large as possible by comparing its size to that of a vertex cover because a maximum sized
matching might be smaller than a minimum sized vertex cover. The Konig-Egarvary Theorem
tells us that in bipartite graphs this problem never arises, so the test always works.

We had a second technique we used to show that a matching could not saturate the set X
of all jobs in Exercise 6.4-2. In Lemma 6.13 we showed that if we can find a subset S of a part
X of a bipartite graph G such that |[N(S)| < |S], then there is no matching of G that saturates
X. In other words, to have a matching that saturates X in a bipartite graph on parts X and Y,
it is necessary that |[N(S)| > |S| for every subset S of X. (When S = (), then so does N(S).)
This necessary condition is called Hall’s condition, and Hall’s theorem says that this necessary
condition is sufficient.
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Theorem 6.21 (Hall) If G is a bipartite graph with parts X and Y, then there is a matching
of G that saturates X if and only if |N(S)| > |S| for every subset C X.

Proof: In Lemma 6.13 we showed (the contrapositive of the statement) that if there is a
matching of G, then |[N(S)| > |S| for every subset of X. (There is no reason to use a contrapositive
argument though; if there is a matching that saturates X, then because matching edges have no
endpoints in common, the elements of each subset S of X will be matched to at least |S| different
elements, and these will all be in N(S).)

Thus we need only show that if the graph satisfies Hall’s condition then there is a matching
that saturates S. We will do this by showing that X is a minimum-sized vertex cover. Let C be
some vertex cover of G. Let S = X — C. If € is an edge from a vertex in S to a vertex y € Y, ¢
cannot be covered by a vertex in C' N X. Therefore ¢ must be covered by a vertex in CNY. This
means that N(S) C CNY,so |CNY|>|N(S). By Hall’s condition, N(S)| > |S|. Therefore
|ICNY|>|S]. Since CNX and CNY are disjoint sets whose union is C', we can summarize our
remarks with the equation

ICl=|CNnX|+|CNY|>|CNX|+|NWO)|>|CNnX|+|S]=|CNnX|+|C—-X]|=]|X]

X is a vertex cover, and we have just shown that it is a vertex cover of minimum size . Therefore
a matching of maximum size has size |X|. Thus there is a matching that saturates X. B

Good Algorithms

While Hall’s theorem is quite elegant, applying it requires that we look at every subset of X,
which would take us 2 (2|X ‘) time. Similarly, actually finding a minimum vertex cover could
involve looking at all (or nearly all) subsets of X UY, which would also take us exponential time.
However, the augmentation-cover algorithm requires that we examine each edge at most some
fixed number of times and then do a little extra work; certainly no more than O(e) work. We
need to repeat the algorithm at most X times to find a maximum matching and minimum vertex
cover. Thus in time O(ev), we can not only find out whether we have a matching that saturates
X; we can find such a matching if it exists and a vertex cover that proves it doesn’t exist if it
doesn’t. However this only applies to bipartite graphs. The situation is much more complicated
in non-bipartite graphs. In a paper which introduced the idea that a good algorithm is one that
runs in time O(n¢), where n is the amount of information needed to specify the input and ¢
is a constant, Edmunds'® developed a more complicated algorithm that extended the idea of a
search tree to a more complicated structure he called a flower. He showed that this algorithm
was good in his sense, introduced the problem class NP, and conjectured that P # NP. In a
wry twist of fate, the problem of finding a minimum vertex cover problem (actually the problem
of determining whether there is a vertex cover of size k, where k can be a function of v) is, in fact,
NP-complete in arbitrary graphs. It is fascinating that the matching problem for general graphs
turned out to be solvable in polynomial time, while determining the “natural” upper bound on
the size of a matching, an upper bound that originally seemed quite useful, remains out of our
reach.

10Jack Edmonds. Paths, Trees and Flowers. Canadian Journal of mathematics, 17, 1965 pp449-467
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Important Concepts, Formulas, and Theorems

1.

10.

11.

12.

13.

Matching. A set of edges in a graph that share no endpoints is called a matching of the
graph.

. Saturate. A matching is said to saturate a set X of vertices if every vertex in X is matched.

. Mazimum Matching. A matching in a graph is a maximum matching if it is at least as big

as any other matching.

Bipartite Graph. A graph is called bipartite whenever its vertex set can be partitioned into
two sets X and Y so that each edge connects a vertex in X with a vertex in Y. Each of
the two sets is called a part of the graph.

Independent Set. A subset of the vertex set of a graph is called independent if no two of its
vertices are connected by an edge. (In particular, a vertex connected to itself by a loop is
in no independent set.) A part of a bipartite graph is an example of an ‘independent set.

. Neighborhood. We call the set N(S) of all vertices adjacent to at least one vertex of S the

neighborhood of S or the neighbors of S.

Hall’s theorem for a Matching in a Bipartite Graph. If we can find a subset S of a part
X of a bipartite graph G such that |[N(S)| < |S]|, then there is no matching of G that
saturates X. If there is no subset S C X such that |N(S)| < |S], then there is a matching
that saturates X.

Vertex Cover. A set of vertices such that at least one of them is incident with each edge
of a graph G is called a vertex cover of the edges of G, or a vertex cover of G for short. In
any graph, the size a matching is less than or equal to the size of any vertex cover.

Alternating Path, Augmenting Path. A simple path is called an alternating path for a
matching M if, as we move along the path, the edges alternate between edges in M and
edges not in M. An augmenting path is an alternating path that begins and ends at
unmatched vertices.

Berge’s Lemma. If My and Ms are matchings of a graph G then the connected components
of M1AM, are cycles with an even number of vertices and simple paths. Further, the cycles
and paths are alternating cycles and paths for both M; and Mo.

