THE RECURSION THEOREM (DRAFT 1)

REBECCA WEBER

Kleene’s Recursion Theorem, though provable in only a few lines, is
fundamental to computability theory and allows strong self-reference
in proofs. It is a fixed-point theorem in the sense that it asserts for
any total computable function f, there is a number n such that n and
f(n) code the same partial computable function (though we need not
have f(n) =n). [brief outline of paper here]

The S-m-n Theorem and all versions of the Recursion Theorem are
attributed to Kleene (see Soare [6]); the Relativized S-m-n Theorem is
not attributed to anyone. [look up more here]

We begin with some background. [g,, equality for partial functions,
anything else needed?]

The basic theorem needed to prove the Recursion Theorem and
its variants is the following, known as the S-m-n Theorem or the
parametrization theorem.

Theorem 1 (S-m-n Theorem, Kleene). Given m, n, there is a prim-
itive recursive one-to-one function S™ such that for all e, all n-tuples
z, and all m-tuples g,

sheydb~ Y P & Psp(em(¥) = @elZ, 7).

Theorem 2 (Recursion or Fixed-Point Theorem, Kleene). Suppose
that f is a total computable function; then there is a number n such
that ¢, = @) Moreover, n is computable from an indez for f.

O Qs WX 1f we could guarantee f(@z(z)) |, then using the slightly circular
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choice of z as the index of f o ¢, we would have f(p.(z)) = (fo
0)(z) = @a(x), and so the functions indexed by f(¢s(z)) and p.(z)
would be the same because those values would be equal. However,
there is no guarantee of halting for f(.(z)), and for a function such
as f(n) = n + 1 we must have divergence. However, we may define a
function on two inputs that mimics the desired function:

_ | erieaan®) elz) |
Pe(z,y) = { 1 otherwise

Since I reverse-engineered this from the final version, it is a bit more polished
than a first draft needs to be, but I hope it gets the idea across.
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By the S-m-n Theorem 1, this function is equal to ,(z)(y) for a total

computable function s (technically the function produced by the S-m-~ l ¥ sec
n Theorem takes e as an input, but e is fixed and hence we ignore it).

The key fact is that if p.(z) T, s(z) will index a function that diverges Lefowy
everywhere, but will still be defined. bt vall? clarify,

Proof of Theorem 2. By the S-m-n Theorem there is a total computable
function s(z) such that for all z and y

Piloz(z)) (y ) = Ps(x) (y) .

Let m be any index such that ¢, computes the function s; note that
s and hence m are computable from an index for f. Rewriting the
statement above yields

Pslpa(a)(Y) = Pon)(¥)-

Then, putting z = m and letting n = ,,(m) (which is defined because
s is total), we have

1) (¥) = Priomm)(¥) = Pam)(¥) = Comim)(¥) = Pnly)

as required. O

From the Recursion Theorem we obtain the immediate corollary that
there are numbers n, m such that ¢, = Yy and @, = P2m, and we
may continue in this manner for any total computable function. There
are also the following corollaries.

( ,H;,\g,.nc) Corollary 3. If f is a total computable function then there are arbi-
L trarily large numbers n such that ) = Pn.

o7
(f" Corollary 4. If f(z,y) is any computable function there is an indez e
such that p.(y) = f(e,y)-

[examples of use of last corollary]

Many of the uses of the Recursion Theorem in computability-theoretic
constructions can be summed up as building a Turing machine using
the index of the finished machine. The construction will have early on
a line something like “We construct a partial computable function
and assume by the Recursion Theorem that we have an index e for 9.
The construction, which is computable, is itself the function for which
we seek a fixed point. When the construction is given the input e to be
interpreted as the index of a partial computable function, it can use e
to produce ¢/, which is an index of the function %) it is trying to build.
The Recursion Theorem says the construction will have a fixed point,
some 7 such that i and 7 both index the same function, which must be
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1. Furthermore this fixed point will be computable from an index for oY

the construction itself. I'"“"N
Our first extension of the Recursion Theorem gives a fixed point of W

sorts for functions of two inputs.

Theorem 5 (Recursion Theorem with Parameters, Kleene). If f(z,v)
is a total computable function, then there is a total computable function

n(y) such that Ony) = @)y for aly.

Proof. By the S-m-n Theorem there is a total computable function
d(z,y) such that

_ ‘Paox(:c,y)(z) if @ (z, y)l;
Pz (2) = { T otherwise.

