
Math 29: Computability Theory

Rebecca Weber

Spring 2011

Contents

1 Introduction 3
1.1 Mindset . 3
1.2 Some History . 4
1.3 Some References . 6
1.4 A Little Request . 6

2 Background 7
2.1 First-Order Logic . 7
2.2 Sets . 12
2.3 Relations . 17
2.4 Recursion and Induction . 23
2.5 Some Notes on Proofs and Abstraction 29

3 Defining Computability 33
3.1 Functions, Sets, and Sequences . 33
3.2 Turing Machines . 35
3.3 Partial Recursive Functions . 39
3.4 Coding and Countability . 42
3.5 The Church-Turing Thesis . 46
3.6 Other Definitions of Computability 47

4 Working with Computable Functions 57
4.1 A Universal Turing Machine . 57
4.2 The Halting Problem . 58
4.3 Parametrization . 59
4.4 The Recursion Theorem . 60
4.5 Unsolvability . 63

5 Computable and Computably Enumerable Sets 71
5.1 Dovetailing . 71
5.2 Computing and Enumerating . 72
5.3 Noncomputable Sets Part I . 76

1

2 CONTENTS

5.4 Noncomputable Sets Part II: Simple Sets 77

6 Turing Reduction and Post’s Problem 79
6.1 Reducibility of Sets . 79
6.2 Finite Injury Priority Arguments 82

7 Turing Degrees 91
7.1 Turing Degrees . 91
7.2 Relativization and the Turing Jump 92

8 More Advanced Results 97
8.1 The Limit Lemma . 97
8.2 The Arslanov Completeness Criterion 99
8.3 E Modulo Finite Difference . 101

9 Areas of Research 105
9.1 Lattice-Theoretic Properties . 105
9.2 Randomness . 111
9.3 Some Model Theory . 122
9.4 Computable Model Theory . 124
9.5 Reverse Mathematics . 127

A Mathematical Asides 137
A.1 The Greek Alphabet . 137
A.2 Summations . 137
A.3 Cantor’s Cardinality Proofs . 138

Bibliography 141

Chapter 1

Introduction

This chapter is one I expect you will initially skim. The first section I hope you will
come back to halfway through the course, to get a high-level view of the subject; it
may not make total sense before the course begins.

1.1 Mindset

What does it mean for a function or set to be computable?
Computability is a dynamic field. I mean that in two ways. One, of course,

is that research into computability is ongoing and varied. However, I also mean
that the mindset when working in computability is dynamic rather than static. The
objects in computability are rarely accessible “all at once” or in their exact form.
Rather, they are approximated or enumerated. Sets will be presented element by
element; a function’s output must be waited for, and indeed may never come.

The aspect of computability theory that tends to bother people the most is that
it is highly nonconstructive. By that I mean many proofs are existence proofs rather
than constructive proofs: when we say a set is computable, we mean an algorithm
exists to compute it, not that we necessarily have such an algorithm explicitly. One
common application of this is being unconcerned when a program requires some
magic number to operate correctly: for example, a value n such that on inputs at
least n two functions are equal, though they might differ on inputs below n. We
think of a fleet of programs, each “guessing” a different value; if we can show such
a value exists we know one of those programs (indeed, infinitely many) will operate
correctly, and that is all we care about. This is called nonuniformity and can inhibit
some further uses of the algorithm, so we always pay attention to whether or not
processes are uniform.

The other initially troublesome aspect, which perhaps only bothers computabil-
ity theorists because no one else sees it, is that computability uses self-reference in
very strong and perhaps illegal-looking ways. For now we will leave this to §4.4.

3

4 CHAPTER 1. INTRODUCTION

The primary tool in computability is called a priority argument (see §6.2). This
is a ramped-up version of a diagonal argument, such as Cantor’s proof the reals are
uncountable (Appendix A.3). Essentially, we break up what we want to accomplish
in a construction into an infinite collection of requirements to meet. The require-
ments have a priority ordering, where lower-priority requirements are restricted from
doing anything that harms higher-priority requirements, but not vice-versa. As long
as each requirement will only cause harm finitely many times, and each can recover
from a finite number of injuries, the construction will succeed. This allows us to
work with information that is being approximated and will throughout the con-
struction be incomplete and possibly incorrect: the requirements must act based on
the approximation and thus might act wrongly or have their work later undone by
a higher-priority requirement. Proofs that priority constructions accomplish their
goals are done by induction, which also works step by step.

As a simple example of the sorts of conflicts that arise, consider building a set A
by putting numbers into it stage by stage during a construction. We may have some
requirements that want to put elements into A, say, to cause it to have nonempty
intersection with another set. Then we may have requirements that are trying to
maintain computations that are based on A – that say things like “if 5 is in A,
output 1, and if not, output 0”. If one requirement wants to put 10 into A to cause
an intersection and another wants to keep 10 out to preserve a computation, priority
allows us to break the tie. Regardless of which one wins the other has to recover:
the one that wanted 10 out would need to get its computation back or be able to
use a different one, and the one that wanted 10 in would need to be able to use a
different element to create the intersection.

The point of a priority argument is that we can make assertions about the
computability of the object we are building. Computability theorists are concerned
not only with whether an object exists but with how complicated it must be.

1.2 Some History

We begin with the mathematical philosophy of formalism, which holds that all
mathematics is just symbol-pushing without deeper meaning (to be contrasted with
Platonism, which holds that mathematics represents something real, and in partic-
ular that even statements we can’t prove or disprove with our mathematical axioms
are true or false in reality). In 1910, Whitehead and Russell published the Principia
Mathematica, which was in part an effort to put all of mathematics into symbolic
form.

Would this take the creativity out of mathematics? If you can formalize ev-
erything, you can generate all possible theorems by applying your set of logical
deduction rules to sets of axioms. Repeat, adding your conclusions at every step to
the axioms. It would take forever, but would be totally deterministic and complete.

1.2. SOME HISTORY 5

In 1900, David Hilbert gave a famous talk in which he listed problems he thought
should direct mathematical effort. His tenth problem, paraphrased, was to find
an algorithm to determine whether any given polynomial equation with integer
coefficients (a Diophantine equation) has an integer solution. This was, again, part
of the program to make all mathematics computational. People were once famous
for being able to solve lots of quadratic equations, but the discovery of the quadratic
formula put an end to that. Could we find such a formula for any degree equation?

Gödel showed Whitehead and Russell’s quest to formalize mathematics was
doomed to fail. His First Incompleteness Theorem shows any sufficiently strong
axiomatic system has true but unprovable theorems: theorems that would never
appear in the list being generated by automated deduction. Furthermore, what is
meant by “sufficiently strong” is well within the bounds of what mathematicians
would consider reasonable axioms for mathematics.

Church showed even Hilbert’s more modest goal of mechanizing finding roots of
polynomials was impossible [8]. However, Hilbert’s tenth problem didn’t acknowl-
edge the possibility of such an algorithm simply not existing; at the time, there was
no mathematical basis to approach such questions.

Hilbert’s phrasing was as follows:

Given a Diophantine equation with any number of unknown quanti-
ties and with rational integral1 numerical coefficients: To devise a pro-
cess according to which it can be determined in a finite number of oper-
ations whether the equation is solvable in rational integers.

Church’s response:

There is a class of problems of elementary number theory which can
be stated in the form that it is required to find an effectively calculable
function f of n positive integers, such that f(x1, . . . , xn) = 2 is a nec-
essary and sufficient condition for the truth of a certain proposition of
elementary number theory involving x1, . . . , xn as free variables. [foot-
note: The selection of the particular positive integer 2 instead of some
other is, of course, accidental and non-essential.]

... The purpose of the present paper is to propose a definition of
effective calculability which is thought to correspond satisfactorily to
the somewhat vague intuitive notion in terms of which problems of this
class are often stated, and to show, by means of an example, that not
every problem of this class is solvable.

That is, it may not be possible to devise Hilbert’s desired process, and in fact
it is not, though that was shown much later. Church’s major contribution is the

1rational integer = integer.

6 CHAPTER 1. INTRODUCTION

point that we need some formal notion of finite process to answer Hilbert – this is
his effective calculability.

Church proposes two options in this paper: the lambda calculus, and what would
later be called primitive recursive functions. Shortly thereafter Kleene proposed
what we now call the partial recursive functions [32]. It was not widely accepted at
the time that any was a good characterization of “effectively computable”, however.
It was not until Turing developed his Turing machine [59], which was accepted
as a good characterization, and it was proved that Turing-computable functions,
lambda-computable functions, and partial recursive functions are the same class,
that the functional definitions were accepted. All three of these formalizations of
computability are studied in Chapter 3. The idea that not all problems are solvable
comes up in Chapter 4, along with many of the tools needed in such proofs.

This area of study took on a life of its own beyond simply answering Hilbert’s
challenge (often the way new fields of mathematics are introduced), becoming known
as computability theory or recursion theory. Chapters 5–8 explore some of the
additional topics and fundamental results of the area, and Chapter 9 contains a
survey of the sorts of questions of current interest to computability theorists.

1.3 Some References
These notes owe a great debt to a small library of logic books. For graduate- and
research-level work I regularly refer to Classical Recursion Theory by P.G. Odifreddi
[49], Theory of Recursive Functions and Effective Computability by H. Rogers [51],
and Recursively Enumerable Sets and Degrees by R.I. Soare [56]. The material in
here owes a great deal to those three texts. More recently, I have enjoyed A. Nies’
book Computability and Randomness [48].

In how to present such material to undergraduates, I was influenced by such
books as Computability and Logic by Boolos, Burgess, and Jeffrey [4], Computabil-
ity by Cutland [10], A Mathematical Introduction to Logic by Enderton [19], An
Introduction to Formal Languages and Automata by Linz [41], and A Transition to
Advanced Mathematics by Smith, Eggen, and St. Andre [55].

1.4 A Little Request
I am looking to turn these course notes into a textbook in the near future, so any
comments as to places you feel it could be improved are welcome (but do not feel
obligated). Typos, yes, but more importantly spots where I was too terse, too ver-
bose, or disjointed, sections or chapters you feel would benefit from reorganization,
or places where you were left wanting more and would like to at least see a reference
to outside sources.

Chapter 2

Background

This chapter covers a collection of topics that are not computability theory per se,
but are needed for it. They are set apart so the rest of the text reads more smoothly
as a reference, but we will cover them as needed when they become relevant.

2.1 First-Order Logic

In this section we learn a vocabulary for expressing formulas, logical sentences. This
is useful for brevity (x < y is much shorter than “x is less than y”, and the savings
grows as the statement becomes more complicated) but also for clarity. Expressing
a mathematical statement symbolically can make it more obvious what needs to be
done with it, and however carefully words are used they may admit some ambiguity.

We use lowercase Greek letters (mostly ϕ and ψ, sometimes ρ and θ) to represent
formulas. The simplest formula is a single symbol (or assertion) which can be either
true or false. There are several ways to modify formulas, which we’ll step through
one at a time.

The conjunction of formulas ϕ and ψ is written “ϕ and ψ”, “ϕ∧ ψ”, or “ϕ & ψ”.
It is true when both ϕ and ψ are true, and false otherwise. Logically “and” and
“but” are equivalent, and so are ϕ & ψ and ψ & ϕ, though in natural language there
are some differences in connotation.

The disjunction of ϕ and ψ is written “ϕ or ψ”, or “ϕ∨ψ”. It is false when both
ϕ and ψ are false, and true otherwise. That is, ϕ∨ψ is true when at least one of ϕ
and ψ is true; it is inclusive or. Natural language tends to use exclusive or, where
only one of the clauses will be true, though there are exceptions. One such: “Would
you like sugar or cream in your coffee?” Again, ϕ ∨ ψ and ψ ∨ ϕ are equivalent.

The negation of ϕ is written “not(ϕ)”, “not-ϕ”, “¬ϕ”, or “∼ϕ”. It is true when
ϕ is false and false when ϕ is true. The potential difference from natural language
negation is that ¬ϕ must cover all cases where ϕ fails to hold, and in natural
language the scope of a negation is sometimes more limited. Note that ¬¬ϕ = ϕ.

7

8 CHAPTER 2. BACKGROUND

How does negation interact with conjunction and disjunction? ϕ & ψ is false
when ϕ, ψ, or both are false, and hence its negation is (¬ϕ) ∨ (¬ψ). ϕ ∨ ψ is false
only when both ϕ and ψ are false, and so its negation is (¬ϕ)&(¬ψ). We might
note in the latter case that this matches up with natural language’s “neither...nor”
construction. These two negation rules are called DeMorgan’s Laws.

Exercise 2.1.1. Simplify the following formulas.

(i) ϕ & ((¬ϕ) ∨ ψ).

(ii) (ϕ & (¬ψ) & θ) ∨ (ϕ & (¬ψ) & (¬θ)).

(iii) ¬((ϕ & ¬ψ) & ϕ).

There are two classes of special formulas to highlight now. A tautology is always
true; the classic example is ϕ ∨ (¬ϕ) for any formula ϕ. A contradiction is always
false; here the example is ϕ & (¬ϕ). You will sometimes see the former expression
denoted T (or >) and the latter ⊥.

To say ϕ implies ψ (ϕ → ψ or ϕ ⇒ ψ) means whenever ϕ is true, so is ψ. We
call ϕ the antecedent and ψ the consequent of the implication. We also say ϕ is
sufficient for ψ (since whenever we have ϕ we have ψ, though we may also have ψ
when ϕ is false), and ψ is necessary for ϕ (since it is impossible to have ϕ without
ψ). Clearly ϕ → ψ should be true when both formulas are true, and it should be
false if ϕ is true but ψ is false. It is maybe not so clear what to do when ϕ is false;
this is clarified by rephrasing implication as disjunction (which is often how it is
defined in the first place). ϕ→ ψ means either ψ holds or ϕ fails; i.e., ψ∨(¬ϕ). The
truth of that statement lines up with our assertions earlier, and gives truth values
for when ϕ is false – namely, that the implication is true. Another way to look at
this is to say ϕ → ψ is only false when proven false, and that can only happen
when you see a true antecedent and a false consequent. From this it is clear that
¬(ϕ→ ψ) is ϕ & (¬ψ).