Berge’s Corollary. If M; and My are matchings of a graph G = (V, E) and |M;| > | M,
then there is an alternating path for M; and M> that starts and ends with vertices saturated
by My but not by M.

Berge’s Theorem. A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P),
then we can create a larger matching by deleting the edges in M NE(P) from M and adding
in the edges of E(P) — M.

Augmentation-Cover Algorithm. The Augmentation-Cover algorithm is an algorithm that
begins with a bipartite graph and a matching of that graph and produces either an aug-
menting path or a vertex cover whose size equals that of the matching, thus proving that
the matching is a maximum matching.
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14. Konig-Egervdry Theorem. In a bipartite graph with parts X and Y, the size of a maximum
sized matching equals the size of a minimum-sized vertex cover.

Problems
1. Either find a maximum matching or a subset S of the set X = {a,b,c,d,e} such that
|S| > |N(S)| in the graph of Figure 6.27

Figure 6.27: A bipartite graph

1 2 3 4 5 6 7
[ ]

2. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.27

3. Either find a matching which saturates the set X = {a,b,¢,d, e, f} in Figure 6.28 or find a
set S such that |[N(S)| < | X|.

Figure 6.28: A bipartite graph

4. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.28.

5. In the previous exercises, when you were able to find a set S with |S| > |N(S)|, how did
N(S) relate to the vertex cover? Why did this work out as it did?

6. A star is a another name for a tree with one vertex connected to each of n other vertices.
(So a star has n + 1 vertices.) What are the size of a maximum matching and a minimum
vertex cover in a star with n + 1 vertices?

7. In Theorem 6.17 is it true that if there is an augmenting path P with edge set E(P) for a
matching M, then MAFE(P) is a larger matching than M?

8. Find a maximum matching and a minimum vertex cover in graph (b) of Figure 6.26.

9. In a bipartite graph, is one of the parts always a maximum-sized independent set? What
if the graph is connected?
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Find infinitely many examples of graphs in which a maximum-sized matching is smaller
than a minimum-sized vertex cover.

Find an example of a graph in which the maximum size of a matching is less than one
quarter of the size of a minimum vertex cover.

Prove or give a counter-example: Every tree is a bipartite graph. (Note, a single vertex
with no edges is a bipartite graph; one of the two parts is empty.)

Prove or give a counter-example. A bipartite graph has no odd cycles.

Let G be a connected graph with no odd cycles. Let x be a vertex of G. Let X be all
vertices at an even distance from x, and let Y be all vertices at an odd distance from x.
Prove that G is bipartite with parts X and Y.

What is the sum of the maximum size of an independent set and the minimum size of a
vertex cover in a graph G?7 Hint: it is useful to think both about the independent set and
its complement (relative to the vertex set).
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6.5 Coloring and planarity

The idea of coloring

Graph coloring was one of the origins of graph theory. It arose from a question from Francis
Guthrie, who noticed that that four colors were enough colors to color the map of the counties of
England so that if two counties shared a common boundary line, then they got different colors. He
wondered whether this was the case for any map. Through his brother he passed it on to Agustus
DeMorgan, and in this way it seeped into the consciousness of the mathematical community. If
we think of the counties as vertices and draw an edge between two vertices if their counties share
some boundary line, we get a representation of the problem that is independent of such things as
the shape of the counties, the amount of boundary line they share, etc. so that it captures the
part of the problem we need to focus on. We now color the vertices of the graph, and for this
problem we want to do so in such a way that adjacent vertices get different colors. We will return
to this problem later in the section; we begin our study with another application of coloring.

Exercise 6.5-1 The executive committee of the board of trustees of a small college has
seven members, Kim, Smith, Jones, Gupta, Ramirez, Wang, and Chernov. It has six
subcommittees with the following membership

e Investments: W, R, G
e Operations: G, J, S, K
e Academic affairs: S, W, C
e Fund Raising: W, C, K
Budget: G, R, C
e Enrollment: R, S, J, K

Each time the executive committee has a meeting, first each of the subcommittees
meets with appropriate college officers, and then the executive committee gets to-
gether as a whole to go over subcommittee recommendations and make decisions.
Two committees cannot meet at the same time if they have a member in common,
but committees that don’t have a member in common can meet at the same time. In
this exercise you will figure out the minimum number of time slots needed to schedule
all the subcommittee meetings. Draw a graph in which the vertices are named by the
initials of the committee names and two vertices are adjacent if they have a member
in common. Then assign numbers to the vertices in such a way that two adjacent
vertices get different numbers. The numbers represent time slots, so they need not be
distinct unless they are on adjacent vertices. What is the minimum possible number
of numbers you need?

Because the problem of map coloring motivated much of graph theory, it is traditional to refer
to the process of assigning labels to the vertices of a graph as coloring the graph. An assignment
of labels, that is a function from the vertices to some set, is called a coloring. The set of possible
labels (the range of the coloring function) is often referred to as a set of colors. Thus in Exercise
6.5-1 we are asking for a coloring of the graph. However, as with the map problem, we want a
coloring in which adjacent vertices have different colors. A coloring of a graph is called a proper
coloring if it assigns different colors to adjacent vertices.
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We have drawn the graph of Exercise 6.5-1 in Figure 6.29. We call this kind of graph an
intersection graph, which means its vertices correspond to sets and it has an edge between two
vertices if and only if the corresponding sets intersect.

Figure 6.29: The “intersection” graph of the committees.

I O A

The problem asked us to color the graph with as few colors possible, regarding the colors as
1,2,3, etc. We will represent 1 as a white vertex, 2 as a light grey vertex, 3 as a dark grey vertex
and 4 as a black vertex. The triangle on the bottom requires three colors simply because all three
vertices are adjacent. Since it doesn’t matter which three colors we use, we choose arbitrarily to
make them white, light grey, and dark grey. Now we know we need at least three colors to color
the graph, so it makes sense to see if we can finish off a coloring using just three colors. Vertex
I must be colored differently from E and D, so if we use the same three colors, it must have the
same color as B. Similarly, vertex A would have to be the same color as E if we use the same
three colors. But now none of the colors can be used on vertex O, because it is adjacent to three
vertices of different colors. Thus we need at least four colors rather than 3, and we show a proper
four-coloring in Figure 6.30.

