
Math 22: Final Exam
November 16, 2012, 3pm-6pm

Your name (please print):

Instructions: This is a closed book, closed notes exam. Use of calculators is not
permitted. Unless otherwise stated, you must justify all of your answers to receive credit
- please write in complete sentences in a paragraph structure. You may not give or receive
any help on this exam and all questions should be directed to Professor Pauls.

You have 3 hours to work on all 9 problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this
exam.

1



Problem Points Score
1 10
2 35
3 10
4 10
5 10
6 5
7 10
8 10
9 10

Total 100
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(1) (10 points) Complete the following definitions - remember, state definitions of the
terms, not properties of the terms. To get credit, your answers must make sense as
English sentences.
(a) A set of vectors is linearly independent if . . .

(b) A map T : V → W is a linear transformation of vectors spaces if . . .

(c) A matrix A is invertible if . . .
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(d) Let B be an n× n matrix. Then, a vector ~v is an eigenvector of A if . . .

(e) A set of vectors B = {~v1, . . . , ~vk} ⊂ V is a basis for the vector space V if . . .

(f) A matrix C is an orthogonal matrix if . . .
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(g) A a Markov chain is . . .

(h) Let D be a square matrix. Then, the characteristic polynomial of D is . . .

(i) The rank of a matrix is . . .
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(j) The least squares solution to the matrix equation A~x = ~b is . . .
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(2) (35 points total, 5 points each) For each question, explain your process and write
clearly. All answers must be fully justified, especially answers to yes or no questions.

(a) Let A1 =


1 2 −4 −4
2 4 0 0
2 3 2 1
−1 1 3 6

 and ~b =


5
2
5
5

. Find all solutions to the matrix

equation A1~x = ~b or show that no solutions exist.
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(b) Let A2 =

1 1 1
2 1 4
0 −1 2

. Show that the columns of A2 are either linearly depen-

dent or linearly independent. What does this say about the dimension of Col A?
Does this imply anything about the dimension of Nul A? If so, what and why?
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(c) Let A3 =


2 3
1 5
4 7
3 6

. Find a basis for Nul A3. What is the rank of A3? Is A3

invertible?
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(d) Let A4 =

3 −1 5
2 1 3
0 −5 1

. Find a basis for Row A4. What is the rank of A4?

What is the dimension of Nul A?
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(e) Let A5 =

1 0 −3 2
0 1 −5 4
3 −2 1 2

. Find a basis for Col A5. What is the rank of A5?
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(f) Let A6 =

13 −5 2
−5 13 2
2 2 5

. Compute the determinant of A6. Is A invertible?
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(g) Let A7 =

 13
6
−5

6
1
3

−5
6

13
6

1
3

1
3

1
3

10
6

. The eigenvalues of this matrix are 1, 2 and 3. Find

all the eigenvectors of A7. Is A7 diagonalizable? If so, give the diagonalization.
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(3) (10 points) Let B =

(
1 1 0
0 0 1

)
.

(a) Compute the reduced singular value decomposition of B. Does B have a trivial
or non-trivial null space? What is the rank of B?
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(b) Find the pseudo-inverse of B.
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(4) (10 points) Let Q be an n×n orthogonal matrix and A an n×m matrix. Show that
A and QA have the same singular values.
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(5) (10 points) Let C be a 3×3 symmetric matrix with orthogonal diagonalization given
by C = PDP−1 where the columns of P are {~p1, . . . , ~pn} and the nonzero entries of
the matrix D are λ1 ≥ λ2 ≥ · · · ≥ λr > 0 where r < n. Let B denote the basis of
eigenvectors of C.
(a) What is the change of basis matrix from the standard basis to B? What is the

change of basis matrix from B to the standard basis (do not just state this as
an inverse of another matrix)?
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(b) What is [C]B? Justify your answer.
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(6) (5 points) Let

D =


1 2 2
−1 1 2
−1 0 1
1 1 2


D has a QR decomposition given by

D = QR =


1
2

3
√
5

10
−
√
6
6

−1
2

3
√
5

10
0

−1
2

√
5

10

√
6
6

1
2

√
5

10

√
6
3


2 1 1

2

0
√

5 3
√
5

2

0 0
√
6
2


Using the QR factorization, find the least squares solution to A~x = ~b where

~b =


2
−3
−2
0


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(7) (10 points) Describe and explain the Gram-Schmidt algorithm.
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(8) (10 points) Consider the following data series:
x 1 2 3 4 5
y 0 2 1 4 5

Suppose we wish to construct a general linear model of the form y = β1x + β2x
3.

What is are design matrix, observation vector and parameter vector for this model?
Write down the normal equations for this model but do not solve them.
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(9) (10 points) Let A be an m × n matrix. Show that Nul A is a subspace of Rn and
that Row A is its orthogonal complement.

22



This page is for additional work.
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This page is for additional work.

24



This page is for additional work.
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