There is an enormous difference between implication in natural language and
implication in logic. Implication in natural language tends to connote causation,
whereas the truth of ϕ→ ψ need not give any connection at all between the mean-
ings of ϕ and ψ. It could be that ϕ is a contradiction, or that ψ is a tautology.
Also, in natural language we tend to dismiss implications as irrelevant or meaning-
less when the antecedent is false, whereas to have a full and consistent logical theory
we cannot throw those cases out.

Example 2.1.2. The following are true implications:

• If fish live in the water, then earthworms live in the soil.

• If rabbits are aquamarine blue, then earthworms live in the soil.

2.1. FIRST-ORDER LOGIC 9

• If rabbits are aquamarine blue, then birds drive cars.

The negation of the final statement is “Rabbits are aquamarine blue but birds do
not drive cars.”

The statement “If fish live in the water, then birds drive cars” is an example of
a false implication.

Equivalence is two-way implication and indicated by a double-headed arrow:
ϕ↔ ψ or ϕ⇔ ψ. It is an abbreviation for (ϕ→ ψ) & (ψ → ϕ), and is true when ϕ
and ψ are either both true or both false. Verbally we might say “ϕ if and only if ψ”,
which is often abbreviated to “ϕ iff ψ”. In terms of just conjunction, disjunction,
and negation, we may write equivalence as (ϕ & ψ) ∨ ((¬ϕ) & (¬ψ)). Its negation
is exclusive or, (ϕ ∨ ψ) & ¬(ϕ & ψ).

Exercise 2.1.3. Negate the following statements.

(i) 56894323 is a prime number.

(ii) If there is no coffee, I drink tea.

(iii) John watches but does not play.

(iv) I will buy the blue shirt or the green one.

Exercise 2.1.4. Write the following statements using standard logical symbols.

(i) ϕ if ψ.

(ii) ϕ only if ψ.

(iii) ϕ unless ψ.

As an aside, let us have a brief introduction to truth tables. These are nothing
more than a way to organize information about logical statements. The leftmost
columns are generally headed by the individual propositions, and under those head-
ings occur all possible combinations of truth and falsehood. The remaining columns
are headed by more complicated formulas that are build from the propositions, and
the lower rows have T or F depending on the truth or falsehood of the header for-
mula when the propositions have the true/false values in the beginning of that row.
Truth tables aren’t particularly relevant to our use for this material, so I’ll leave
you with an example and move on.

ϕ ψ ¬ϕ ¬ψ ϕ & ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

T T F F T T T T
T F F T F T F F
F T T F F T T F
F F T T F F T T

10 CHAPTER 2. BACKGROUND

If we stop here, we have propositional (or sentential) logic. These formulas
usually look something like [A ∨ (B&C)] → C and their truth or falsehood de-
pends on the truth or falsehood of the assertions A, B, and C. We will con-
tinue on to predicate logic, which replaces these assertions with statements such as
(x < 0) & (x + 100 > 0), which will be true or false depending on the value sub-
stituted for the variable x. We will be able to turn those formulas into statements
which are true or false inherently via quantifiers. Note that writing ϕ(x) indicates
the variable x appears in the formula ϕ.

The existential quantification ∃x is read “there exists x”. The formula ∃xϕ(x) is
true if for some value n the unquantified formula ϕ(n) is true. Universal quantifi-
cation, on the other hand, is ∀xϕ(x) (“for all x, ϕ(x) holds”), true when no matter
what n we fill in for x, ϕ(n) is true.

Quantifiers must have a specified set of values to range over, because the truth
value of a formula may be different depending on this domain of quantification. For
example, take the formula

(∀x)(x 6= 0→ (∃y)(xy = 1)).

This asserts every nonzero x has a multiplicative inverse. If we are letting our
quantifiers range over the real numbers or the rational numbers, this statement is
true, because the reciprocal of x is available to play the role of y. However, in the
integers or natural numbers this is false, because 1/x is only in the domain when x
is ±1.

Introducing quantification opens us up to two kinds of logical formulas. If all
variables are quantified over (bound variables), then the formula is called a sentence.
If there are variables that are not in the scope of any quantifier (free variables), the
formula is called a predicate. The truth value of a predicate depends on what values
are plugged in for the free variables; a sentence has a truth value period. For
example, (∀x)(∃y)(x < y) is a sentence, and it is true in all our usual domains
of quantification. The formula x < y is a predicate, and it will be true or false
depending on whether the specific values plugged in for x and y satisfy the inequality.

Exercise 2.1.5. Write the following statements as formulas, specifying the domain
of quantification.

(i) 5 is prime.

(ii) For any number x, the square of x is nonnegative.

(iii) There is a smallest positive integer.

Exercise 2.1.6. Consider the natural numbers, integers, rational numbers, and real
numbers. Over which domains of quantification are each of the following statements
true?

2.1. FIRST-ORDER LOGIC 11

(i) (∀x)(x ≥ 0).

(ii) (∃x)(5 < x < 6).

(iii) (∀x)((x2 = 2)→ (x = 5)).

(iv) (∃x)(x2 − 1 = 0).

(v) (∃x)(x3 + 8 = 0).

(vi) (∃x)(x2 − 2 = 0).

When working with multiple quantifiers the order of quantification can matter
a great deal. For example, take the two formulas

ϕ = (∀x)(∃y)(x · x = y);

ψ = (∃y)(∀x)(x · x = y).

ϕ says “every number has a square” and is true in our typical domains. However, ψ
says “there is a number which is all other numbers’ square” and is true only if you
are working over the domain containing only 0 or only 1.

Exercise 2.1.7. Over the real numbers, which of the following statements are true?
Over the natural numbers?

(i) (∀x)(∃y)(x+ y = 0).

(ii) (∃y)(∀x)(x+ y = 0).

(iii) (∀x)(∃y)(x ≤ y).

(iv) (∃y)(∀x)(x ≤ y).

(v) (∃x)(∀y)(x < y2).

(vi) (∀y)(∃x)(x < y2).

(vii) (∀x)(∃y)(x 6= y → x < y).

(viii) (∃y)(∀x)(x 6= y → x < y).

The order of operations when combining quantification with conjunction or dis-
junction can also make the difference between truth and falsehood.

Exercise 2.1.8. Over the real numbers, which of the following statements are true?
Over the natural numbers?

(i) (∀x)(x ≥ 0 ∨ x ≤ 0).

12 CHAPTER 2. BACKGROUND

(ii) (∀x)(x ≥ 0) ∨ (∀x)(x ≤ 0).

(iii) (∃x)(x ≤ 0 & x ≥ 5).

(iv) (∃x)(x ≤ 0) & (∃x)(x ≥ 5).

How does negation work for quantifiers? If ∃xϕ(x) fails, it means no matter what
value we fill in for x the formula obtained is false – i.e., ¬(∃xϕ(x)) ↔ ∀x(¬ϕ(x)).
Likewise, ¬(∀xϕ(x))↔ ∃x(¬ϕ(x)): if ϕ does not hold for all values of x, there must
be an example for which it fails. If we have multiple quantifiers, the negation walks
in one by one, flipping each quantifier and finally negating the predicate inside. For
example:

¬[(∃x)(∀y)(∀z)(∃w)ϕ(x, y, z, w)]↔ (∀x)(∃y)(∃z)(∀w)(¬ϕ(x, y, z, w)).

Exercise 2.1.9. Negate the following sentences.

(i) (∀x)(∃y)(∀z)((z < y)→ (z < x)).

(ii) (∃x)(∀y)(∃z)(xz = y).

(iii) (∀x)(∀y)(∀z)(y = x ∨ z = x ∨ y = z).
(bonus: over what domains of quantification would this be true?)

A final notational comment: you will sometimes see the symbols ∃∞ and
∀∞. The former means “there exist infinitely many”; ∃∞xϕ(x) is shorthand for
∀y∃x(x > y & ϕ(x)) (no matter how far up we go, there are still examples of ϕ
above us). The latter means “for all but finitely-many”; ∀∞xϕ(x) is shorthand for
∃y∀x((x > y) → ϕ(x)) (we can get high enough up to bypass all the failed cases
of ϕ). Somewhat common in predicate logic but less so in computability theory is
∃!x, which means “there exists a unique x.” The sentence (∃!x)ϕ(x) expands into
(∃x)(∀y)(ϕ(x) & (ϕ(y)→ (x = y))).

2.2 Sets
A set is a collection of objects. If x is an element of a set A, we write x ∈ A, and
otherwise x /∈ A. Two sets are equal if they have the same elements; if they have
no elements in common they are called disjoint. The set A is a subset of a set B if
all of the elements of A are also elements of B; this is notated A ⊆ B. If we know
that A is not equal to B, we may write A ⊂ B or (to emphasize the non-equality)
A (B. The collection of all subsets of A is denoted P(A) and called the power set
of A.

We may write a set using an explicit list of its elements, such as {red, blue, green}
or {5, 10, 15, . . .}. When writing down sets, order does not matter and repetitions

2.2. SETS 13

do not count. That is, {1, 2, 3}, {2, 3, 1}, and {1, 1, 2, 2, 3, 3} are all representations
of the same set. We may also write it in notation that may be familiar to you from
calculus:

A = {x : (∃y)(y2 = x)}

This is the set of all values we can fill in for x that make the logical predicate
(∃y)(y2 = x) true. We are always working within some fixed universe, a set which
contains all of our sets. The domain of quantification is all elements of the universe,
and hence the contents of the set above will vary depending on what our universe
is. If we are living in the integers it is the set of perfect squares; if we are living in
the real numbers it is the set of all non-negative numbers.

Given two sets, we may obtain a third from them in several ways. First there
is union: A ∪ B is the set containing all elements that appear in at least one of A
and B. Next intersection: A ∩ B is the set containing all elements that appear in
both A and B. We can subtract: A − B contains all elements of A that are not
also elements of B. You will often see A \ B for set subtraction, but we will use
ordinary minus because the slanted minus is sometimes given a different meaning in
computability theory. Finally, we can take their Cartesian product : A×B consists
of all ordered pairs that have their first entry an element of A and their second an
element of B. We may take the product of more than two sets to get ordered triples,
quadruples, quintuples, and in general n-tuples. If we take the Cartesian product of
n copies of A, we may abbreviate A×A× . . .×A as An. A generic ordered n-tuple
from An will be written (x1, x2, . . . , xn), where xi are all elements of A.

Example 2.2.1. Let A = {x, y} and B = {y, z}. Then A ∪ B = {x, y, z},
A∩B = {y}, A−B = {x}, B−A = {z}, A×B = {(x, y), (x, z), (y, y), (y, z)}, and
P(A) = {∅, {x}, {y}, {x, y}}.

The sets we will use especially are ∅ and N. The former is the empty set, the
set with no elements. The latter is the natural numbers, the set {0, 1, 2, 3, . . .}. In
computability, we often use lowercase omega, ω, to denote the natural numbers, but
in these notes we will be consistent with N. On occasion we may also refer to Z
(the integers), Q (the rational numbers), or R (the real numbers).

We will assume unless otherwise specified that all of our sets are subsets of N.
That is, we assume N is our universe. When a universe is fixed we can define
complement. The complement of A, denoted A, is all the elements of N that are not
in A; i.e., A = N− A.

Exercise 2.2.2. Convert the list or description of each of the following sets into
notation using a logical predicate. Assume the domain of quantification is N.

(i) {2, 4, 6, 8, 10, . . .}.

(ii) {4, 5, 6, 7, 8}.

14 CHAPTER 2. BACKGROUND

(iii) The set of numbers that are cubes.

(iv) The set of pairs of numbers such that one is twice the other (in either order).

(v) The intersection of the set of square numbers and the set of numbers that are
divisible by 3.

(vi) [For this and the next two, you’ll need to use ∈ in your logical predicate.]
A ∪B for sets A and B.

(vii) A ∩B for sets A and B.

(viii) A−B for sets A and B.

Exercise 2.2.3. For each of the following sets, list (a) the elements of X, and (b)
the elements of P(X).

(i) X = {1, 2}

(ii) X = {1, 2, {1, 2}}

(iii) X = {1, 2, {1, 3}}

Exercise 2.2.4. Work inside the finite universe {1, 2, . . . , 10}. Define the following
sets:

A = {1, 3, 5, 7, 9}
B = {1, 2, 3, 4, 5}
C = {2, 4, 6, 8, 10}
D = {7, 9}
E = {4, 5, 6, 7}

(i) Find all the subset relationships between pairs of the sets above.

(ii) Which pairs, if any, are disjoint?

(iii) Which pairs, if any, are complements?

(iv) Find the following unions and intersections: A ∪B, A ∪D, B ∩D, B ∩ E.

We can also take unions and intersections of infinitely many sets. If we have sets
Ai for i ∈ N, these are ⋃

i

Ai = {x : (∃i)(x ∈ Ai)}⋂
i

Ai = {x : (∀i)(x ∈ Ai)}.

The i under the union or intersection symbol is also sometimes written “i ∈ N”.

2.2. SETS 15

Exercise 2.2.5. For i ∈ N, let Ai = {0, 1, . . . , i} and let Bi = {0, i}. What are⋃
iAi,

⋃
iBi,

⋂
iAi, and

⋂
iBi?

When sets are constructed in computability theory, elements are typically put
in a few at a time, stagewise. For set A, we denote the (finite) set of elements
added to A at stage s or earlier as As, and when the writing is formal enough the
construction will say A is defined as

⋃
sAs. When the writing is informal that is

left unsaid, but is still true.
If two sets are given by descriptions instead of explicit lists, we must prove one

set is a subset of another by taking an arbitrary element of the first set and showing
it is also a member of the second set. For example, to show the set of people eligible
for President of the United States is a subset of the set of people over 30, we might
say: Consider a person in the first set. That person must meet the criteria listed in
the US Constitution, which includes being at least 35 years of age. Since 35 is more
than 30, the person we chose is a member of the second set.

We can further show that this containment is proper, by demonstrating a mem-
ber of the second set who is not a member of the first set. For example, a 40-year-old
Japanese citizen.