Figure 6.30: A proper coloring of the committee intersection graph.

I O A

Exercise 6.5-2 How many colors are needed to give a proper coloring of the complete
graph K7

Exercise 6.5-3 How many colors are needed for a proper coloring of a cycle C, on n =
3,4,5, and 6 vertices?

In Exercise 6.5-2 we need n colors to properly color K, because each pair of vertices is
adjacent and thus must have two different colors. In Exercise 6.5-3, if n is even, we can just
alternate two colors as we go around the cycle. However if n is odd, using two colors would
require that they alternate as we go around the cycle, and when we colored our last vertex, it
would be the same color as the first. Thus we need at least three colors, and by alternating two
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of them as we go around the cycle until we get to the last vertex and color it the third color we
get a proper coloring with three colors.

The chromatic number of a graph G, traditionally denoted x(G), is the minimum number
of colors needed to properly color G. Thus we have shown that the chromatic number of the
complete graph K, is n, the chromatic number of a cycle on an even number of vertices is two,
and the chromatic number of a cycle on an odd number of vertices is three. We showed that the
chromatic number of our committee graph is 4.

From Exercise 6.5-2, we see that if a graph G has a subgraph which is a complete graph on
n vertices, then we need at least n colors to color those vertices, so we need at least n colors to
color GG. this is useful enough that we will state it as a lemma.

Lemma 6.22 If a graph G contains a subgraph that is a complete graph on n vertices, then the
chromatic number of G is at least n.

Proof: Given above.ll

Interval Graphs

An interesting application of coloring arises in the design of optimizing compilers for computer
languages. In addition to the usual RAM, a computer typically has some memory locations called
registers which can be accessed at very high speeds. Thus values of variables which are going to
be used again in the program are kept in registers if possible, so they will be quickly available
when we need them. An optimizing compiler will attempt to decide the time interval in which a
given variable may be used during a run of a program and arrange for that variable to be stored
in a register for that entire interval of time. The time interval is not determined in absolute
terms of seconds, but the relative endpoints of the intervals can be determined by when variables
first appear and last appear as one steps through the computer code. This information is what is
needed to set aside registers to use for the variables. We can think of coloring the variables by the
registers as follows. We draw a graph in which the vertices are labeled with the variable names,
and associated to each variable is the interval during which it is used. Two variables can use the
same register if they are needed during non-overlapping time intervals. This is helpful, because
registers are significantly more expensive than ordinary RAM, so they are limited in number.
We can think of our graph on the variables as the intersection graph of the intervals. We want
to color the graph properly with a minimum number of registers; hopefully this will be no more
than the number of registers our computer has available. The problem of assigning variables to
registers is called the register assignment problem.

An intersection graph of a set of intervals of real numbers is called an interval graph. The
assignment of intervals to the vertices is called an interval representation. You will notice that
so far in our discussion of coloring, we have not given an algorithm for properly coloring a graph
efficiently. This is because the problem of whether a graph has a proper coloring with & colors,
for any fixed k greater than 2 is another example of an NP-complete problem. However, for
interval graphs, there is a very simple algorithm for properly coloring the graph in a minimum
number of colors.

Exercise 6.5-4 Consider the closed intervals [1,4], [2, 5], [3, 8], [5, 12], [6, 12], [7, 14], [13, 14].
Draw the interval graph determined by these intervals and find its chromatic number.
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We have drawn the graph of Exercise 6.5-4 in Figure 6.31. (We have not included the square
braces to avoid cluttering the figure.) Because of the way we have drawn it, it is easy to see a

Figure 6.31: The graph of Exercise 6.5-4
6,12

3,8 9,14
1.4 13,14

2.5 5,12

subgraph that is a complete graph on four vertices, so we know by our lemma that the graph has
chromatic number at least four. In fact, Figure 6.32 shows that the chromatic number is exactly
four. This is no accident.

Figure 6.32: A proper coloring of the graph of Exercise 6.5-4 with four colors

6,12

3.8 9,14
1.4 13,14
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Theorem 6.23 In an interval graph G, the chromatic number is the size of the largest complete
subgraph.

Proof: List the intervals of an interval representation of the graph in order of their left
endpoints. Then color them with the integers 1 through some number n by starting with 1 on
the first interval in the list and for each succeeding interval, use the smallest color not used on
any neighbor of the interval earlier in the list. This will clearly give a proper coloring. To see that
the number of colors needed is the size of the largest complete subgraph, let n denote the largest
color used, and choose an interval I colored with color n. Then, by our coloring algorithm, [
must intersect with earlier intervals in the list colored 1 through n — 1; otherwise we could have
used a smaller color on I. All these intervals must contain the left endpoint of I, because they
intersect I and come earlier in the list. Therefore they all have a point in common, so they form
a complete graph on n vertices. Therefore the minimum number of colors needed is the size of a
complete subgraph of G. But by Lemma 6.22, G can have no larger complete subgraph. Thus
the chromatic number of G is the size of the largest complete subgraph of G. B

Corollary 6.24 An interval graph G may be properly colored using x(G) consecutive integers as
colors by listing the intervals of a representation in order of their left endpoints and going through
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the list, assigning the smallest color not used on an earlier adjacent interval to each interval in
the list.

