Math 22: Linear Algebra with Applications
Professor Rockmore

Final Exam
Sunday, December 7, 2008

No Caleulators. Remember the Honor Code - do all of your own work. Take your time and you'll do fine.
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1. 22 pts
2. 14 pts
3, 8 pts
4, 26 pts
5. 10 pts
G. 14 pis
7. 24 pts
8. 16 pis
9. 20 pts
10. 4 pts
11. 14 pts
12. 3 pts
Total | 175 pts




1. {22 points) Consider the following system of linear equations

1 + 2w —~ 323 + 14
—-x1 — ¥ + dxy — 2y
—211.'1 — 211.‘2 + 7(1.'3 — 4

o

i
6
1

(a) (2 points) Put them in the form of a matrix/vector equation A% = b,
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(e} (2 points) If there are solutions, how are the solutions to the associated homogeneous system
refated to the solutions of the original system.
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(d) (2 points) What is dim(Null(A))?
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(e) (2 points) Define what is meant by the “rank of a matrix.”
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(f) (2 points) What is rank(A}?

A B Y "
US| L » ' - '1, {400
Vhosf G 1 vl € ol s ) S LEn P
H

(g) (2 points) What is rank(A4)?
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(h) (2 points) What is dim(range(d})?
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(1) (2 points) What is dim(row(A))?
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2. (14 points)

{(a} (3 points) Let vectors 41,..., 9, be in vector space V', What does it mean for them to be linearly
dependent?
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(b) (3 points) Let T : V — ¥ be a lincar transformation between real vector spaces V and W,
What does it mean for T to be lincar?
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(c) {4 points) Suppose A is an nxn real matrix. Give two different conditions for A to be nonsingular
(i.e., invertible).
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{d) (4 points) Tet b € R" such that the linear system AT = b is inconsistent.
What do we mean by the statement “¥ € R™ is a least squares solution to the system A = b

. { { Give an “analytic® answer (i.e., a mathematical statement) as well as a “geometric ” definition.
vy 7 {(Hint: The latter should involve Span(Col(A}).)
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3. {8 points)

\\g .("f\.The vectors

0/ 1 0 3
f=| 0 fy=1 2 iy = 1

-1 -1 A -1
form a hasis for R®. All vectors are written with respect to the standard basis for R3,
3
{a) (4 points) Let ¥ = | 2 } be a vector written with respect to the standard basis. Give a
1

matrix/vector expression for the coordinates of & with respect to the basis {##;, @, #:}. NOTE:
If your expression includes the inverse of some matrix, you need not actually invert the matrix.
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{b) (4 points) Suppose 4 is a 3 x 3 real matrix representing a transformation of R? relative to
the standard basis. What is the matrix that expresses the transformation relative to the basis
{&, @, #}. NOTE: If your expression includes the inverse of some matrix, you need not actually
invert the matrix.
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4, (26 points)

(a) (4 points) Compute the determinant of the matrix

(b) Let
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i. (2 points) Compute the determinant of A.
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iii. (2 points) What is the arca of image of the unit square in R2 (it will be some parallelogram)
under the transformation A.
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iv. (2 points) Compute the characteristic equation for A.
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v. (6 points) The matrix 4 is diagonalizable - find its eigenvalues and the corresponding eigen-
vectors.

B abear , Ao S,

i




g(}; vi. (2 polnts) Give a geometric interpretation for what A does to R2. (Hint: use the fact that
Vi the eigenvectors form a basis for R?). E ;
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real eigenvectors and real eigenvalues? Why or why not? (Hint: Think geometrically what it
means to be an eigenvector!).
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viii. (2 points) Give an example of a 2 x 2 rotation matrix.
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5. (10 points)
{a) (2 points) Let
1 2
a=(1 1)

Write down a matrix that does not conmnute with A.
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. {b} (2 points) Suppose that B = a b is a nonzero 2 x 2 matrix (so it has at least one nonzero
X e ¢ d

i / entry). Show that there is some vector # € R? such that B# # 0.

i\i 7; {e} (6 points) Suppose that B and C' are 2 x 2 matrices with the same eigenvectors ¥, @ and that &

e and @ are a basis for 2. Le,
Bi=M¥ B@# =AW C¥=m¥ CW=ud

Show that A and B commute - i.e., AB = BA. (Hint: consider what they do to an arbitrary

vector # € R2, )
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6. (14 points)
Let
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= 3 and 7= 0
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(a) (2 points) What is the length of 47
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(b) (2 points) What is the cosine of the angte between « and 7
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{c) (2 points) What is the distance hetween the points in R* represented by & and 7.
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(d) (2 points) Compute the projection of ¥ onto . o /
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+ 4y where @& € Span(E) and @ € (Span(i@))*.
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7. (24 points)

Suppose A Is a 3 X 3 matrix with orthogonal eigenvectors
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and eigenvalues 1,0, ~§ respectively.
(a) (6 points) Give the spectral decomposition for A.
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{b) (4 points) Is A symmetric? Why or why not?
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(C) Let @ = 6ty - 2iy 4 3iis
i. (4 points) Compute the projection of ¥ onto the subspace spanned by »j and w3
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Span{ui,ua}. What is the vector in 1V that is closest to #7
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ili. {4 points) Write down the matrix that takes as input a vector @ (in standard coordinates)

and computes its projection onto the subspace spanned by 2} and 43,
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iv. (2 polints) Compute Av (in terms of i, 1, %)
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8. (16 points)

W
(\»)é\ (\ “ éf\fi Let

1 -2 -1

2 0 1

/ N X ;
4 0 0

{2} (8 points) Use the Gram-Schmidt process to find an orthogonal basis for Col{A).
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(b) (8 points) ¥Find the QR decomposition of A.
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9. (20 points)
Suppose that the following table denotes a stock price at times ¢; =0,1,2,3.
10 1 2 3
wl |1l 2 16
(a) (8 points) Set up and solve the system of normal equations to find the equation of the straight
line that best approximates {in a least squares sense) the data.
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(b) (2 points) Suppose that the data (¢, y) represents the price () of a stock at time ¢, What would
be the (linear) prediction of the stock price at time ¢ = 57

. ":)

{c) Suppose we want to find the best quadratic (i.e., second degree) polynomial approximation (in a
least squares sense) to the data. Le., the “best” polynomial y(2) = 8o+ 8:¢ + 3212 to approximate
the data.

i. {6 points) Pose this as a least squares problem ~ i.e., give the design matrix for solving the
associated least squares problem.

il. (4 points) Give the associated collection of normal equations — you can present this as a
matrix /vector system of equations, DO NOT SOLVE THEM.
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10. (4 points)
Write down the design matrix for finding the best approximation (in a least squares sense} by a plane
z = fo + p12 + Bay for the data

i |1 2 3 4
yi |1 i -1 0
2|3 =2 8 4

Ie., The value z; is what was observed for a given input of {z;, ).
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-~ 11. (14 points)
el

a) (2 points) Suppose A represents the matrix of a regular Markov chain. What is the equilibrium
e
distribution and how do you find it? i
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(b) Let A be the matrix of a discrete dynamical with eigenvalues 1

1 and 1 with eigenvectors ( _1 )
and ( 1 ) respectively.

i. {2 points) Classify the origin as an attractor, repellor or saddle point. H %
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ii. {2 points) In what direction does the trajectory change the fastest? [

iil. (4 points) If §p = ( é ), what is &) = A#?
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iv. (4 points) For a positive integer &, what is &, = A*F?
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