Exercise 2.2.6. Prove that the set of squares of even numbers, {x : ∃y(x = (2y)2)},
is a proper subset of the set of multiples of 4, {x : ∃y(x = 4y)}.

To prove two sets are equal, there are three options: show the criteria for mem-
bership on each side are the same, manipulate set operations until the expressions
are the same, or show each side is a subset of the other side.

An extremely basic example of the first option is showing {x : x
2
, x

4
∈ N} =

{x : (∃y)(x = 4y)}. For the second, we have a bunch of set identities, things like de
Morgan’s Laws,

A ∩B = A ∪B

A ∪B = A ∩B,

and distribution laws,

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

To prove identities we have to turn to the first or third option.

Example 2.2.7. Prove that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
We work by showing each set is a subset of the other. Suppose first that

x ∈ A∪ (B ∩C). By definition of union, x must be in A or in B ∩C. If x ∈ A, then
x is in both A ∪ B and A ∪ C, and hence in their intersection. On the other hand,
if x ∈ B ∩C, then x is in both B and C, and hence again in both A∪B and A∪C.

16 CHAPTER 2. BACKGROUND

Now suppose x ∈ (A∪B)∩ (A∪C). Then x is in both unions, A∪B and A∪C.
If x ∈ A, then x ∈ A ∪ (B ∩ C). If, however, x /∈ A, then x must be in both B and
C, and therefore in B ∩ C. Again, we obtain x ∈ A ∪ (B ∩ C).

Notice that in the ⊆ direction we used two cases that could overlap, and did
not worry whether we were in the overlap or not. In the ⊇ direction, we could only
assert x ∈ B and x ∈ C if we knew x /∈ A (although it is certainly possible for x to
be in all three sets), so forbidding the first case was part of the second case.

Exercise 2.2.8. Using any of the three options listed above, as long as it is appli-
cable, do the following.

(i) Prove intersection distributes over union (i.e., for all A, B, C, A ∩ (B ∪ C) =
(A ∩B) ∪ (A ∩ C)).

(ii) Prove de Morgan’s Laws.

(iii) Prove that A ∪B = (A−B) ∪ (B − A) ∪ (A ∩B) for any sets A and B.

Our final topic in the realm of sets is cardinality. The cardinality of a finite set
is the number of elements in it. For example, the cardinality of the set of positive
integer divisors of 6 is 4: |{1, 2, 3, 6}| = 4. When we get to infinite sets, cardinality
separates them by “how infinite” they are. We’ll get to its genuine definition in §2.3,
but it is fine now and later to think of cardinality as a synonym for size. The way
to tell whether set A is bigger than set B is to look for a one-to-one function from A
into B. If no such function exists, then A is bigger than B, and we write |B| < |A|.
The most important result is that |A| < |P(A)| for any set A.

If we know there is a one-to-one function from A into B but we don’t know
about the reverse direction, we write |A| ≤ |B|. If we have injections both ways,
|A| = |B|. It is a significant theorem of set theory that having injections from A to
B and from B to A is equivalent to having a bijection between A and B; the fact
that this requires work is a demonstration of the fact that things get weird when
you work in the infinite world. Another key fact (for set theorists; not so much for
us) is trichotomy : for any two sets A and B, exactly one of |A| < |B|, |A| > |B|, or
|A| = |B| is true.

For us, infinite cardinalities are divided into two categories. A set is countably
infinite if it has the same cardinality as the natural numbers. The integers and
the rational numbers are important examples of countably infinite sets. The term
countable is used by some authors to mean “countably infinite”, and by others to
mean “finite or countably infinite”, so you often have to rely on context. To prove
that a set is countable, you must demonstrate it is in bijection with the natural
numbers – that is, that you can count the objects of your set 1, 2, 3, 4, . . . , and not
miss any. We’ll come back to this in §3.4; for now you can look in the appendices to
find Cantor’s proofs that the rationals are countable and the reals are not (§A.3).

2.3. RELATIONS 17

The rest of the infinite cardinalities are called uncountable, and for our purposes
that’s about as fine-grained as it gets. The fundamental notions of computability
theory live in the world of countable sets, and the only uncountable ones we get to
are those which can be approximated in the countable world.

2.3 Relations
The following definition is not the most general case, but we’ll start with it.

Definition 2.3.1. A relation R(x, y) on a set A is a logical formula that is true or
false of each pair (x, y) ∈ A2, never undefined.

We also think of relations as subsets of A2 consisting of the pairs for which the
relation is true. For example, in the set A = {1, 2, 3}, the relation < consists of
{(1, 2), (1, 3), (2, 3)} and the relation ≤ is the union of < with {(1, 1), (2, 2), (3, 3)}.
Note that the order matters: although 1 < 2, 2 6< 1, so (2, 1) is not in <. The
first definition shows you why these are called relations ; we think of R as being
true when the values filled in for x and y have some relationship to each other. The
set-theoretic definition is generally more useful, however.

More generally, we may define n-ary relations on a set A as logical formulas that
are true or false of any n-tuple (ordered set of n elements) of A, or alternatively
as subsets of An. For n = 1, 2, 3 we refer to these relations as unary, binary, and
ternary, respectively.

Exercise 2.3.2. Prove the two definitions of relation are equivalent. That is, prove
that every logical predicate corresponds to a unique set, and vice-versa.

Exercise 2.3.3. Let A = {a, b, c, d, e}.

(i) What is the ternary relation R on A defined by (x, y, z) ∈ R ⇔ (xyz is an
English word)?

(ii) What is the unary relation on A which is true of elements of A that are vowels?

(iii) What is the complement of the relation in (2)? We may describe it in two
ways: as “the negation of the relation in (2)”, and how?

(iv) How many elements are in the 5-ary relation R defined by (v, w, x, y, z) ∈ R
⇔ (v, w, x, y, z are all distinct elements of A)?

(v) How many unary relations are possible on A? What other collection associated
with A does the collection of all unary relations correspond to?

Exercise 2.3.4. How many n-ary relations are possible on an m-element set?

18 CHAPTER 2. BACKGROUND

We tend to focus on binary relations, since most of our common, useful examples
are binary: <,≤,=, 6=,⊂,⊆. Binary relations may have certain properties:

• Reflexivity: (∀x)R(x, x)

• Symmetry: (∀x, y)[R(x, y)→ R(y, x)]
i.e., (∀x, y)[(R(x, y) & R(y, x)) ∨ (¬R(x, y) & ¬R(y, x))]

• Antisymmetry: (∀x, y)[(R(x, y) & R(y, x))→ x = y]

• Transitivity: (∀x, y, z)[(R(x, y) & R(y, z))→ R(x, z)]

I want to point out that reflexivity is a property of possession: R must have the
reflexive pairs (the pairs (x, x)). Antisymmetry is, loosely, a property of nonpos-
session. Symmetry and transitivity, on the other hand, are closure properties: if
R has certain pairs, then it must also have other pairs. Those conditions may be
met either by adding in the pairs that are consequences of the pairs already present,
or omitting the pairs that are requiring such additions. In particular, the empty
relation is symmetric and transitive, though it is not reflexive.

Exercise 2.3.5. Is = reflexive? Symmetric? Antisymmetric? Transitive? How
about 6=?

Exercise 2.3.6. For finite relations we may check these properties by hand. Let
A = {1, 2, 3, 4}.

(a) What is the smallest binary relation on A that is reflexive?

(b) Define the following binary relations on A:

R1 = {(2, 3), (3, 4), (4, 2)}

R2 = {(1, 1), (1, 2), (2, 1), (2, 2)}

R3 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)}

For each of those relations, answer the following questions.

(i) Is the relation reflexive? Symmetric? Antisymmetric? Transitive?

(ii) If the relation is not reflexive, what is the smallest collection of pairs that
need to be added to make it reflexive?

(iii) If the relation is not symmetric, what is the smallest collection of pairs
that need to be added to make it symmetric?

(iv) If the relation is not transitive, what is the smallest collection of pairs that
need to be added to make it transitive?

2.3. RELATIONS 19

(v) If the relation is not antisymmetric, what is the smallest collection of pairs
that could be removed to make it antisymmetric? Is this answer unique?

Exercise 2.3.7. Let A = {1, 2, 3}. Define binary relations on A with the following
combinations of properties or say why such a relation cannot exist. Can such a
relation be nonempty?

(i) Reflexive and antisymmetric but neither symmetric nor transitive.

(ii) Symmetric but neither reflexive nor transitive.

(iii) Transitive but neither reflexive nor symmetric.

(iv) Symmetric and transitive but not reflexive.

(v) Both symmetric and antisymmetric.

(vi) Neither symmetric nor antisymmetric.

(vii) Reflexive and transitive but not symmetric.

(viii) Reflexive and symmetric but not transitive.

(ix) Symmetric, antisymmetric, and transitive.

(x) Reflexive, symmetric, and transitive.

(xi) None of reflexive, symmetric, or transitive.

Exercise 2.3.8. Suppose R and S are binary relations on A. For each of the
following properties, if R and S possess the property, must R∪S possess it? R∩S?

(i) Reflexivity

(ii) Symmetry

(iii) Antisymmetry

(iv) Transitivity

Exercise 2.3.9. Each of the following relations has a simpler description than the
one given. Find such a description.

(i) R− on P(N) where R−(A,B) ↔ A−B = ∅.

(ii) R(∩) on R where R(∩)(x, y) ↔ (−∞, x) ∩ (y,∞) = ∅.

(iii) R[∩] on R where R[∩](x, y) ↔ (−∞, x] ∩ [y,∞) = ∅.

20 CHAPTER 2. BACKGROUND

(iv) R(∪) on R where R(∪)(x, y) ↔ (−∞, x) ∪ (y,∞) = R.

(v) R[∪] on R where R[∪](x, y) ↔ (−∞, x] ∪ [y,∞) = R.

We may visualize a binary relation R on A as a directed graph. The elements
of A are the vertices, or nodes, of the graph, and there is an arrow (directed edge)
from vertex x to vertex y if and only if R(x, y) holds. The four properties we have
just been exploring may be stated as:

• Reflexivity: every vertex has a loop.

• Symmetry: for any pair of vertices, either there are edges in both directions
or there are no edges between them.

• Antisymmetry: for two distinct vertices there is at most one edge connecting
them.

• Transitivity: if there is a path of edges from one vertex to another (always
proceeding in the direction of the edge), there is an edge directly connecting
them, in the same direction as the path.

Exercise 2.3.10. Properly speaking, transitivity just gives the graphical interpre-
tation “for any vertices x, y, z, if there is an edge from x to y and an edge from y
to z, there is an edge from x to z.” Prove that this statement is equivalent to the
one given for transitivity above.

We will consider two subsets of these properties that define classes of relations
which are of particular importance.

Definition 2.3.11. An equivalence relation is a binary relation that is reflexive,
symmetric, and transitive.

The quintessential equivalence relation is equality, which is the relation consisting
of only the reflexive pairs. What is special about an equivalence relation? We can
take a quotient structure whose elements are equivalence classes.

Definition 2.3.12. Let R be an equivalence relation on A. The equivalence class
of some x ∈ A is the set [x] = {y ∈ A : R(x, y)}.

Exercise 2.3.13. Let R be an equivalence relation on A and let x, y be elements
of A. Prove that either [x] = [y] or [x] ∩ [y] = ∅.

In short, an equivalence relation puts all the elements of the set into boxes so
that each element is unambiguously assigned to a single box. Within each box all
possible pairings are in the relation, and no pairings that draw from different boxes
are in the relation. We can consider the boxes themselves as elements, getting a
quotient structure.

2.3. RELATIONS 21

Definition 2.3.14. Given a set A and an equivalence relation R on A, the quotient
of A by R, A/R, is the set whose elements are the equivalence classes of A under R.

Now we can define cardinality more correctly. The cardinality of a set is the
equivalence class it belongs to under the equivalence relation of bijectivity, so cardi-
nalities are elements of the quotient of the collection of all sets under that relation.

Exercise 2.3.15. Let A be the set {1, 2, 3, 4, 5}, and let R be the binary relation on
A that consists of the reflexive pairs together with (1, 2), (2, 1), (3, 4), (3, 5), (4, 3),
(4, 5), (5, 3), (5, 4).

(i) Represent R as a graph.

(ii) How many elements does A/R have?

(iii) Write out the sets [1], [2], and [3].

Exercise 2.3.16. A partition of a set A is a collection of disjoint subsets of A with
union equal to A. Prove that any partition of A determines an equivalence relation
on A, and every equivalence relation on A determines a partition of A.

Exercise 2.3.17. Let R(m,n) be the relation on Z that holds when m − n is a
multiple of 3.

(i) Prove that R is an equivalence relation.

(ii) What are the equivalence classes of 1, 2, and 3?

(iii) What are the equivalence classes of −1, −2, and −3?

(iv) Prove that Z/R has three elements.

Exercise 2.3.18. Let R(m,n) be the relation on N that holds when m−n is even.

(i) Prove that R is an equivalence relation.

(ii) What are the equivalence classes of R? Give a concise verbal description of
each.

The two exercises above are examples of modular arithmetic, also sometimes
called clock-face arithmetic because its most widespread use in day-to-day life is
telling what time it will be some hours from now. This is a notion that is used only
in N and Z. The idea of modular arithmetic is that it is only the number’s remainder
upon division by a fixed value that matters. For clock-face arithmetic that value is
12; we say we are working modulo 12, or just mod 12, and the equivalence classes are
represented by the numbers 0 through 11 (in mathematics; 1 through 12 in usual

22 CHAPTER 2. BACKGROUND

life). The fact that if it is currently 7:00 then in eight hours it will be 3:00 would
be written as the equation

7 + 8 = 3 (mod 12),

where ≡ is sometimes used in place of the equals sign.

Exercise 2.3.19. (i) Exercises 2.3.17 and 2.3.18 consider equivalence relations
that give rise to arithmetic mod k for some k. For each, what is the correct
value of k?

(ii) Describe the equivalence relation on Z that gives rise to arithmetic mod 12.

(iii) Let m, n, and p be integers. Prove that

n = m (mod 12) =⇒ n+ p = m+ p (mod 12).