Proof:  This is the coloring algorithm we used in the proof of Theorem 6.23. B

Notice that using the correspondence between numbers and grey-shades we used before, the
coloring in Figure 6.32 is the one given by this algorithm. An algorithm that colors an (arbitrary)
graph G with consecutive integers by listing its vertices in some order, coloring the first vertex
in the list 1, and then coloring each vertex with the least number not used on any adjacent
vertices earlier in the list is called a greedy coloring algorithm. We have just seen that the greedy
coloring algorithm allows us to find the chromatic number of an interval graph. This algorithm
takes time O(n?), because as we go through the list, we might consider every earlier entry when
we are considering a given element of the list. It is good luck that we have a polynomial time
algorithm, because even though we stated in Theorem 6.23 that the chromatic number is the size
of the largest complete subgraph, determining whether the size of a largest complete subgraph in
a general graph (as opposed to an interval graph) is k (where k£ may be a function of the number
of vertices) is an NP-complete problem.

Of course we assumed that we were given an interval representation of our graph. Suppose
we are given a graph that happens to be an interval graph, but we don’t know an interval
representation. Can we still color it quickly? It turns out that there is a polynomial time
algorithm to determine whether a graph is an interval graph and find an interval representation.
This theory is quite beautiful,!! but it would take us too far afield to pursue it now.

Planarity

We began our discussion of coloring with the map coloring problem. This problem has a special
aspect that we did not mention. A map is drawn on a piece of paper, or on a globe. Thus a
map is drawn either on the plane or on the surface of a sphere. By thinking of the sphere as a
completely elastic balloon, we can imagine puncturing it with a pin somewhere where nothing
is drawn, and then stretching the pinhole until we have the surface of the balloon laid out flat
on a table. This means we can think of all maps as drawn in the plane. What does this mean
about the graphs we associated with the maps? Say, to be specific, that we are talking about
the counties of England. Then in each county we take an important town, and build a road to
the boundary of each county with which it shares more than a single boundary point. We can
build these roads so that they don’t cross each other, and the roads to a boundary line between
two different counties join together at that boundary line. Then the towns we chose are the
vertices of a graph representing the map, and the roads are the edges. Thus given a map drawn
in the plane, we can draw a graph to represent it in such a way that the edges of the graph do
not meet at any point except their endpoints.'> A graph is called planar if it has a drawing in
the plane such that edges do not meet except at their endpoints. Such a drawing is called a
planar drawing of the graph. The famous four color problem asked whether all planar graphs
have proper four colorings. In 1976, Apel and Haken, building on some of the early attempts
at proving the theorem, used a computer to demonstrate that four colors are sufficient to color

1 Gee, for example, the book Algorithmic Graph Theory and the Perfect Graph Conjecture, by Martin Golumbic,
Academic Press, New York, 1980.

12\We are temporarily ignoring a small geographic feature of counties that we will mention when we have the
terminology to describe it



6.5. COLORING AND PLANARITY 317

any planar graph. While we do not have time to indicate how their proof went, there is now a
book on the subject that gives a careful history of the problem and an explanation of what the
computer was asked to do and why, assuming that the computer was correctly programmed, that
led to a proof.'

What we will do here is derive enough information about planar graphs to show that five colors
suffice, giving the student some background on planarity relevant to the design of computer chips.

We start out with two problems that aren’t quite realistic, but are suggestive of how planarity
enters chip design.

Exercise 6.5-5 A circuit is to be laid out on a computer chip in a single layer. The design
includes five terminals (think of them as points to which multiple electrical circuits
may be connected) that need to be connected so that it is possible for a current to go
from any one of them to any other without sending current to a third. The connections
are made with a narrow layer of metal deposited on the surface of the chip, which
we will think of as a wire on the surface of the chip. Thus if one connection crosses
another one, current in one wire will flow through the other as well. Thus the chip
must be designed so that no two wires cross. Do you think this is possible?

Exercise 6.5-6 As in the previous exercise, we are laying out a computer circuit. However
we now have six terminals, labeled a, b, ¢, 1, 2, and 3, such that each of a, b, and ¢
must be connected to each of 1, 2, and 3, but there must be no other connections. As
before, the wires cannot touch each other, so we need to design this chip so that no
two wires cross. Do you think this is possible?

The answer to both these exercises is that it is not possible to design such a chip. One can
make compelling geometric arguments why it is not possible, but they require that we visualize
simultaneously a large variety of configurations with one picture. We will instead develop a
few equations and inequalities relating to planar graphs that will allow us to give convincing
arguments that both these designs are impossible.

The Faces of a Planar Drawing

If we assume our graphs are finite, then it is easy to believe that we can draw any edge of a
graph as a broken line segment (i.e. a bunch of line segments connected at their ends) rather
than a smooth curve. In this way a cycle in our graph determines a polygon in our drawing. This
polygon may have some of the graph drawn inside it and some of the graph drawn outside it.
We say a subset of the plane is geometrically connected if between any two points of the region
we can draw a curve.'* (In our context, you may assume this curve is a broken line segment,
but a careful study of geometric connectivity in general situations is less straightforward.) If we
remove all the vertices and edges of the graph from the plane, we are likely to break it up into a
number of connected sets.

Such a connected set is called a face of the drawing if it not a proper subset of any other
connected set of the plane with the drawing removed. For example, in Figure 6.33 the faces are

13Robin Wilson, Four Colors Suffice. Princeton University Press, Princeton NJ 2003.

