
Selected answers to assignment 5, 2.2–2.3

2.2

5. (c) (1 0 0 1)

(d) (1 2 4)

(f)

 3
−6
1


(g) (a)

8. If x is a linear combination of basis vectors with coefficients ai and y with coefficients bi,
then

T (cx + y) =

 ca1 + b1
...

can + bn

 = c

 a1
...

an

 +

 b1
...
bn

 = cT (x) + T (y).

11. Let α be a basis for W and extend it to a basis β for all of V , ordered so that the vectors
from α are listed first. Since T (W ) ⊆ W , all elements of α will be mapped by T to linear
combinations of elements of α. That is, their image coordinate vectors will have zeros in the
(k + 1)st through nth places. Since the images of the basis vectors form the columns of [T ]β,
the first k columns will be zero from row k + 1 down, and [T ]β has the required form.

13. We want to show that if aT + bU = T0, we must have a = b = 0. We know that if one of
a or b is nonzero, the other must also be, because neither T nor U is T0 and hence neither
is a multiple of T0. If

(aT + bU)(x) = 0 , then aT (x) + bU(x) = 0

by definition. Hence aT (x) = −bU(x), so we must have T (ax) = U(−bx). Both these values
are in the range of their respective linear transformation, so both must be zero. If a and b
are nonzero, x must be in N(T )∩N(U) to get this equality. However, since neither T nor U
is T0, there are elements y outside N(T ) ∩N(U), and on such y aT + bU will give nonzero
output. Therefore aT + bU = T0 only when a = b = 0, and {U, T} is a linearly independent
subset of L(V, W ).

15. (a) Show S0 is a subspace of L(V, W ):
T0 ∈ S0 because T0(x) = 0 for all x, including those in S. If T, U ∈ S0, (aT + U)(x) =

aT (x) + U(x) which is zero for all x ∈ S, so aT + U ∈ S0.
(b) Show that S1 ⊆ S2 ⇒ S0

2 ⊆ S0
1 :

Suppose T ∈ S0
2 . Then T (x) = 0 for all x ∈ S2. Since S1 ⊆ S2, this includes all x ∈ S1,

so T ∈ S0
1 .

(c) Show that (V1 + V2)
0 = V 0

1 ∩ V 0
2 :

⊆: Suppose T (v1 + v2) = 0 for all v1 ∈ V1, v2 ∈ V2. Then in particular, T (v1 + 0 ) = 0
and T (0 + v2) = 0 , so T ∈ V 0

1 and T ∈ V 0
2 .

⊇: Suppose T ∈ V 0
1 ∩ V 0

2 . Then for all vi ∈ Vi, T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0 .
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2.3

4. (b)


−6
2
0
6


(d) (12)

11. Suppose T 2 = T0. Then T (T (x)) = 0 for all x, so T (y) = 0 for all y ∈ R(T ). Hence
R(T ) ⊆ N(T ). Now suppose R(T ) ⊆ N(T ). T (T (x)) = T (y) for some y ∈ R(T ), so
T (y) = 0 . Hence for all x T 2(x) = 0 and T 2 = T0.

12. (a) Show UT one-to-one implies T one-to-one:
Suppose some x1 6= x2 ∈ V are such that T (x1) = T (x2). Then U(T (x1)) = U(T (x2))

so (UT )(x1) = (UT )(x2). Hence if T is not one-to-one, neither can UT be, so if UT is
one-to-one, T must be also.

However, U need not be one-to-one on all of W , just on R(T ). E.g., let T : R → R2 be
T (a) = (a, 0) and U : R2 → R be U(a, b) = a.
(b) Show UT onto implies U onto:

Suppose UT is onto, so for any y ∈ Z there is some x ∈ V such that UT (x) = y. But
then U(T (x)) = y for some T (x) ∈ W , so U is onto.

Same example as in (a) shows that T need not be onto.
(c) Show U , T one-to-one and onto implies UT one-to-one and onto:

Let x1 6= x2 ∈ V . Then T (x1) 6= T (x2) since T is one-to-one, and hence U(T (x1)) 6=
U(T (x2)) since U is one-to-one. Therefore UT is one-to-one.

Now suppose z ∈ Z. Since U is onto there is w ∈ W so that U(w) = z, and since T is
onto there is v ∈ V such that T (v) = w. Therefore UT (v) = z and UT is onto.

15. The jth column of MA is 
∑n

k=1 M1kAkj
...∑n

k=1 MmkAkj


and we may write

Akj =
r∑

i=1

a`i
Ak`i

for all 1 ≤ k ≤ n. Rearrange the resulting formula for M ’s tjth entry into
r∑

i=1

a`i

n∑
k=1

MtkAk`i

and note this is exactly the linear combination corresponding to the one in A, as required.

17. Projections are the answer (see exercises from §2.1, especially #26).
projection ⇒ T = T 2: For any sum, T (w1 + w2) = w1 = w1 + 0 , so T 2(w1 + w2) =

T (w1 + 0 ) = w1 = T (w1 + w2).
T = T 2 ⇒ projection: Certainly {y : T (y) = y} ∩ N(T ) = {0}. For any x ∈ V we

may write x = x − T (x) + T (x). By assumption, x − T (x) ∈ N(T ), since T (x − T (x)) =
2



T (x) − T 2(x). Also by assumption, T (x) ∈ {y : T (y) = y}, since T (T (x)) = T 2(x) = T (x).
Thus as long as {y : T (y) = y} is a subspace of V , we get V = {y : T (y) = y} ⊕N(T ) and
T is a projection.

For subspace, let x, y ∈ {y : T (y) = y}. T (cx + y) = cT (x) + T (y) = cx + y for
cx + y ∈ {y : T (y) = y}.
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