That is, it doesn’t matter which representative of the equivalence class you
pick to do your addition.

The second important class of relations we will look at is partial orders.

Definition 2.3.20. A partial order ≤ on a set A is a binary relation that is reflexive,
antisymmetric, and transitive. A with ≤ is called a partially ordered set, or poset.

In a poset, given two nonequal elements of A, either one is strictly greater than
the other or they are incomparable. If all pairs of elements are comparable, the
relation is called a total order or linear order on A.

Example 2.3.21. Let A = {a, b, c, d, e} and define ≤ on A as follows:

• (∀x ∈ A)(x ≤ x)

• a ≤ c, a ≤ d

• b ≤ d, b ≤ e

We could graph this as follows:

c d e

a b

Example 2.3.22. P(N) ordered by subset inclusion is a partially ordered set.
It is easy to check the relation ⊆ is reflexive, transitive, and antisymmetric. Not

every pair of elements is comparable: for example, neither {1, 2, 3} nor {4, 5, 6} is
a subset of the other. This poset actually has some very nice properties that not
every poset has: it has a top element (N) and a bottom element (∅), and every pair

2.4. RECURSION AND INDUCTION 23

of elements has both a least upper bound (here, the union) and a greatest lower
bound (the intersection).

If we were to graph this, it would look like an infinitely-faceted diamond with
points at the top and bottom.

Example 2.3.23. Along the same lines as Example 2.3.22, we can consider the
power set of a finite set, and then we can graph the poset that results.

Let A = {a, b, c}. Denote the set {a} by a and the set {b, c} by â, and likewise
for the other three elements. The graph is then as follows:

A

ĉ b̂ â

a b c

∅

You could think of this as a cube standing on one corner.

Exercise 2.3.24. How many partial orders are possible on a set of two elements?
Three elements?

Our final note is to point out relations generalize functions. The func-
tion f : A → A may be written as a binary relation on A consisting of the
pairs (x, f(x)). A binary relation R, conversely, represents a function whenever
[(x, y) ∈ R & (x, z) ∈ R] → y = z (the vertical line rule for functions).1 We can
ramp this up even further to multivariable functions, functions from An to A, by
considering (n+ 1)-ary relations. The first n places represent the input and the last
one the output. The advantage to this is consolidation; we can prove many things
about functions by proving them for relations in general.

2.4 Recursion and Induction

Recursive definitions and proofs by induction are essentially opposite sides of the
same coin. Both have some specific starting point, and then a way to extend from
there via a small set of operations. For induction, you might be proving some
property P holds of all the natural numbers. To do so, you prove that P holds of

1You might object that this does not require every element of A be in the domain of the
function. We will not be concerned by that; see §3.1.

24 CHAPTER 2. BACKGROUND

0, and then prove that if P holds of some n ≥ 0, then P also holds of n + 1. To
recursively define a class of objects C, you give certain simple examples of objects in
C, and then operations that combine or extend elements of C to give results still in
C. They relate more deeply than just appearance, though. We’ll tackle induction,
then recursion, then induction again.

Induction on N
The basic premise of induction is that if you can start, and once you start you know
how to keep going, then you will get all the way to the end. If I can get on the
ladder, and I know how to get from one rung to the next, I can get to the top of
the ladder.

Principle of Mathematical Induction, basic form:
If S is a subset of the positive integers such that 1 ∈ S and n ∈ S implies

n + 1 ∈ S for all n, then S contains all of the positive integers. [We may need the
beginning to be 0 or another value depending on context.]

In general you want to use induction to show that some property holds no matter
what integer you feed it, or no matter what size finite set you are dealing with. The
proofs always have a base case, the case of 1 (or wherever you’re actually starting).
Then they have the inductive step, the point where you assume the property holds
for some unspecified n and then show it holds for n+ 1.

Example 2.4.1. Prove that for every positive integer n, the equation

1 + 3 + 5 + . . .+ (2n− 1) = n2

holds.

Proof. Base case: For n = 1, the equation is 1 = 12, which is true.
Inductive step: Assume that 1 + 3 + 5 + . . . + (2n − 1) = n2 for some n ≥ 1. To
show that it holds for n + 1, add 2(n + 1) − 1 to each side, in the simplified form
2n+ 1:

1 + 3 + 5 + . . .+ (2n− 1) + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2.

Since the equation above is that of the theorem, for n+1, by induction the equation
holds for all n.

For the next example we need to know a convex polygon is one where all the
corners point out. The outline of a big block-printed V is a polygon, but not a
convex one. The importance of this will be that if you connect two corners of a
convex polygon with a straight line segment, the segment will lie entirely within the
polygon.

2.4. RECURSION AND INDUCTION 25

As you get more comfortable with induction, you can write it in a more nat-
ural way, without segmenting off the base case and inductive step portions of the
argument. We’ll do that here. Notice the base case is not 0 or 1 for this proof.

Example 2.4.2. For n > 2, the sum of angle measures of the interior angles of a
convex polygon of n vertices is (n− 2) · 180◦.

Proof. We work by induction. For n = 3, the polygon in question is a triangle, and
it has interior angles which sum to 180◦ = (3− 2) · 180◦.

Assume the theorem holds for some n ≥ 3 and consider a convex polygon with
n + 1 vertices. Let one of the vertices be named x, and pick a vertex y such that
along the perimeter from x in one direction there is a single vertex between x and
y, and in the opposite direction, (n+ 1)− 3 = n− 2 vertices. Join x and y by a new
edge, dividing our original polygon into two polygons. The new polygons’ interior
angles together sum to the sum of the original polygon’s interior angles. One of the
new polygons has 3 vertices and the other n vertices (x, y, and the n − 2 vertices
between them). The triangle has interior angle sum 180◦, and by the inductive
hypothesis the n-gon has interior angle sum (n− 2) · 180◦. The n+ 1-gon therefore
has interior angle sum 180◦ + (n− 2)180◦ = (n+ 1− 2) · 180◦, as desired.

Notice also in this example that we used the base case as part of the inductive
step, since one of the two polygons was a triangle. This is not uncommon.

Exercise 2.4.3. Prove the following statements by induction.

(i) For every positive integer n,

1 + 4 + 7 + . . .+ (3n− 2) =
1

2
n(3n− 1).

(ii) For every positive integer n,

21 + 22 + . . .+ 2n = 2n+1 − 2.

(iii) For every positive integer n,
n3

3
+
n5

5
+

7n

15
is an integer.

(iv) For every positive integer n, 4n − 1 is divisible by 3.

(v) The sequence a0, a1, a2, . . . defined by a0 = 0, an+1 = an+1
2

is bounded above
by 1.

(vi) Recall that for a binary operation ∗ on a set A associativity is defined as “for
any x, y, z, (x ∗ y) ∗ z = x ∗ (y ∗ z).” Use induction to prove that for any
collection of n elements from A put together with ∗, n ≥ 3, any grouping of
the elements which preserves order will give the same result.

26 CHAPTER 2. BACKGROUND

Exercise 2.4.4. A graph consists of vertices and edges. Each edge has a vertex
at each end (they may be the same vertex). Each vertex has a degree, which is
the number of edge endpoints at that vertex (so if an edge connects two distinct
vertices, it contributes 1 to each of their degrees, and if it is a loop on one vertex,
it contributes 2 to that vertex’s degree). It is possible to prove without induction
that for a graph the sum of the degrees of the vertices is twice the number of edges.
Find a proof of that fact using

(a) induction on the number of vertices;

(b) induction on the number of edges.

Exercise 2.4.5. The Towers of Hanoi is a puzzle consisting of a board with three
pegs sticking up out of it and a collection of disks that fit on the pegs, each with
a different diameter. The disks are placed on a single peg in order of size (smallest
on top) and the goal is to move the entire stack to a different peg. A move consists
of removing the top disk from any peg and placing it on another peg; a disk may
never be placed on top of a smaller disk.

Determine how many moves it requires to solve the puzzle when there are n
disks, and prove your answer by induction.

Recursion

To define a class recursively means to define it via a set of basic objects and a set
of rules allowing you to extend the set of basic objects. We may give some simple
examples.

Example 2.4.6. The natural numbers may be defined recursively as follows:

• 0 ∈ N.

• if n ∈ N, then n+ 1 ∈ N.

Example 2.4.7. The well-formed formulas (wffs) in propositional logic are a re-
cursively defined class.

• Any propositional symbol P , Q, R, etc., is a wff.

• If ϕ and ψ are wffs, so are the following:

(i) (ϕ & ψ);

(ii) (ϕ ∨ ψ);

(iii) (ϕ→ ψ);

(iv) (ϕ↔ ψ);

2.4. RECURSION AND INDUCTION 27

(v) (¬ϕ).

The important fact, which gives the strength of this method of definition, is that
we may apply the building-up rules repeatedly to get more and more complicated
objects.

For example, ((A&B)∨ ((P&Q)→ (¬A))) is a wff, as we can prove by giving a
construction procedure for it. A,B, P , and Q are all basic wffs. We combine them
into (A&B) and (P&Q) by operation (i), obtain (¬A) from (v), ((P&Q)→ (¬A))
from (iii), and finally our original formula by (ii).

Exercise 2.4.8. (i) Prove that ((A ∨ (B&C))↔ C) is a wff.

(ii) Prove that (P → Q(∨ is not a wff.

Exercise 2.4.9. (i) Add a building-up rule to the recursive definition of N to get
a recursive definition of Z.

(ii) Add a building-up rule to the recursive definition of Z to get a recursive defi-
nition of Q.

Exercise 2.4.10. Write a recursive definition of the rational functions in x, those
functions which can be written as a fraction of two polynomials of x. Your basic
objects should be x and all real numbers. For this exercise, don’t worry about the
problem of division by zero.

We may also define functions recursively. For that, we say what f(0) is (or
whatever our basic object is) and then define f(n+1) in terms of f(n). For example,
(n + 1)! = (n + 1)n!, with 0! = 1, is factorial, a recursively defined function you’ve
probably seen before. We could write a recursive definition for addition of natural
numbers:

a(0, 0) = 0;

a(m+ 1, n) = a(m,n) + 1;

a(m,n+ 1) = a(m,n) + 1.

This looks lumpy but is actually used in logic in order to minimize the number of
operations that we take as fundamental: this definition of addition is all in terms
of successor, the plus-one function.

Exercise 2.4.11. Write a recursive definition of p(m,n) = m · n, on the natural
numbers, in terms of addition.

28 CHAPTER 2. BACKGROUND

Induction Again

Beyond simply resembling each other, induction and recursion have a strong tie in
proofs. To prove something about a recursively-defined class requires induction.
This use of induction is less codified than the induction on N we saw above. In fact,
the limited version of induction we saw above is simply the induction that goes with
the recursively-defined set of natural numbers, as in Example 2.4.6. Let’s explore
how this works in general.

The base case of the inductive argument will match the basic objects of the
recursive class. The inductive step will come from the operations that build up the
rest of the class. If they match exactly, you are showing the set of objects that have
a certain property contains the basic objects of the class and is closed under the
operations of the class, and hence must be the entire class.

Example 2.4.12. Consider the class of wffs, defined in Example 2.4.7. We may
prove by induction that for any wff ϕ, the number of positions where binary con-
nective symbols occur in ϕ (that it, &,∨,→, and ↔) is one less than the number
of positions where propositional symbols occur in ϕ.

Proof. For any propositional symbol, the number of propositional symbols is 1
and the number of binary connectives is 0, one less than 1.

Suppose by induction that p1 = c1 + 1 and p2 = c2 + 1 for p1, p2 the number of
propositional symbols and c1, c2 the number of binary connectives in the wffs ϕ, ψ,
respectively. The number of propositional symbols in (ϕQφ), for Q any of ∨,&,→,
and ↔, is p1 + p2, and the number of connective symbols is c1 + c2 + 1. By the
inductive hypothesis we see

p1 + p2 = c1 + 1 + c2 + 1 = (c1 + c2 + 1) + 1,

so the claim holds for (ϕQψ).
Finally, consider (¬ϕ). Here the number of binary connectives and propositional

symbols have not changed, so the claim still holds. �

Exercise 2.4.13. Suppose ϕ is a wff which does not contain negation (that is, it
comes from the class defined as in Example 2.4.7 but without closure operation (v)).
Prove by induction that the length of ϕ is of the form 4k + 1 for some k ≥ 0, and
that the number of positions at which propositional symbols occur is k + 1 (for the
same k).

Note that we can perform induction on N to get results about other recursively-
defined classes if we are careful. For wffs, we might induct on the number of propo-
sitional symbols or the number of binary connectives, for instance.

Exercise 2.4.14. Recall from calculus that a function f is continuous at a if f(a) is
defined and equals limx→a f(x). Recall also the limit laws, which may be summarized

2.5. SOME NOTES ON PROOFS AND ABSTRACTION 29

for our purposes as

lim
x→a

(f(x)�g(x)) = (lim
x→a

f(x))�(lim
x→a

g(x)), � ∈ {+,−, ·, /},

as long as both limits on the right are defined and if � = / then limx→a g(x) 6= 0.
Using those, the basic limits limx→a x = a and limx→a c = c for all constants c, and
your recursive definition from Exercise 2.4.10, prove that every rational function is
continuous on its entire domain.

Exercise 2.4.15. Using the recursive definition of addition from the previous sec-
tion (a(0, 0) = 0; a(m + 1, n) = a(m,n + 1) = a(m,n) + 1), prove that addition is
commutative (i.e., for all m and n, a(m,n) = a(n,m)).

2.5 Some Notes on Proofs and Abstraction

Definitions

Definitions in mathematics are somewhat different from definitions in English. In
natural language, the definition of a word is determined by the usage and may evolve.
For example, “broadcasting” was originally just a way of sowing seed. Someone used
it by analogy to mean spreading messages widely, and then it was adopted for radio
and TV. For speakers of present-day English I doubt the original planting meaning
is ever the first to come to mind.

In contrast, in mathematics we begin with the definition and assign a term to it
as a shorthand. That term then denotes exactly the objects which fulfill the terms of
the definition. To say something is “by definition impossible” has a rigorous meaning
in mathematics: if it contradicts one of the properties of the definition, it cannot
hold of an object to which we apply the term.