!4The usual thing to say is that it is connected, but we want to distinguish this kind of connectivity form
graphical connectivity. The fine point about counties that we didn’t point out earlier is that they are geometrically
connected. If they were not, the graph with a vertex for each county and an edge between two counties that share
some boundary line would not necessarily be planar.
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Figure 6.33: A typical graph and its faces.

marked 1, a triangular face, 2, a quadrilateral face that has a line segment and point removed
for the edge {a,b} and the vertex z, 3, another quadrilateral that now has not only a line but a
triangle removed from it as well, 4, a triangular face, 5, a quadrilateral face, and 6 a face whose
boundary is a heptagon connected by a line segment to a quadrilateral. Face 6 is called the
“outside face” of the drawing and is the only face with infinite area. Each planar drawing of
a graph will have an outside face, that is a face of infinite area in which we can draw a circle
that encloses the entire graph. (Remember, we are thinking of our graphs as finite at this point.)
Each edge either lies between two faces or has the same face on both its sides.The edges {a, b},
{c,d} and {g, h} are the edges of the second type. Thus if an edge lies on a cycle, it must divide
two faces; otherwise removing that edge would increase the number of connected components of
the graph. Such an edge is called a cut edge and cannot lie between two distinct faces. It is
straightforward to show that any edge that is not a cut edge lies on a cycle. But if an edge lies
on only one face, it is a cut edge, because we can draw a broken line segment from one side of the
edge to the other, and this broken line segment plus part of the edge forms a closed curve that
encloses part of the graph. Thus removing the edge disconnects the enclosed part of the graph
from the rest of the graph.

Exercise 6.5-7 Draw some planar graphs with at least three faces and experiment to see if
you can find a numerical relationship among v, the number of vertices, e, the number
of edges, and f the number of faces. Check your relationship on the graph in Figure
6.33.

Exercise 6.5-8 In a simple graph, every face has at least three edges. This means that
the number of pairs of a face and an edge bordering that face is at least 3f. Use
the fact that an edge borders either one or two faces to get an inequality relating the
number of edges and the number of faces in a simple planar graph.

Some playing with planar drawings usually convinces people fairly quickly of the following
theorem known as Fuler’s Formula.

Theorem 6.25 (Euler) In a planar drawing of a graph G with v vertices, e edges, and f faces,
v—e+ f=2.
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Proof:  We induct on the number of cycles of G. If G has no cycles, it is a tree, and a tree has
one face because all its edges are cut-edges. Then v —e+ f =v — (v —1) + 1 = 2. Now suppose
G has n > 0 cycles. Choose an edge which is between two faces, so it is part of a cycle. Deleting
that edge joins the two faces it was on together, so the new graph has f’ = f — 1 faces. The new
graph has the same number of vertices and one less edge. It also has fewer cycles than G, so we
have v — (e — 1) — (f — 1) = 2 by the inductive hypothesis, and this givesus v —e+ f =2. R

ForExercise 6.5-8 let’s define an edge-face pair to be an edge and a face such that the edge
borders the face. Then we said that the number of such pairs is at least 3f in a simple graph.
Since each edge is in either one or two faces, the number of edge-face pairs is also no more than
2e. This gives us

3f < # of edge-face pairs < 2e,

or 3f < 2e, so that f < %e in a planar drawing of a graph. We can combine this with Theorem
6.25 to get

2
2:v—e+f§v—e+§e:v—e/3

which we can rewrite as
e<3v—06

in a planar graph.
Corollary 6.26 In a simple planar graph, e < 3v — 6.

Proof: Given above.ll

In our discussion of Exercise 6.5-5 we said that we would see a simple proof that the circuit
layout problem was impossible. Notice that the question in that exercise was really the question
of whether the complete graph on 5 vertices, K5, is planar. If it were, the inequality e < 3v — 6
would give us 10 < 3.5 — 6 = 9, which is impossible, so K5 can’t be planar. The inequality of
Corollary 6.26 is not strong enough to solve Exercise 6.5-6. This exercise is really asking whether
the so-called “complete bipartite graph on two parts of size 3,” denoted by K33, is planar. In
order to show that it isn’t, we need to refine the inequality of Corollary 6.26 to take into account
the fact that in a simple bipartite graph there are no cycles of size 3, so there are no faces that
are bordered by just 3 edges. You are asked to do that in Problem 13.

Exercise 6.5-9 Prove or give a counter-example: Every planar graph has at least one
vertex of degree 5 or less.

Exercise 6.5-10 Prove that every planar graph has a proper coloring with six colors.

In Exercise 6.5-9 suppose that G is a planar graph in which each vertex has degree six or
more. Then the sum of the degrees of the vertices is at least 6v, and also is twice the number of
edges. Thus 2e > 6v, or e > 3v, contrary to e < 3v — 6. This gives us yet another corollary to
Euler’s formula.

Corollary 6.27 FEvery planar graph has a vertex of degree 5 or less.

Proof: Given above.ll
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The Five Color Theorem

We are now in a position to give a proof of the five color theorem, essentially Heawood’s proof,
which was based on his analysis of an incorrect proof given by Kempe to the four color theorem
about ten years earlier in 1879. First we observe that in Exercise 6.5-10 we can use straightforward
induction to show that any planar graph on n vertices can be properly colored in six colors. As a
base step, the theorem is clearly true if the graph has six or fewer vertices. So now assume n > 6
and suppose that a graph with fewer than n vertices can be properly colored with six colors. Let
x be a vertex of degree 5 or less. Deleting x gives us a planar graph on n — 1 vertices, so by
the inductive hypothesis it can be properly colored with six colors. However only five or fewer of
those colors can appear on vertices which were originally neighbors of x, because x had degree 5
or less. Thus we can replace z in the colored graph and there is at least one color not used on
its neighbors. We use such a color on z and we have a proper coloring of G. Therefore, by the
principle of mathematical induction, every planar graph on n > 1 vertices has a proper coloring
with six colors.

To prove the five color theorem, we make a similar start. However, it is possible that after
deleting = and using an inductive hypothesis to say that the resulting graph has a proper coloring
with 5 colors, when we want to restore x into the graph, five distinct colors are already used on
its neighbors. This is where the proof will become interesting.

Theorem 6.28 A planar graph G has a proper coloring with at most 5 colors.