Since f and d are both partial computable, there is an index v such

S Pr(yy = Pdwy) = Peulvy) = PiEphy) = Prny)w)

O

[Soare has a comment about replacing total f with partial ¥, put a
description in here?] swe. Alsa! # Jliy Qdudds Jha gn’s'.m..i Fhsarem A v
The second generalization of the Recursion Theorem we will include . .
; i o . . 3 -JQ ::1(_ &
is the Relativized Recursion Theorem, which also allows parameters. Y 7
[Describe relativization here.] ves CoMpaars g

Theorem 6 (Relativized S-m-n Theorem). For every m,n > 1 there ’ﬂ\ﬂd“
ezrists a one-to-one computable function ST of m + 1 variables so that
for all sets A C N and for all e,y1,...,ym €N,

(Pglrrp(e,y],_,,,ym)(zla e g Zn) = Qof(yla sy Ymy 21y 000y zn)-
[Describe proof and talk about the computability of the smn function
and fixed point] yoo 0. “SU‘-SL,-[- P 5 KA cher Foee Thas

Theorem 7 (Relativized Recursion Theorem (with Parameters), Kleene). wad onliT
Let A C N. If_ f(z,y) is an A-compj;,table ﬁfqnctz'on, then there is a com- F relaiwzi
putable function n(y) such that ¢r\ = ©fnu for all y. Moreover, )
n does not depend on A; namely, if f(z,y) = ¢2(z,y), n(y) can be do A (’d—m’?'
found uniformly in e.

Proof. By the Relativized S-m-n Theorem there is a total computable
function d(z,y) such that

(’Oﬁ(:c.v)(z) = { (Tpﬁm(xly)(z) if oz (z, )}

otherwise.
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Since f and d are both computable in A, there is an index v such that
©A(z,y) = f(d(z,y),y). Then n(y) = d(v,y) is a fixed point for f,

since
A _ A _ A _ A _ A
Pry = Pay) = Podon) = Prdvma) = Plaw)w:
O
Our final result is an application of the Relativized Recursion The- m'%l»:” fL‘f‘;"-SL-
orem to the structure of Turing degrees. cadlers on g

Definition 8. The Turing jump of a set A, denoted A', is the Halting . &ugw ot
Set relativized to A. That is, A’ = {e: p2(e) |}.

If A <r B, then A’ <y B’ (and hence the jump is a well-defined
operation on degrees), but it may be that A <y B and A" = B'.
We recall that the degree of computable sets is denoted 0 and hence
the degree of the Halting Set is 0’. All degrees below 0’ must have
jumps between 0’ and 0”. Degrees on the upper and lower extremes are
called high and low, respectively. The following definition generalizes
the notions of lowness and highness.

Definition 9. For each n > 0, define a degree @ < 0’ to be low,
(high,,) if 0™ = a™ (a® = 0**V). A set A is low,, (high,) exactly
when deg(A) is. We use low,, and high,, also to denote the collection
of all low,, or high, degrees. For convenience, we set lowy = {0} and

higho = {0’}.
e)q?l“'“" iy ]No‘r,e that low, C low,,; and high, C high, ;. We state without
‘w"}:? proof that this containment is proper; the result is a corollary of the
Jump Theorem 12. All proofs omitted below may be found in Soare
[6].

Proposition 10. For all n € N, low,, # low,; and high, # high,_,,.

In some sense the low degrees are “close to” computable, and the

high degrees are “close to” complete. The hierarchy of low,, and high,,

degrees gradually carves out more and more of the c.e. degrees as n

increases: low; (or just low) degrees are near 0, low, degrees come

a little further up, lows a little further up yet; meanwhile the high,

l‘rﬁ’L@ 04 do degrees are creeping down from near 0’. They can’t overlap, but do

A l they meet in the middle? Another corollary of the Jump Theorem 12,

Ay W l'b-ljku . which uses the Relativized Recursion Theorem, says no, there is a gap.
~o- [look up citations for the below]
on ;,.J”’ é Proposition 11 (Martin, Lachlan, Sacks). There is an intermediate
o OY c.e. degree a. That is, 00 < a™ < 00D for all n.

P
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The proof requires the Sacks Jump Theorem, stated below.

Theorem 12 (Sacks Jump Theorem [4]). Suppose we are given sets
S and C such that ' <t S, S is c.e. in O, and O <y C <7 . Then
there exists a noncomputable c.e. set A such that A’ =7 S and C £ A.
Furthermore, an index of A can be found uniformly from indices for S
and C.

In other words, if S could be the jump of a c.e. set, then up to Turing
equivalence it is. [more explanation here.] This theorem is proved by
an infinite injury construction. We will actually need the relativized
version of this theorem, where for some set Y, # is replaced by Y;
therefore c.e. becomes Y-c.e. and computable becomes Y-computable.
Sacks noted that in fact we can include another set I} in the theorem,;
as long as D is c.e. (or Y-ce.), D' <p S, and C &7 D, we can also
ensure D <7 A and keep the uniformity of the theorem.

Finally, we give the proof of the existence of an intermediate degree,
as given in Soare [6] [to be expanded on!]. ey rg_“_.”" so
Proof of 11 (Sacks [5]). The uniformity of the Jump Theorem 12, com-

bined with Sacks’ observation stated after the theorem, and both rela-

tivized to Y gives a computable function g such that for all z € N and
YEN,

Y <o Whey <z Y’ and (W),) =r (W) )eY"

q g
Now apply the Relativized Recursion Theorem 7 to obtain a fixed

point 7 such that W), = Wy for all Y’ C N. Define a = deg(W9). O
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