Mathematical definitions do not have the fluidity of natural language definitions.
Sometimes mathematical terms are used to mean more than one thing, but that is
a re-use of the term and not an evolution of the definition. Furthermore, mathe-
maticians dislike that because it leads to ambiguity (exactly what is being meant
by this term in this context?), which defeats the purpose of mathematical terms in
the first place: to serve as shorthand for specific lists of properties.

Proofs

There is no way to learn how to write proofs without actually writing them, but I
hope you will refer back to this section from time to time

A proof is an object of convincing. It should be an explicit, specific, logically
sound argument that walks step by step from the hypotheses to the conclusions.
That is, avoid vagueness and leaps of deduction, and strip out irrelevant statements.

30 CHAPTER 2. BACKGROUND

Make your proof self-contained except for explicit reference to definitions or previous
results (i.e., don’t assume your reader is so familiar with the theorems that you may
use them without comment; instead say “by Theorem 2.5, . . .”).

Our proofs will be very verbal – they will bear little to no resemblance to the two-
column proofs of high school geometry. A proof which is just strings of symbols with
only a few words is unlikely to be a good (or even understandable) proof. However,
it can be clumsy and expand proofs out of readability to avoid symbols altogether.
It is also important for specificity to assign symbolic names to (arbitrary) numbers
and other objects to which you will want to refer. Striking the symbol/word balance
is a big step on the way to learning to write good proofs.

Your audience is a person who is familiar with the underlying definitions used
in the statement being proved, but not the statement itself. For instance, it could
be yourself after you learned the definitions, but before you had begun work on the
proof. You do not have to put every tiny painful step in the write-up, but be careful
about what you assume of the reader’s ability to fill in gaps. Your goal is to convince
the reader of the truth of the statement, and that requires the reader to understand
the proof. Along those lines, it is often helpful to insert small statements (I call it
“foreshadowing” or “telegraphing”) that let the reader know why you are doing what
you are currently doing, and where you intend to go with it. In particular, when
working by contradiction or induction, it is important to let the reader know at the
beginning.

Cautionary notes:
* Be careful to state what you are trying to prove in such a way that it does not
appear you are asserting its truth prior to proving it.
* If you have a definition before you of a particular concept and are asked to prove
something about the concept, you must stick to the definition.
* Be wary of mentally adding words like only, for all, for every, or for some which
are not actually there; likewise if you are asked to prove an implication it is likely
the converse does not hold, so if you “prove” equivalence you will be in error.
* If you are asked to prove something holds of all objects of some type, you cannot
pick a specific example and show the property holds of that object – it is not a proof
that it works for all. Instead give a symbolic name to an arbitrary example and
prove the property holds using only facts that are true for all objects of the given
type.
* There is a place for words like would, could, should, might, and ought in proofs,
but they should be kept to a minimum. Most of the time the appropriate words are
has, will, does, and is. This is especially important in proofs by contradiction. Since
in such a proof you are assuming something which is not true, it may feel more
natural to use the subjunctive, but that comes across as tentative. You assume
some hypothesis; given that hypothesis other statements are or are not true. Be
bold and let the whole contraption go up in flames when it runs into the statement

2.5. SOME NOTES ON PROOFS AND ABSTRACTION 31

it contradicts.
* And finally, though math class is indeed not English class, sentence fragments
and tortured grammar have no place in mathematical proofs. If a sentence seems
strained, try rearranging it, possibly involving the neighboring sentences. Do not
fear to edit: the goal is a readable proof that does not require too much back-and-
forth to understand.

Exercise 2.5.1. Here are some proofs you can try that don’t involve induction:

(i) ¬(∀m)(∀n)(3m+ 5n = 12) (over N)

(ii) For any integer n, the number n2 + n+ 1 is odd.

(iii) If every even natural number greater than 2 is the sum of two primes, then
every odd natural number greater than 5 is the sum of three primes.

(iv) For nonempty sets A and B, A×B = B × A if and only if A = B.

Chapter 3

Defining Computability

There are many ways we could try to get a handle on the concept of computability.
We could think of all possible computer programs, or a class of functions defined in
a way that feels more algebraic. Many definitions which seem to come from widely
disparate viewpoints actually define the same collection of functions, which gives us
some claim to calling that collection the computable functions (see §3.5).

3.1 Functions, Sets, and Sequences

We mention three aspects of functions important to computability before beginning.

Limits

Our functions take only whole-number values. Therefore, for the limit limn→∞ f(n)
to exist, f must eventually be constant. If it changes values infinitely-many times,
the limit simply doesn’t exist.

In computability we typically abbreviate our limit notation, as well. It would be
more common to see the limit above written as limn f(n).

Partial Functions

Let’s go back to calculus, or possibly even algebra. A function definition is supposed
to include not only the rule that associates domain elements with range elements, but
also the domain. However, in calculus, we abuse this to give functions as algebraic
formulas that calculate a range element from a domain element, and don’t specify
their domains; instead we say their domain is all elements of R on which they are
defined. However, we treat these functions as though their domain is actually all of
R, and talk about, for example, values at which the function is discontinuous.

33

34 CHAPTER 3. DEFINING COMPUTABILITY

Here we take that mentality and make it official. In computability we use par-
tial functions on N, functions which take elements of some subset of N as inputs,
and produce elements of N as outputs. When applied to a collection of functions,
“partial” means “partial or total”, though “the partial function f ” may generally be
read as saying f ’s domain is a proper subset of N.

The intuition here is that the function is a computational procedure which may
legally be given any natural number as input, but might go into an infinite loop on
certain inputs and never output a result. Because we want to allow all computational
procedures, we have to work with this possibility.

Most basically, we need notation. If x is in the domain of f , we write f(x)↓ and
say the computation halts, or converges. We might specify halting when saying what
the output of the function is, f(x)↓ = y, though there the ↓ is fairly superfluous.
When x is not in the domain of f we say the computation diverges and write f(x)↑.
We also still talk about f(x), and by extension the computation, being defined or
undefined.

For total functions f and g, we say f = g if (∀x)(f(x) = g(x)). When f and g
may be partial, we require a little more: f = g means

(∀x)[(f(x)↓ ↔ g(x)↓) & (f(x)↓ = y → g(x) = y)].

Some authors write this as f ' g to distinguish it from equality for total functions
and to highlight the fact that f and g might be partial.

Finally, when the function meant is clear, f(x) = y may be written x 7→ y.

Ones and Zeros

In computability, as in many fields of mathematics, we use certain terms and nota-
tion interchangeably even though technically they define different objects, because
in some deep sense those objects aren’t different at all. We begin here with a
definition.

Definition 3.1.1. For a set A, the characteristic function of A is the following total
function:

χA(n) =

{
1 n ∈ A
0 n /∈ A

In the literature, χA is often represented simply by A, so, for instance, we can
say ϕe = A to mean ϕe = χA as well as saying A(n) to mean χA(n) (so A(n) = 1
is another way to say n ∈ A). Additionally, we may conflate the function and set
with the binary sequence that is the outputs of the function in order of input size.

Example 3.1.2. The sequence 1010101010. . . can represent

(i) The set of even numbers, {0, 2, 4, . . .};

3.2. TURING MACHINES 35

(ii) The function f(n) = n mod 2.

Exercise 3.1.3. Construct bijections between (i) and (ii), (ii) and (iii), and (i) and
(iii) below, and prove they are bijections.

(i) Infinite binary sequences, 2N.

(ii) Total functions from N to {0, 1}.

(iii) Subsets of N.

Sometimes it is useful to limit ourselves to finite objects.

Exercise 3.1.4. Construct bijections between (i) and (ii), (ii) and (iii), and (i) and
(iii) below, and prove they are bijections.

(i) Finite binary sequences, 2<N.

(ii) Finite subsets of N.

(iii) N.

3.2 Turing Machines
Our first rigorous definition of computation is due to Turing [59].

A Turing machine (TM) is an idealized computer which has a tape it can read
from and write on, a head which does that reading and writing and which moves
back and forth along the tape, and an internal state which may be changed based
on what’s happening on the tape. Everything here is discrete: we think of the
tape as being divided into squares, each of which can hold one symbol, and the
read/write head as resting on an individual square and moving from square to
square. We specify Turing machines via quadruples 〈a, b, c, d〉, sets of instructions
that are decoded as follows:

a is the state the TM is currently in;

b is the symbol the TM’s head is currently reading;

c is an instruction to the head to write or move;

d is the state the TM is in at the end of the instruction’s execution.

For example, 〈q3, 0, R, q3〉 means “if I am in state q3 and currently reading a 0, move
one square to the right and remain in state q3”. The instruction 〈q0, 1, 0, q1〉 means
“if I am in state q0 and reading a 1, overwrite that 1 with a 0 and change to state q1”.
The symbol in position c may also be a blank, indicating the machine should erase

36 CHAPTER 3. DEFINING COMPUTABILITY

whatever symbol it is reading. For any fixed a, b, there is at most one quadruple.
It is not necessary that there be any instruction at all; the computation may halt
by hitting a dead end.

Since Turing machines represent idealized computers, we allow them unlimited
time and memory to perform their computations. Not infinite time or memory, but
we can’t bound them from the beginning; what if our bound was just one step short
of completion or one square of tape too small? So the TM’s tape is infinite, though
any given computation uses only a finite length of it.

The symbols and states come from a finite list and hence the collection of in-
structions must be finite. It does not matter how long the lists are; generally we
stick to the symbols 0, 1, and blank (∗) – or even just 1 and ∗ – but allow arbitrarily
long lists of states, mostly because this is the mode that lends itself best to writing
descriptions of machines. Note that some authors distinguish legal halting states
from other states, and consider dead-ending in a non-halting state equivalent to
entering an infinite loop. They may also require the read/write head to end up on
a particular end of the tape contents. This is all to make proofs easier, and it does
not reduce the power of the machines. For us, however, all states are legal halting
states and the read/write head can end up anywhere.

Example 3.2.1. Let’s begin by writing a Turing machine that outputs x + 1 in
tally notation given input x in tally notation (i.e., the tape begins by holding x
consecutive 1s and ends with x+ 1 consecutive 1s). Here is a sample input tape:

∗ 1 1 1 1 ∗ ∗ ∗
↑

The arrow indicates the starting position of the read/write head; we are allowed
to specify that the input must be in tally notation and the TM’s head be positioned
at the leftmost 1. Our desired computation is

move right to first ∗
write 1
halt.

Therefore we write two instructions, letting halting happen because of an absence
of relevant instructions:
〈q0, 1, R, q0〉 move R as long as you see 1
〈q0, ∗, 1, q1〉 when you see ∗, write 1 and change state

Since we specified what tape content and head position we were writing a ma-
chine for, these are sufficient: we know the only time the machine will read a ∗ from
state q0 will be the first blank at the end of x.

What about binary notation instead? For example:
∗ 0 1 1 0 0 1 ∗ ∗
↑

3.2. TURING MACHINES 37

We can choose to interpret this with the leftmost digit as the smallest, specifying
that this is the sort of input our TM is designed to handle. Under that interpretation
this input is 38. To get 39 we need only change that leading 0 to a 1: 〈q0, 0, 1, q1〉.

But what if instead we begin with 39? We need the tape to end reading 000101.
A computation that takes care of both 38 and 39 is

if you see 0, write 1 and stop
if you see 1, write 0 and move right.

Eventually we will pass the 1s and find a 0 to change to 1. We can add to our
previous quadruple to take care of writing 0s and moving:

〈q0, 1, 0, q2〉 reading 1, write 0 and change state
〈q2, 0, R, q0〉 move right and go back to start state

We have to change state when we write 0 so the machine knows the 0 it is reading
the next time around is the one it just wrote.

However, there’s yet a third case we haven’t yet accounted for: numbers like
31, represented as 11111. Our current states fall off the edge of the world – we get
to 00000 and halt because no instruction begins with q0, ∗. We want to write a 1
in this case, and we know the only way we get here is to have just executed the
instruction 〈q2, 0, R, q0〉. Therefore we can take care of this third case simply by
adding the quadruple 〈q0, ∗, 1, q1〉.

The full program:

〈q0, 0, 1, q1〉
〈q0, 1, 0, q2〉
〈q2, 0, R, q0〉
〈q0, ∗, 1, q1〉

Exercise 3.2.2. Step through the program above with the following tapes, where
you may assume the read/write head begins at the leftmost non-blank square. Write
the contents of the tape, position of read/write head, and current state of the
machine for each step.

(i) ∗ 0 1 1 ∗

(ii) ∗ 1 0 1 ∗

(iii) ∗ 1 1 1 ∗

Exercise 3.2.3. Write a Turing machine to compute the function f(x) = 4x. Use
tally or binary notation as desired.

38 CHAPTER 3. DEFINING COMPUTABILITY

Exercise 3.2.4. This exercise will walk you through writing an inverter, a Turing
machine that, given a string of 1s and 0s, outputs the reversal of that string.

Here is what ought to happen:

Instruction Block A
∗ 0 1 1 ∗ ∗ ∗ ∗
↑

walk right to first blank
back up one square, read and erase symbol
walk right and write symbol

Instruction Block B
∗ 0 1 ∗ 1 ∗ ∗ ∗

↑

walk left past block of blanks
read and erase symbol
walk right past blanks and symbols
write symbol

Likewise:
∗ 0 ∗ ∗ 1 1 ∗ ∗

↑

Instruction Block C
∗ ∗ ∗ ∗ 1 1 0 ∗

↑

halt.

These three blocks of states, if written correctly, will allow the machine to deal
with arbitrarily long symbol strings. Longer strings will result in more iterations of
B, but A and C occur only once apiece.

Use state to remember which symbol to print and to figure out which block of
symbols you’re currently walking through (switch state at blanks). A complication
is knowing when to stop: once the last symbol has been erased, how do you know
not to walk leftward forever? Step one extra space left to see if what you just read
was the last symbol (i.e., to see if the next spot is blank or not) and use state to
account for a yes or no answer.

Exercise 3.2.5. Write a Turing machine to compute the function f(x) = x mod 3.
Use tally or binary notation as desired.