Proof: We may assume that every face except perhaps the outside face of our drawing is a
triangle for two reasons. First, if we have a planar drawing with a face that is not a triangle,
we can draw in additional edges going through that face until it has been divided into triangles,
and the graph will remain planar. Second, if we can prove the theorem for graphs whose faces
are all triangles, then we can obtain graphs with non-triangular faces by removing edges from
graphs with triangular faces, and a proper coloring remains proper if we remove an edge from our
graph. Although this appears to muddy the argument at this point, at a crucial point it makes
it possible to give an argument that is clearer than it would otherwise be.

Our proof is by induction on the number of vertices of the graph. If G has five or fewer
vertices then it is clearly properly colorable with five or fewer colors. Suppose GG has n vertices
and suppose inductively that every planar graph with fewer than n vertices is properly colorable
with five colors. G has a vertex x of degree 5 or less. Let G’ be the graph obtained by deleting
x form G. By the inductive hypothesis, G’ has a coloring with five or fewer colors. Fix such a
coloring. Now if z has degree four or less, or if x has degree 5 but is adjacent to vertices colored
with just four colors in G’, then we may replace z in G’ to get G and we have a color available
to use on z to get a proper coloring of G.

Thus we may assume that z has degree 5, and that in G’ five different colors appear on the
vertices that are neighbors of z in G. Color all the vertices of G other than x as in G'. Let the five
vertices adjacent to x be a,b, ¢, d, e in clockwise order, and assume they are colored with colors
1, 2, 3, 4, and 5. Further, by our assumption that all faces are triangles, we have that {a,b},
{b,c}4,{c,d},{d, e}, and {e,a} are all edges, so that we have a pentagonal cycle surrounding
x. Consider the graph G 3 of G which has the same vertex set as G but has only edges with
endpoints colored 1 and 3. (Some possibilities are shown in Figure 6.34. We show only edges
connecting vertices colored 1 and 3, as well as dashed lines for the edges from x to its neighbors
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and the edges between successive neighbors. There may be many more vertices and edges in G.)

Figure 6.34: Some possibilities for the graph G 3.

The graph G 3 will have a number of connected components. If a and c are not in the same
component, then we may exchange the colors on the vertices of the component containing a
without affecting the color on c¢. In this way we obtain a coloring of G with only four colors,
3,2,3,4,5 on the vertices a, b, c,d,e. We may then use the fifth color (in this case 1) on vertex x
and we have properly colored G with five colors.

Otherwise, as in the second part of Figure 6.34, since a and ¢ are in the same component of
G 3, there is a path from a to ¢ consisting entirely of vertices colored 1 and 3. Now temporarily
color x with a new color, say color 6. Then in G we have a cycle C of vertices colored 1, 3, and
6. This cycle has an inside and an outside. Part of the graph can be on the inside of C', and part
can be on the outside. In Figure 6.35 we show two cases for how the cycle could occur, one in

Figure 6.35: Possible cycles in the graph G 3.

which vertex b is inside the cycle C' and one in which it is outside C'. (Notice also that in both
cases, we have more than one choice for the cycle because there are two ways in which we could
use the quadrilateral at the bottom of the figure.)

In G we also have the cycle with vertex sequence a, b, ¢, d, e which is colored with five different
colors. This cycle and the cycle C can intersect only in the vertices a and c¢. Thus these two cycles
divide the plane into four regions: the one inside both cycles, the one outside both cycles, and the
two regions inside one cycle but not the other. If b is inside C', then the area inside both cycles
is bounded by the cycle a{a, b}b{b, c}c{c, z}x{x,a}a. Therefore e and d are not inside the cycle
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C'. If one of d and e is inside C, then both are (because the edge between them cannot cross the
cycle) and the boundary of the region inside both cycles is a{a, e}e{e,d}d{d, c}c{c,z}x{x,a}a.
In this case b cannot be inside C. Therefore one of b and d is inside the cycle ¢ and one is outside
it. Therefore if we look at the graph G4 with the same vertex set as G and just the edges
connecting vertices colored 2 and 4, the connected component containing b and the connected
component containing d must be different, because otherwise a path of vertices colored 2 and 4
would have to cross the cycle C colored with colors 1, 3, and 6. Therefore in G’ we may exchange
the colors 2 and 4 in the component containing d, and we now have only colors 1, 2, 3, and 5
used on vertices a, b, ¢, d, and e. Therefore we may use this coloring of G’ as the coloring for
the vertices of GG different from x and we may change the color on = from 6 to 4, and we have
a proper five coloring of G. Therefore by the principle of mathematical induction, every finite
planar graph has a proper coloring with 5 colors. B

Kempe’s argument that seemed to prove the four color theorem was similar to this, though
where we had five distinct colors on the neighbors of x and sought to remove one of them, he
had four distinct colors on the five neighbors of x and sought to remove one of them. He had a
more complicated argument involving two cycles in place of our cycle C'; and he missed one of
the ways in which these two cycles can interact.

Important Concepts, Formulas, and Theorems

1. Graph Coloring. An assignment of labels to the vertices of a graph, that is a function from
the vertices to some set, is called a coloring of the graph. The set of possible labels (the
range of the coloring function) is often referred to as a set of colors.

2. Proper Coloring. A coloring of a graph is called a proper coloring if it assigns different
colors to adjacent vertices.

3. Intersection Graph. We call a graph an intersection graph if its vertices correspond to sets
and it has an edge between two vertices if and only if the corresponding sets intersect.

4. Chromatic Number. The chromatic number of a graph G, traditionally denoted x(G), is
the minimum number of colors needed to properly color G.

5. Complete Subgraphs and Chromatic Numbers. If a graph G contains a subgraph that is a
complete graph on n vertices, then the chromatic number of G is at least n.

6. Interval Graph. An intersection graph of a set of intervals of real numbers is called an in-
terval graph. The assignment of intervals to the vertices is called an interval representation.

7. Chromatic Number of an Interval Graph. In an interval graph G, the chromatic number is
the size of the largest complete subgraph.

8. Algorithm to Compute the Chromatic number and a proper coloring of an Interval Graph.
An interval graph G may be properly colored using x(G) consecutive integers as colors by
listing the intervals of a representation in order of their left endpoints and going through
the list, assigning the smallest color not used on an earlier adjacent interval to each interval
in the list.

9. Planar Graph and Planar Drawing. A graph is called planar if it has a drawing in the plane
such that edges do not meet except at their endpoints. Such a drawing is called a planar
drawing of the graph.
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10.

11.

12.
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Face of a Planar Drawing. A geometrically connected connected subset of the plane with
the vertices and edges of a planar graph taken away is called a face of the drawing if it not
a proper subset of any other connected set of the plane with the drawing removed.

Cut Edge. An edge whose removal from a graph increases the number of connected compo-
nents is called a cut edge of the graph. A cut edge of a planar graph lies on only one face
of a planar drawing.

Euler’s Formula. Euler’s formula states that in a planar drawing of a graph with v vertices,
e edges and f faces, v — e + f = 2. As a consequence, in a planar graph, e < 3v — 6.

Problems

1.

10.

11.

12.

What is the minimum number of colors needed to properly color a path on n vertices if
n>17

. What is the minimum number of colors needed to properly color a bipartite graph with

parts X and Y.

. If a graph has chromatic number two, is it bipartite? Why or why not?

. Prove that the chromatic number of a graph G is the maximum of the chromatic numbers

of its components.

. A wheel on n vertices consists of a cycle on n — 1 vertices together with one more vertex,

normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 5 vertices? What is the chromatic number of a wheel
on an odd number of vertices?

. A wheel on n vertices consists of a cycle on n — 1 vertices together with one more vertex,

normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 6 vertices? What is the chromatic number of a wheel
on an even number of vertices?

The usual symbol for the maximum degree of any vertex in a graph is A. Show that the
chromatic number of a graph is no more than A + 1. (In fact Brooks proved that if G is
not complete or an odd cycle, then x(G) < A. Though there are now many proofs of this
fact, none are easy!)

. Can an interval graph contain a cycle with four vertices and no other edges between vertices

of the cycle?

. The Petersen graph is in Figure 6.36. What is its chromatic number?

Let G consist of a five cycle and a complete graph on four vertices, with all vertices of the
five-cycle joined to all vertices of the complete graph. What is the chromatic number of
G?

In how many ways can we properly color a tree on n vertices with ¢ colors?

In how many ways may we properly color a complete graph on n vertices with ¢ colors?
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13

14.

15.
16.

17.

18.

19.
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Figure 6.36: The Petersen Graph.

Show that in a simple planar graph with no triangles, e < 2v — 4.

Show that in a simple bipartite planar graph, e < 2v — 4, and use that fact to prove that
K3 3 is not planar.

Show that in a planar graph with no triangles there is a vertex of degree three or less.

Show that if a planar graph has fewer than twelve vertices, then it has at least one vertex
of degree 4.

The Petersen Graph is in Figure 6.36. What is the size of the smallest cycle in the Petersen
Graph? Is the Petersen Graph planar?

Prove the following Theorem of Welsh and Powell. If a graph G has degree sequence
dy > dy > -+ > dy, then x(G) < 1+ maz;[min(d;,i — 1)]. (That is the maximum over all
i of the minimum of d; and i — 1.)

What upper bounds do Problem 18 and Problem 7 and the Brooks bound in Problem 7
give you for the chromatic number in Problem 10. Which comes closest to the right value?
How close?
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augmenting path, 304
Hall’s condition for, 307
increasing size, 304
maximum, 300, 309
mathematical induction, 117-125, 164-167
base case, 121, 125
inductive conclusion, 121, 126
inductive hypothesis, 121, 126
inductive step, 121, 126
strong, 123, 125
stronger inductive hypothesis, 167
weak, 120, 125
maximum matching, 300, 309
measure
probability, 186, 189, 191
median, 174, 181
mergesort, 140, 148
Miller-Rabin primality testing algorithm, 79
minimum spanning tree, 286
mod n
using in a calculation, 48
modus ponens, 108, 114
multinomial, 24
multinomial coefficient, 24
Multinomial Theorem, 24
multiple edges, 265
multiple edges in a graph, 265
multiplication mod n, 48
multiplicative identity, 45
multiplicative inverse in Z,,, 51, 53, 55, 60—62
computing, 61
multiplicative inverse in Z,, p prime, 60, 62
multiset, 30, 34
size of, 30

mutually disjoint sets, 2, 6

negation, 85, 92

neighbor in a graph, 301, 309
neighborhood, 301, 309
non-deterministic algorithm, 296
non-deterministic graph algorithm, 294
not (in logic), 85, 86, 92

NP, problem class, 295

NP-complete, 295, 296

NP-complete Problems, 294

number theory, 40-81
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one-to-one function, 11
one-way function, 68, 70
only if (in logic), 93
onto function, 11
or
exclusive (in logic), 85
or (in logic), 85, 86, 92
exclusive, 86
order
lexicographic, 13
ordered pair, 6
overflow, 50