3.3. PARTIAL RECURSIVE FUNCTIONS 39

3.3 Partial Recursive Functions
Turing’s machine definition of computability was far from the only competitor on
the field. We will only explore one other in depth, but survey a few more in the
next section. The partial recursive functions, where “recursive” is used as in §2.4,
were Kleene’s contribution.

Primitive Recursive Functions

We begin with a more restricted set of functions, the primitive recursive functions.
This definition can be a little opaque at first, so we will state it and then discuss it.

Definition 3.3.1. The class of primitive recursive functions is the smallest class C
of functions such that the following hold.

(i) The successor function S(x) = x+ 1 is in C.

(ii) All constant functions M(x1, x2, . . . , xn) = m for n,m ∈ N are in C.

(iii) All projection functions P n
i (x1, x2, . . . , xn) = xi for n ≥ 1, 1 ≤ i ≤ n, are in C.

(iv) (Composition.) If g1, g2, . . . , gm, h are in C, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is in C, where the gi are functions of n variables and h is a function of m
variables.

(v) (Primitive recursion, or just recursion.) If g, h ∈ C and n ≥ 0 then the function
f defined below is in C:

f(x1, . . . , xn, 0) = g(x1, . . . , xn)

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)),

where g is a function of n variables and h a function of n+ 2 variables.

Demonstrating that functions are primitive recursive can be complicated, as one
must demonstrate how they are built from the ingredients above.

Example 3.3.2. The addition function, f(x, y) = x+ y, is primitive recursive.
We can express addition recursively with f(x, 0) = x and f(x, y+1) = f(x, y)+1.

The former is almost in proper primitive recursive form; let f(x, 0) = P 1
1 (x).

The latter needs to be in the form f(x, y+ 1) = h(x, y, f(x, y)), so we want that
h to spit out the successor of its third input. With an application of composition,
we get h(x, y, z) = S(P 3

3 (x, y, z)), and our derivation is complete.

40 CHAPTER 3. DEFINING COMPUTABILITY

Exercise 3.3.3. Prove that the maximum function, m(x, y) = max{x, y}, is prim-
itive recursive.

Exercise 3.3.4. Prove that the multiplication function, g(x, y) = x · y, is primitive
recursive. You may use the addition function f(x, y) = x+ y in your derivation.

Exercise 3.3.5. Consider a grid of streets, n east-west streets crossed by m north-
south streets to make a rectangular map with nm intersections; each street reaches
all the way across or up and down. If a pedestrian is to walk along streets from the
northwest corner of this rectangle to the southeast corner, walking only east and
south and changing direction only at corners, let r(n,m) be the number of possible
routes. Prove r is primitive recursive.

In fact, all the usual arithmetic functions on N are primitive recursive, such as
exponentiation, factorial, and the modified subtraction

x−. y =

{
x− y if x ≥ y
0 if x < y

It is a very large class, including nearly all functions encountered in usual mathe-
matical work, and perhaps has claim on the label “computable” by itself. We will
argue in the following sections that it is insufficient.

The Ackermann Function

The Ackermann function is the most common example of a (total) computable func-
tion that is not primitive recursive; in other words, evidence that something needs
to be added to the closure schema of primitive recursive functions in order to fully
capture the notion of computability, even if we require everything be total. In fact,
it was custom-built to meet that criterion, since the primitive recursive functions
cover so much ground it seemed they might actually constitute all computable func-
tions. The Ackermann functions is defined recursively for non-negative integers m
and n as follows:

A(m,n) =


n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

The version above is a simplification of Wilhelm Ackermann’s original function
due to Rózsa Péter and Raphael Robinson. It is not necessarily immediately clear
that this function is computable – that the recursive definition always hits bottom.
The proof that it is came later than the definition of the function itself.

3.3. PARTIAL RECURSIVE FUNCTIONS 41

The proof this is not primitive recursive is technical, but the idea is simple. Here
is what we get when we plug small integer values in for m:

A(0, n) = n+ 1
A(1, n) = n+ 2
A(2, n) = 2n+ 3
A(3, n) = 2n+3 − 3

A(4, n) = 22·
··
2

− 3

where the stack of 2s in the final equation is n + 3 entries tall. That value grows
incredibly fast: A(4, 2) is a 19729-digit number.

The key is the stack of 2s. Roughly, each iteration of exponentiation requires an
application of primitive recursion. We can have only a finite number of applications
of primitive recursion, fixed in the function definition, in any given primitive recur-
sive function. However, as n increases A(4, n) requires more and more iterations of
exponentiation, eventually surpassing any fixed number of applications of primitive
recursion, no matter how large.

Partial Recursive Functions: Unbounded Search

To increase the computational power of our class of functions we add an additional
closure scheme. This accommodates problems like the need for increasingly many
applications of primitive recursion in the Ackermann function.

Definition 3.3.6. The class of partial recursive functions is the smallest class of
functions such that the five conditions from Definition 3.3.1 of the primitive recursive
functions hold, and additionally

(vi) (Unbounded search, minimization, or µ-recursion.) If θ(x1, . . . , xn, y) is a par-
tial recursive function of n + 1 variables, and we define ψ(x1, . . . , xn) to be
the least y such that θ(x1, . . . , xn, y) = 0 and θ(x1, . . . , xn, z) is defined for all
z < y, then ψ is a partial recursive function of n variables.

One of the most important features of this closure scheme is that it introduces
partiality; the primitive recursive functions are all total. A function using un-
bounded search can be total, of course, and in fact the Ackermann function requires
unbounded search, despite being total. That is a sign that we perhaps need more
than just the primitive recursive functions to capture all of computability.

Why should partiality be allowed? The first reason is that allowing all operations
that seem like they ought to be allowed results in the possibility of partial functions.
That is, from the modern perspective, real computers sometimes get caught in
infinite loops. A more practical reason is that we can’t “get at” just the total

42 CHAPTER 3. DEFINING COMPUTABILITY

functions from the collection of all partial recursive functions. There’s no way to
single them out; this notion is made precise as Theorem 3.4.6, below.

The name µ-recursion comes from a common notation. The symbol µ, or µ-
operator, is read “the least” and is used (from a purely formula-writing standpoint)
in the same way that quantifiers are used. For example, µx(x > 5) is read “the least
x such that x is greater than five” and returns the value 6. In µ-notation, we could
define ψ(x1, . . . , xn) = µy[θ(x1, . . . , xn, y) = 0 & (∀z < y)θ(x1, . . . , xn, z)↓].

Example 3.3.7. Using unbounded search we can easily write a square root function
to return

√
x if x is a square number and diverge otherwise.

We will use the primitive recursive functions +, ·, and integer subtraction −.
(where x−. y = max{0, x− y}) without derivation. We would like the following:

ψ(x) = µy[(x−. (y · y)) + ((y · y)−. x) = 0].

To properly define the function in brackets requires some nested applications of
composition, even taking the three arithmetic operators as given.

3.4 Coding and Countability
So far we’ve computed only with natural numbers. How could we define computation
on domains outside of N? If the desired domain is countable, we may be able to
encode its members as natural numbers. For example, we could code Z into N by
using the even natural numbers to represent nonnegative integers, and the odd to
represent negative integers. Specifically, we can write the computable function

f(k) =

{
2k k ≥ 0
−2k − 1 k < 0

To move into N2, the set of ordered pairs of natural numbers, there is a standard
pairing function indicated by angle brackets:

〈x, y〉 :=
1

2
(x2 + 2xy + y2 + 3x+ y).

For longer tuples we iterate, so for example 〈x, y, z〉 := 〈〈x, y〉, z〉. Note this gives
us a way to encode the rational numbers, Q. It also lets us treat multivariable
functions in the same way as single-input functions.

The pairing function is often given as a magic formula from on high, but it’s quite
easy to derive. You may be familiar with Cantor’s proof that the rational numbers
are the same size as the natural numbers, where he walks diagonally through the grid
of integer-coordinate points in the first quadrant and skips any that have common
factors (if not, see Appendix A.3). We can do essentially that now, though we won’t
skip anything.

Starting with the origin, we take each diagonal and walk down it from the top.

3.4. CODING AND COUNTABILITY 43

(0, 3)

##
(0, 2)

##

(1, 2)

##
(0, 1)

##

(1, 1)

##

(2, 1)

##
(0, 0)

OO

(1, 0)

ZZ

(2, 0)

]]

(3, 0)

The number of pairs on a given diagonal is one more than the sum of the entries
of each pair. The number of pairs above a given one on its own diagonal is its first
entry, so if we want to number these from 0, we let (x, y) map to

1 + 2 + . . .+ (x+ y) + x,

where all terms except the last correspond to the diagonals below (x, y)’s diagonal.
This sums to

(x+ y + 1)(x+ y)

2
+ x =

1

2
(x2 + 2xy + y2 + 3x+ y).

If you are unfamiliar with the formula for the summation of the integers 1 through
n, you can find it in Appendix A.2.

The key elements of any coding function are that it be bijective and computable.
There are two ways to think about how computation is performed under coding.

1. The Turing machine can decode the input, perform the computation, and
encode the answer.

2. The Turing machine can compute on the encoded input directly, obtaining the
encoded output.

Exercise 3.4.1. Consider Z encoded into N by f above. Write a function which
takes f(k) as input and outputs f(2k) using approach 2 above. By the Church-
Turing thesis you need not write a Turing machine or a formal partial recursive
function; an algebraic expression will suffice.

There are limitations on what kinds of objects can be encoded: they must come
from a set that is effectively countable. Here, in countable we include finite; all finite
sets are effectively countable. An infinite countable set is effectively countable if
there exists a computable bijection between the set and N which also has computable
inverse. If we have such a bijection, we can use the image of an object, which will
be a natural number, as the code of the object. This is equivalent to the objects

44 CHAPTER 3. DEFINING COMPUTABILITY

being representable by finite sequences of symbols that come from a finite alphabet,
so that the symbols can be represented by numbers and the sequences of numbers
collapsed down via pairing or a similar function. In fact, pairing is a bijection with
N that shows that N2 and in fact Nk for all k are effectively countable.

In fact,
⋃
k Nk is effectively countable, where here I intend k to start at 0

(N0 = {∅}). The function
τ :
⋃
k≥0

Nk → N

given by τ(∅) = 0 and

τ(a1, . . . , ak) = 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + . . .+ 2a1+a2+...+ak+k−1

demonstrates the effective countability. A singleton – that is, an element of N itself
– is mapped to a number with binary representation using a single 1. An n-tuple
maps to a number whose binary representation uses exactly n 1s.

Exercise 3.4.2. (i) Find the images under τ of the tuples (0, 0), (0, 0, 0), (0, 1, 2),
and (2, 1, 0).

(ii) What is the purpose of summing subsequences of ai in the exponents?

(iii) What is the purpose of adding 1, 2, . . . , k − 1 in the exponents?

(iv) Prove that τ is a bijection.

Exercise 3.4.3. (i) Given disjoint effectively countable sets A and B, prove that
A ∪B is effectively countable.

(ii) Given effectively countable sets A and B that are not necessarily disjoint,
prove that A ∪B is effectively countable.

Exercise 3.4.4. (i) Show that if a class A of objects is constructed recursively
using a finite set of basic objects and a finite collection of computable building-
up rules (see §2.4), A is effectively countable.

(ii) Show that even if the sets of basic objects and rules in part (i) are infinite, as
long as they are effectively countable, so is A. §5.1 may be helpful.

Coding is generally swept under the rug; in research papers one generally sees
at most a comment to the effect of “we assume a coding of [our objects] as natural
numbers is fixed.” It is a vital component of computability theory, however, as it
removes a need for separate definitions of algorithm for different kinds of objects.

There is another particular coding we need to discuss. The set of Turing ma-
chines is, in fact, effectively countable; the TMs may be coded as natural numbers.
One way to code them is to first interpret an element of N as a finite subset of N, as

3.4. CODING AND COUNTABILITY 45

in Exercise 3.1.4, and then interpret the elements of that finite subset as quadruples.
A natural number n will be read as k + `, where 0 ≤ ` ≤ 7 and k is a multiple of
8. We decode k/8 into 〈i, j〉 and interpret it to say the starting and ending states
of the quadruple are qi and qj. Then ` will give the symbol read and action taken;
0 7→ ∗∗, 1 7→ ∗1, 2 7→ ∗L, 3 7→ ∗R, and likewise for the four pairs beginning with 1.
Note in this example we are using just the symbols ∗ and 1, but it is clear how this
generalizes to any finite symbol set.

It is important to note that any method of coding will include “junk machines”,
codes that may be interpreted as TMs but which give machines that don’t do any-
thing. There will also be codes that give machines that, while different, compute
the same function. In fact, we can prove the Padding Theorem, Exercise 3.4.5, after
a bit of vocabulary.

We call the code of a Turing machine its index, and say when we choose a partic-
ular coding that we fix an enumeration of the Turing machines (or, equivalently, the
partial recursive functions). It is common to use ϕ for partial recursive functions; ϕe
is the eth function in the enumeration, the function with index e, and the function
that encodes to e. We often use the indices simply as tags, to put an ordering on
the functions, but it is often important to remember that the index is the function,
in a very literal way.

Exercise 3.4.5. Prove that given any index of a Turing machine M , there is a
larger index which codes a machine that computes the same function as M . This is
called the Padding Theorem.

Another collection of objects commonly indexed is the finite sets, as in Exercise
3.1.4. The nth finite set, or set corresponding to n in the bijection, is typically
denoted Dn.

We are now in the position to demonstrate a very practical reason to allow
partial functions in our definition of computability. Recall that by total computable
function we mean a function from the class of partial computable functions which
happens to be total.

Theorem 3.4.6. The total computable functions are not effectively countable. That
is, there is no computable indexing of exactly the total computable functions.

Proof. Suppose the contrary and let fe denote the eth function in an enumeration
of all total computable functions. We define a new total computable function as
follows:

g(e) = fe(e) + 1.

Since all fe are total computable, it is clear that g is total computable.1 Hence g
must have an index; that is, there must be some e′ such that g = fe′ . However,
g(e′) 6= fe′(e

′), which is a contradiction. Therefore no such indexing can exist.
1Or perhaps it is not. See §4.1.