P, problem class, 294, 296
pair
ordered, 6
parent, 282, 284
part of a bipartite graph, 300, 309
partition, 28
blocks of, 2
partition element, 176, 182, 242
partition of a set, 2, 6, 33
Pascal Relationship, 18, 23
Pascal’s Triangle, 18, 23
path, 269
alternating, 309
augmenting, 309
Hamiltonian, 291, 296
path in a graph, 265, 273
closed, 269, 273
length of, 265
simple, 265, 273
percentile, 174, 181
permutation, 12
k-element, 13
permutation of Z,, 67, 72
Pi notation, 32, 34
plaintext, 40, 48
planar drawing, 316, 322
planar drawing face of, 317, 323
planar graph, 316, 322
polynomial time graph algorithm, 294
power
falling factorial, 13
rising factorial, 32
primality testing, 216
deterministic polynomial time, 78
difficulty of, 78
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randomized algorithm, 79
Principle
Symmetry, 33
Bijection, 12
Product, 5, 6
Version 2, 10
Quotient, 28
principle
quotient, 34
Principle
Sum, 2, 6
Symmetry, 26
Principle of conditional proof, 114
Principle of Inclusion and exclusion
for counting, 201, 202
principle of inclusion and exclusion
for probability, 197
Principle of proof by contradiction, 52, 115
principle of the excluded middle, 92, 93
Principle of universal generalization, 114
private key, 48
for RSA, 68
private key cryptography, 40, 48
probability, 186, 191
axioms of, 186
Bernoulli trials, 216, 224
Probability
Bernoulli trials
variance and standard deviation, 258,
259
probability
binomial, 216, 224
complementary, 189
complementary events, 187, 191
conditional, 205, 212
distribution, 186, 189, 191
binomial, 216, 224
event, 185, 191
independence, 205, 212
independent random variables
variance of sum, 256, 259
measure, 186, 189, 191
random variable, 215, 223
distribution function, 219, 224, 251
expectation, 219, 224
expected value, 219, 224
independent, 255, 258
numerical multiple of, 221, 224

INDEX

standard deviation, 257, 259
variance, 254, 258
random variables
product of, 255, 258
sum of, 220, 224
sample space, 185, 190
uniform, 189, 191
union of events, 194, 196, 197, 201
weight, 186, 191
product notation, 32, 34
Product Principle, 5, 6
Version 2, 10
proof
direct, 109
indirect, 112, 113
proof by contradiction, 52, 112, 115
proof by contraposition, 111
proof by smallest counterexample, 56
proper coloring, 312, 322
pseudoprime, 79
public key, 42, 48
for RSA, 68
public key cryptography, 42, 48

quantified statements
truth or falsity, 101, 105
quantifier, 97, 105
existential, 97, 105
universal, 97, 105
quicksort, 243
quotient principle, 28, 34

random number, 50

random number generator, 237

random variable, 215, 223
distribution function, 219, 224, 251
expectation, 219, 224
expected value, 219, 224
independence, 255, 258
numerical multiple of, 221, 224
standard deviation, 257, 259
variance, 254, 258

random variables
independent

variance of sum, 256, 259

product of, 255, 258
sum of, 220, 224

randomized algorithm, 79, 237, 247
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randomized selection algorithm, 242, 247
range of a function, 10
recurence
iterating, 131, 137
recurrence, 128, 136
base case for, 128
constant coefficient, 136
divide and conquer, 150
first order linear, 133, 136
solution to, 137
first order linear constant coefficient
solution to, 136
initial condition, 128, 136
iteration of, 141
recurrence equation, 128, 136
recurrence inequality, 163
solution to, 163
recurrences on the positive real numbers, 154,
160
recursion tree, 141, 148, 150, 167
reduction to absurdity, 112
register assignment problem, 314
relation
equivalence, 27
relatively prime, 55, 60, 61
removing floors and ceilings from recurrences,
160, 172
removing floors and ceilings in recurrences,
156, 170
rising factorial, 32
Rivest, 70
root, 281, 284
rooted tree, 281, 284
RSA Cryptosystem, 68
RSA cryptosystem, 70, 72
security of, 77
time needed to use it, 76
RSA encryption, 70
rule of inference, 115
rules of exponents in Z,, 65, 72
rules of inference, 109, 111, 112, 114

sample space, 185, 190
saturate(by matching edges), 300, 309
secret key, 42
selection algorithm, 174, 182
randomized, 242, 247
recursive, 182
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running time, 180
set, 6
k-element permutation of, 13
partition of, 2, 6, 33
permutation of, 12
size of, 2, 6
sets
disjoint, 2
mutually disjoint, 2, 6
Shamir, 70
signature
digital, 81
simple path, 265, 273
size of a multiset, 30
size of a set, 2, 6
solution of equations in Z,, 61
solution to a recurrence inequality, 163
solutions of equations in Z,,, 62
solutions to equations in Z,, 51
spanning tree, 276, 283
minimum, 286
standard deviation, 257, 259
statement
conditional, 90
contrapositive, 111
converse, 111
statements
equivalent, 88
Stirling Numbers of the second kind, 203
Stirling’s formula, 230
stronger induction hypothesis, 167
subgraph, 269
induced, 269
subtree of a graph, 276
success
expected number of trials until, 223, 225
Sum Principle, 2, 6
surjection, 11
Symmetry Principle, 26, 33

table
hash, 186
tautology, 94
Theorem
Binomial, 21, 23
Multinomial, 24
Trinomial, 23
Tour
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Fulerian, 288, 296
towers of Hanoi problem, 128
Trail

Eulerian, 288, 296
tree, 269, 273

binary, 282, 284

recursion, 148, 150, 167

rooted, 281, 284

spanning, 276, 283

minimum, 286
tree recursion, 141
trinomial coefficient, 23
Trinomial Theorem, 23
truth values, 86

uniform probability, 189, 191
union
probability of, 194, 196, 197, 201
universal generalization
Principle of, 114
universal quantifier, 97, 105
universe for a statement, 96, 105

variable
free, 96, 105
variance, 254, 258
Venn diagram, 194, 195, 201
vertex
external, 282, 284
internal, 282, 284
vertex cover, 301, 309
vertex of a graph, 263, 272

weight

probability, 186, 191
weighted graph, 286
weights for a graph, 286
wheel, 323

xor (in logic), 86, 92