46 CHAPTER 3. DEFINING COMPUTABILITY

As an aside, those who are familiar with Cantor’s proof that the real numbers
are uncountable will notice a distinct similarity (if not, see Appendix A.3). This is
an example of a diagonal argument, where you accomplish something with respect
to the eth Turing machine using e. Of course you need not use literally e, as we will
see in later chapters.

We have two choices, then, with regard to the collection of functions we call
“computable”: to have them all be total, but fail to have an indexing of them, or
to include partial functions and be able to enumerate them. We will see many
proofs which rely completely on the existence of an indexing in order to work; this
combined with the justifications in §3.3 weigh heavily on the side of allowing partial
functions to be called computable.

The take-home messages of this section, which are vital for our later work, are
the following:

1. Via coding, we can treat any effectively countable set as though it were N.

2. We can fix an enumeration of the Turing machines (equivalently, the partial
computable functions); the index of a particular machine will be that machine
in code. It is understood that the coding is fixed from the start so we are
never trying to decode with the wrong bijection.

3.5 The Church-Turing Thesis
It is not at all obvious, but the class of Turing-computable functions and the class of
partial recursive functions are the same. In fact, there are a large number of models
of computation which give the same class of functions as TMs and partial recursive
functions (see §3.6 for a sample). It is even possible to introduce nondeterminism
into our Turing machines without increasing their power!

Turing showed it is possible to use a Turing machine to evaluate a partial recur-
sive function [59]. One can explicitly construct machines that compute successor,
constants, and projections, and then show the Turing machines are closed under
composition, primitive recursion, and unbounded search. Conversely, given a Tur-
ing machine we can create a partial recursive function that emulates it, in the very
strong sense that it mimics the contents of the TM’s tape at every step of the com-
putation. There is an excellent presentation of this in §8.1 of Boolos, Burgess, and
Jeffrey [4] that we sketch.

The tape contents are viewed in two pieces, the spaces to the left of the
read/write head as a number with the least digit rightmost, and the spaces from the
read/write head and on to the right as a binary number with its least digit leftmost
(the scanned square). Motion along the tape and rewriting are now arithmetic: if
the read/write head moves left, the left binary number halves, rounded down, and

3.6. OTHER DEFINITIONS OF COMPUTABILITY 47

the right binary number doubles and possibly adds one, depending on the contents
of the new scanned square. The current status of the computation is coded as a
triple: tape to left, current state, tape to right. Actions (motion and rewriting)
are assigned numbers, which allows us to code the tuples of the Turing machine,
as in §3.4. Finally, the acceptable halting configuration is standardized, and a
single application of unbounded search finds the least step t such that the halting
condition holds. The output of F (m,x), where m is the code for a Turing machine
and x is the intended input, is the tape contents at the time t found by unbounded
search, if such a t exists.

The coincidence of all these classes of functions, defined from very different points
of view, may seem nothing short of miraculous. It is necessary, though, if each is
correctly claiming to rigorously capture the notion of computable, and the fact that
we do get the same class of functions is strong evidence that they do so. We can
never actually prove we have captured the full, correct notion, because any proof
requires formalization – the only equivalences we can prove are between different
formal definitions. In his original paper [59], Turing does a thought experiment in
which he breaks down the operations a human computer is capable of and shows
a Turing machine can do each of them, but this is not a proof. However, it is
compelling when set alongside the collection of disparate approaches that reach
the same destination (or at least I find it compelling). This idea that we really
have captured the correct/full notion is called the Church-Turing Thesis: the
computable functions are exactly the Turing-computable functions.

3.6 Other Definitions of Computability

Any programming language with the ability to do arithmetic, use variables, and
execute loops of some kind, as well as get input and produce output, is as strong
as a Turing machine if given unlimited memory and time to work with. Even a
programmable calculator’s lobotomized BASIC, if hooked up to an inexhaustible
power source and unlimited memory, can compute anything a Turing machine can.
Of course, the closer a programming language is to the absolute minimum required,
the harder it is for humans to use it. The trade-off is usually that when you get
further from the absolute minimum required, proofs of general properties get more
difficult.

In this chapter we have explored a machine definition of computability and a
function definition. The definitions we add here fall into those same two categories,
though there is a third category of symbol manipulation systems (this is, however,
arguably a function definition for a different sort of function). We begin with mod-
ifications to Turing machines.

48 CHAPTER 3. DEFINING COMPUTABILITY

Nonstandard Turing Machines

We mentioned in §3.2 that the number of symbols a Turing machine is allowed to
use, as long as it is finite, will not change the power of the machine. This is because
even with just 1 and ∗, we can represent any finite collection of symbols on the tape
by using different length blocks of 1s, separated by ∗s.

Exercise 3.6.1. Prove that a two-symbol Turing machine can code (or simulate)
an n-symbol Turing machine, for any n.

Likewise, we said that requiring a machine to halt in particular states or end with
the read/write head at a particular location (relative to the tape contents) did not
reduce the power of the machines. This may be accomplished in a straightforward
manner by the addition of extra states and instructions.

Our Turing machine, which we will refer to as standard, had a tape that was
infinite in both directions. Drawing on §3.4 you can show it can make do with half
of that.

Exercise 3.6.2. Prove that a Turing machine whose tape is only infinite to the
right (i.e., has a left endpoint) can simulate a standard Turing machine.

More or less complicated coding, on the tape or in the states, gives all of the
following as well. This is certainly an incomplete list of the changes we may make to
the definition of Turing machine without changing the class of functions computed.

Exercise 3.6.3. Prove that each of the following augmented Turing machines can
be simulated by a standard Turing machine.

(i) A TM with a “work tape” where the input is given and the output must be
written, with no restrictions in between, as well as a “memory tape” which
can hold any symbols at any time through the computation, and a read/write
head for each of them.

(ii) A TM with a grid of symbol squares instead of a tape, and a read/write head
that can move up or down as well as left or right.

(iii) A TM whose read/write head can move more than one square at a time to the
right or left.

(iv) A TM where the action and state change depend not only on the square
currently being scanned, but on its immediate neighbors as well.

(v) A TM with multiple read/write heads sharing a single tape.

Finally, we introduce the notion of nondeterminism, which may seem to intro-
duce noncomputability.

3.6. OTHER DEFINITIONS OF COMPUTABILITY 49

Definition 3.6.4. A nondeterministic Turing machine has an infinite tape, single
read/write head that works from a finite list of symbols, and finite list of internal
states, exactly as a standard Turing machine. It is specified by a list of quadruples
〈a, b, c, d〉, where a and d are states, b is a symbol, and c a symbol or the letter R or
L, with no restriction on the quadruples in the list (note that it will still be finite,
since there are only finitely many options for each position of the quadruple).

In particular, there may be multiple quadruples that start with the same
state/symbol pair. When the machine gets to such a situation, it picks one such
quadruple at random and continues, meaning there could be multiple paths to
halting. If we want to define functions from this model of computation, we have to
demand that every path that terminates results in the same output. For reasons
that Proposition 5.2.4 will make clear, we often dispense with that and ask only
on which inputs the nondeterministic machine halts at all. Call those inputs the
machine’s domain.2

Claim 3.6.5. If T is a nondeterministic Turing machine, there is a standard (de-
terministic) Turing machine T ′ with the same domain.

The idea behind the proof is that every time T ′ comes to a state/symbol pair
that starts multiple quadruples of T , it clones its computation enough times to
accommodate each of the quadruples in separate branches of its computation. It
runs one step of each existing computation (plus all steps necessary to clone, if
required) before moving on to another step of any of them, and halts whenever one
of its branches halts. If we have required that T define a function, T ′ can output
the same thing T ′ does in this halting branch, since the output will not depend on
which halting branch T ′ finds first.

Exercise 3.6.6. Turn the idea above into a proof of Claim 3.6.5.

The Lambda Calculus

This is an important function definition of computability. Those with an interest
in computer science may know that the lambda calculus is the basis of functional
programming languages such as Lisp and Scheme. This was Church’s main con-
tender for the definition of computable. It is one of the many models of computation
which is equivalent to Turing machines and partial recursive functions; since it is
important we’ll explore it in some depth, though still only getting a taste of it. I
learned about the lambda calculus in a programming languages class I took from
Peter Kogge at Notre Dame, and this section is drawn from his lecture notes and
book [28].

2In computer science, we might refer to the domain as the language the machine accepts.

50 CHAPTER 3. DEFINING COMPUTABILITY

The lambda calculus is based entirely on substitution; typical expressions look
like

(λx|M)A,

which then is written [A/x]M , and means “replace every instance of x in M by A.”
Expressions are built recursively. We have a symbol set which consists of paren-

theses, |, λ, and an infinite collection of identifiers, generally represented by lower-
case letters. An expression can be an identifier, a function, or a pair of expressions
side-by-side, where a function is of the form (λ〈identifier〉|〈expression〉). We will use
capital letters to denote arbitrary lambda expressions. Formally everything should
be thoroughly parenthesized, but understanding that evaluation always happens
left to right (i.e., E1E2E3 means (E1E2)E3, and so on) we may often drop a lot of
parentheses. In particular,

(λxy|M)AB = ((λx|(λy|M)))A)B = [B/y]([A/x]M).

Identifiers are essentially variables, but are called identifiers instead because
their values don’t change over time. We solve problems with lambda calculus by
manipulating the form the variables appear in, not their values. An identifier x
occurs free in expression E if (1) E = x, (2) E = (λy|A), y 6= x, and x appears
free in A, or (3) E = AB and x appears free in either A or B. Otherwise x occurs
bound (or does not occur). In (λx|M), only free occurrences of x are candidates
for substitution, and no substitution is allowed which converts a free variable to a
bound one. If that would be the result of substitution, we rename the problematic
variable instead.

Here are the full substitution rules for (λx|E)A → [A/x]E → E ′. They are
defined recursively, in cases matching those of the recursive definition of expression.

1. If E = y, an identifier, then if y = x, E ′ = A. Otherwise E ′ = E.

2. If E = BC for some expressions B, C, then E ′ = (([A/x]B)([A/x]C)).

3. If E = (λy|C) for some expression C and

(i) y = x, then E ′ = E.

(ii) y 6= x where y does not occur free in A (i.e., substitution will not cause
a free variable to become bound), then E ′ = (λy|[A/x]C).

(iii) y 6= x where y does occur free in A, then E ′ = (λz|[A/x]([z/y]C)), where
z is a symbol that does not occur free in A. This is the renaming rule.

Example 3.6.7. Evaluate

(λxy|yxx)(λz|yz)(λrs|rs).

3.6. OTHER DEFINITIONS OF COMPUTABILITY 51

Remember that formally this is

[(λx|(λy|yxx))(λz|yz)](λrs|rs).

The first instance of substitution should be for x, but this will bind what is currently
a free instance of y, so we apply rule 3.(iii) using identifier symbol a:

(λy|y(λz|az)(λz|az))(λrs|rs).

Next a straightforward substitution to get

(λrs|rs)(λz|az)(λz|az),

which becomes (λz|az)(λz|az) and finally a(λz|az).

You can see this can rapidly get quite unfriendly to do by hand, but it is very
congenial for computer programming. There are two great strengths to functional
programming languages: all objects are of the same type (functions) and hence are
handled the same way, and evaluation may often be done in parallel. In particular,
if we have (λx1 . . . xn|E)A1 . . . Am, where m ≤ n, the sequential evaluation

(λxm+1 . . . xn|([Am/xm](. . . ([A2/x2]([A1/x1]E)) . . .)))

is equivalent to the simultaneous evaluation

(λxm+1 . . . xn|[A1/x1, A2/x2, . . . , Am/xm]E)

provided there are no naming conflicts. That is, alongside the restriction of not
having any xi+1, . . . , xn free in Ai (which would then bind a free variable, never
allowed), we must know none of the xm+1, . . . xn appear free in any Ai, i ≤ m.

To start doing arithmetic, we need to be able to represent zero and the rest of the
positive integers, at least implicitly (i.e., via a successor function). Lambda calculus
“integers” are functions which take two arguments, the first a successor function and
the second zero, and which (if given the correct inputs) return an expression which
“equals” an integer.

0 : (λsz|z) (λsz|z)SZ = [S/s][Z/z]z = Z
1 : (λsz|s(z)) (λsz|s(z))SZ = S(Z)
...
K : (λsz| s(s . . . s︸ ︷︷ ︸(z) . . .)) KSZ = S(S . . . S︸ ︷︷ ︸(Z) . . .)

K times K times

Interpreting Z as zero and S(E) as the successor of whatever integer is represented
by E, these give the positive integers.

52 CHAPTER 3. DEFINING COMPUTABILITY

We can define successor as a lambda operator in general, as well as addition
and multiplication. Successor is a function that acts on an integer K (given as a
function) and returns a function that is designed to act on SZ and give K + 1.
Likewise, multiplication and addition are functions that act on a pair of integers K,
L, and return a function designed to act on SZ to give K ·L or K+L, respectively.

Successor : S(x) = (λxyz|y(xyz)).

Addition : (λwzyx|wy(zyx)).

Multiplication : (λwzy|w(zy)).

I don’t know that there is any way to understand these without stepping through
an example.

Example 3.6.8. 2 + 3.
To avoid variable clashes, we’ll use s and a for s and z in 2 and r and b in 3.

2 + 3 = (λwzyx|wy(zyx))(λsa|s(s(a)))(λrb|r(r(r(b))))

= (λyx|(λsa|s(s(a)))y((λrb|r(r(r(b))))yx))

= (λyx|(λa|y(y(a)))(y(y(y(x)))))

= (λyx|y(y(y(y(y(x)))))) = 5.

Exercise 3.6.9. Evaluate S(3).

Exercise 3.6.10. Evaluate 2 · 3.

Similarly we can define lambda expressions that execute “if. . .then. . .else” op-
erations. That is, we want expressions P such that PQR returns Q if P is true,
and R if P is false. Then, additional Boolean operations are useful. We won’t step
through these, but I’ll give you the definitions and you can work some examples out
yourself.

true : T = (λxy|x) false : F = (λxy|y)
and : (λzw|zwF) or : (λzw|zTw)

not : (λz|zFT)

Exercise 3.6.11. Work out the following operations:

not T , not F
and TT , and TF , and FT , and FF
or TT , or TF , or FT , or FF
or(and TF)(not F)

3.6. OTHER DEFINITIONS OF COMPUTABILITY 53

The missing piece to understand how this can be equivalent to Turing machines
is recursion, in the computer science sense: if A is a base case for R, then RA is
simply evaluated, and if not, then RA reduces to something like RB, where B is
somehow simpler than A. This is our looping procedure; it requires R calling itself
as a subfunction. To make expressions call themselves we first need to make them
duplicate themselves. We begin with the magic function

(λx|xx)(λx|xx).

Try doing the substitution called for. Next, given some expression R wherein x does
not occur free, try evaluating

(λx|R(xx))(λx|R(xx)).

This is not so general, however, and so we remove the hard-coding of R via an-
other lambda operator. This gives us our second magic function, the fixed point
combinator Y .

Y = (λy|(λx|y(xx))(λx|y(xx))).

When Y is applied to some other expression R, the result is to layer Rs onto the
front:

Y R = R(Y R) = R(R(Y R)) = R(R(R(Y R)))

Finally, consider (Y R)A, to get to our original goal. This evaluates to R(Y R)A; if
R is a function of two variables, it can test A and return the appropriate expression
if A passes the test, throwing away the (Y R) part, and if A fails the test it can use
the (Y R) to generate a new copy of R for the next step of the recursion. We’ll omit
any examples.

Unlimited Register Machines

Unlimited register machines, or URMs, are (as you would guess) a machine definition
of computability. Nigel Cutland uses them as the main model of computation in his
book Computability [10]; they are easier to work with than Turing machines if you
want to get into the guts of the model, while still basic enough that the proofs remain
manageable. This should feel like a Turing machine made more human-friendly.

The URM has an unlimited memory in the form of registers Ri, each of which
can hold a natural number denoted ri. The machine has a program which is a finite
list of instructions, and based on those instructions it may alter the contents of its
registers. Note that a given computation will only be able to use finitely-many of
the registers, just as a Turing machine uses only finitely-many spaces on its tape,
but we cannot cap how many it will need in advance.

There are four kinds of instructions.

54 CHAPTER 3. DEFINING COMPUTABILITY

(i) Zero instructions: Z(n) tells the URM to change the contents of Rn to 0.

(ii) Successor instructions: S(n) tells the URM to increment (that is, increase by
one) the contents of Rn.

(iii) Transfer instructions: T (m,n) tells the URM to replace the contents of Rn

with the contents of Rm. The contents of Rm are unchanged.

(iv) Jump instructions: J(m,n, i) tells the URM to compare the contents of Rn

and Rm. If rn = rm, it is to jump to the ith instruction in its program and
proceed from there; if rn 6= rm it continues to the instruction following the jump
instruction. This allows for looping. If there are fewer than i instructions in
the program the machine halts.

The machine will also halt if it has executed the final instruction of the program,
and that instruction did not jump it back into the program. You can see where
infinite loops might happen: rn = rm, the URM hits J(m,n, i) and is bounced
backward to the ith instruction, and nothing between the ith instruction and the
instruction J(m,n, i) either changes the contents of one of Rn or Rm or jumps the
machine out of the loop.

A computation using the URM consists of a program and an initial configuration;
that is, the initial contents of the registers.

Example 3.6.12. Using three registers we can compute sums. The initial contents
of the registers will be x, y, 0, 0, 0, . . . , where we would like to compute x+ y. The
sum will ultimately be in the first register and the rest will be zero.

We have only successor to increase our values, so we’ll apply it to x y-many
times. The third register will keep track of how many times we’ve done it; once its
contents equal y we want to stop incrementing x, zero the second and third registers,
and halt.

Since our jump instruction jumps when the two values checked are different
rather than the same, we have to be clever about how we use it. Here is a program
that will add x and y:

Instructions: Explanation:
1. J(2, 4, 8) if y = 0, nothing to do
2. S(1) increment x
3. S(3) increment counter
4. J(2, 3, 6) jump out of loop if we’re done
5. J(1, 1, 2) otherwise continue incrementing
6. Z(2) zero y register
7. Z(3) zero counter

3.6. OTHER DEFINITIONS OF COMPUTABILITY 55

Exercise 3.6.13. Write out all steps of the computation of 3+3 using the program
above, including the contents of the registers and the instruction number to be
executed next.

Exercise 3.6.14. Write a URM program to compute products. Note that x · y is
the sum of y copies of x, and iterate the addition instructions appropriately. Be
careful to keep your counters for the inside and outside loops separate, and zero
them whenever necessary.

Chapter 4

Working with Computable Functions

4.1 A Universal Turing Machine

From the enumeration of all Turing machines we can denote a universal Turing
machine; that is, a machine which will emulate every other machine. Using σ to
denote an arbitrary input and 1e to denote a string of e 1s, we can define the
universal machine U by

U(1e0σ) = ϕe(σ).

U counts the 1s at the beginning of the input string, decodes that value into the
appropriate set of quadruples, throws out the 0 it sees next, and uses the rest of the
string as input, acting according to the quadruples it decoded. This procedure is
computable because the coding of Turing machines as indices is computable.

This is why it is “clear” in Theorem 3.4.6 that g is total computable: were
the total computable functions effectively enumerable, we wouldn’t have a fleet of
disparate fe(e) to evaluate for each e; we would have one U(1e0e) for all e.

Note that of course there are infinitely-many universal Turing machines, as there
are for any program via padding.

We can use the universal machine to construct a total recursive function that is
not primitive recursive, in a different way from the Ackermann function. We’ll still
be pretty sketchy about it, though. Here’s the outline:

1. Code all the primitive recursive functions as θn.

2. Show there exists a computable p(n) such that for all n ϕp(n) = θn, where ϕp(n)

lives in the standard enumeration of partial recursive functions.

3. Use the universal machine to define a new function which is total recursive
but not any θn.

Some more detail:

57

58 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

1. Conceptually straightforward though technically annoying. We can code the
derivation of our function via composition and primitive recursion, from con-
stants, successor, and projection.

2. Start by arguing we have indices in the standard enumeration ϕn for the basic
primitive recursive functions, which is true essentially because we can code
them up on the fly in a uniform way (e.g., for constants, with a single function
that takes any pair c, n to an index for the n-ary constant function with output
c). Then we argue that we have explicit indices for composition and recursion
as functions of the constituent functions’ indices (again exploiting the fact
that the index is the function), which is again true because we can explicitly
code them.

Then, given a θ-index n, we can uniformly find p(n), a code for θn in the
standard enumeration of partial recursive functions. We simply decode the
θ-index and recode into a ϕ-index using the functions whose indices we just
argued we have.

3. Using n to denote not only the integer but also its representation in binary,
define the function

f(n) = U(1p(n)0n) + 1.

That is, f(n) = ϕp(n)(n) + 1 = θn(n) + 1. Since θn is primitive recursive, it is
total, which means f is total. However, it is not equal to any θ, as it differs
from each on at least one input.

4.2 The Halting Problem
Is it possible to define a specific function which is not computable? Yes and no. We
can’t write down a procedure, because by the Church-Turing thesis that leads to a
computable function. However, via the indexing of all partial computable functions
we can define a noncomputable function.

First, a little notation recalled from §3.1. We use arrows to denote halting
behavior: for a function ϕe, the notation ϕe(n)↓ means n is in the domain of ϕe,
and ϕe(n)↑ means n is not in the domain of ϕe, so ϕe fails to halt on input n.

Define the halting function as follows:

f(e) =

{
1 if ϕe(e)↓
0 if ϕe(e)↑ .

To explore the computability of f , define g:

g(e) =

{
ϕe(e) + 1 if f(e) = 1
0 if f(e) = 0.

4.3. PARAMETRIZATION 59

Certainly if ϕe(e)↓, it is computable to find the output value, and computable to
add 1. The use of f avoids attempting to compute outputs for divergent computa-
tions, and hence if f is computable, so is g. However, it is straightforward to show
g is not computable, and so the halting function (or halting problem, the question of
determining for which values of e ϕe(e)↓) is not computable. This is a key example,
and we define the halting set as well:

K = {e : ϕe(e)↓}.

Exercise 4.2.1. Prove that g defined above is not computable. You may find the
contemplation of Theorem 3.4.6 helpful.

4.3 Parametrization
Parametrization means something different in computability theory than it does in
calculus. What we mean here is the ability to push input parameters into the index
of a function. Here is the first place that it is important that the indexing of Turing
machines be fixed, and where we take major advantage of the fact that the index –
a natural number – contains all the information we need to reconstruct the machine
itself.

The simplest form of the s-m-n Theorem, which is what we traditionally call the
parametrization theorem, is the following.

Theorem 4.3.1. There is a total computable function S1
1 such that for all e, x, and

y, ϕe(x, y) = ϕS1
1(e,x)(y).

If you accept a really loose description, this is very simple to prove: S1
1 decodes

e, fills x into the appropriate spots, and recodes the resulting algorithm. The key
is that although the new algorithm depends on e and x, it does so uniformly – the
method is the same regardless of the numbers.

This is a good moment to pause and think about uniformity, a key idea in
computability. A process is uniform in its inputs if it is like a choose-your-own-
adventure book: all possible paths from start to finish are already there in the book,
and the particular inputs just tell you which path you’ll take this time. Uniformity
allows for a single function or construction method or similar process to work for
every instance, rather than needing a new one for each instance.

Exercise 4.3.2. Prove there is a computable function f such that ϕf(x)(y) = 2ϕx(y)
for all y. Hint: think of an appropriate function ϕe(x, y).

The full version of the theorem allows more than one variable to be moved, and
more than one to remain as input. More uses of both versions appear in sections to
come.

60 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

Theorem 4.3.3 (Kleene 1938). Given m, n, there is a primitive recursive one-to-
one function Smn such that for all e, all n-tuples x̄, and all m-tuples ȳ,

ϕSm
n (e,x̄)(ȳ) = ϕe(x̄, ȳ).

That you can get this to be primitive recursive is interesting but not too im-
portant. The fact that you can force it to be one-to-one follows from the Padding
Theorem (Exercise 3.4.5).

I’ll note that while it looks at first like all this is doing is allowing you to com-
putably incorporate data into an algorithm, the fact that the data could itself be
a code of an algorithm means this is more than that; it is composition via indices.
In particular, parametrization and the universal machine give us a way to translate
operations on sets and functions to operations on indices.

For example, suppose we want to find an index for ϕx + ϕy uniformly in x and
y. We can let f(x, y, z) = ϕx(z) + ϕy(z) by letting it equal U(1x0z) + U(1y0z),
so everything that was either in input or index is now in input. Then the s-m-n
theorem gives us a computable function s(x, y) such that ϕs(x,y)(z) = f(x, y, z), so
that is the index for ϕx + ϕy as a (total computable) function of x and y.

In computer programming, this process of reducing the number of arguments of
a function is called currying, after logician Haskell Curry; when specific inputs are
given to the Smn function it is called partial evaluation or partial application.

4.4 The Recursion Theorem
Kleene’s Recursion Theorem, though provable in only a few lines, is probably the
most conceptually challenging theorem in fundamental computability theory, at
least in the way it is usually presented. It is extremely useful – vital, in fact – for
a large number of proofs in the field. We will discuss this a bit after meeting the
theorem and some of its corollaries.

Recall that equality for partial functions is the assertion that when one diverges,
so does the other, and when they converge it is to the same output value.

Theorem 4.4.1 (Recursion or Fixed-Point Theorem, Kleene). Suppose that f is a
total computable function; then there is a number n such that ϕn = ϕf(n). Moreover,
n is computable from an index for f .

Proof. This is the “magical” proof of the theorem. By the s-m-n theorem there is a
total computable function s(x) such that for all x and y

ϕf(ϕx(x))(y) = ϕs(x)(y).

Let m be any index such that ϕm computes the function s; note that s and hence
m are computable from an index for f . Rewriting the statement above yields

ϕf(ϕx(x))(y) = ϕϕm(x)(y).

4.4. THE RECURSION THEOREM 61

Then, putting x = m and letting n = ϕm(m) (which is defined because s is total),
we have

ϕf(n)(y) = ϕn(y)

as required.

Corollary 4.4.2. There is some n such that ϕn = ϕn+1.

Corollary 4.4.3. If f is a total computable function then there are arbitrarily large
numbers n such that ϕf(n) = ϕn.

Corollary 4.4.4. If f(x, y) is any partial computable function there is an index e
such that ϕe(y) = f(e, y).

Exercise 4.4.5. (i) Prove Corollary 4.4.3. Note that we might obtain a fixed
point for f from a different function g defined to be suitably related to f .

(ii) Prove Corollary 4.4.4. It requires both the Recursion Theorem and the s-m-n
theorem.

Exercise 4.4.6. Prove the following applications of Corollary 4.4.4:

(i) There is a number n such that ϕn(x) = xn.

(ii) There is a number n such that the domain of ϕn is {n}.

We may prove index set results easily from the Recursion Theorem, where A ⊆ N
is an index set if it has the property that if x ∈ A and ϕx = ϕy, then y ∈ A.

Theorem 4.4.7 (Rice’s Theorem). Suppose that A is an index set not equal to ∅
or N. Then A is not computable.

Proof. Begins as follows: work by contradiction, supposing A is computable. Set
some a ∈ A and b /∈ A and consider the function

f(x) =

{
a x /∈ A
b x ∈ A

Apply the Recursion Theorem.

Exercise 4.4.8. Complete the proof of Rice’s Theorem.

We may also use the Recursion Theorem to prove results about enumeration of
Turing machines. In particular, there is no effective enumeration which takes the
first instance of each function and omits the rest.

Theorem 4.4.9. Suppose that f is a total increasing function such that

62 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

(i) if m 6= n, then ϕf(m) 6= ϕf(n),

(ii) f(n) is the least index of the function ϕf(n).

Then f is not computable.

Proof. Suppose f satisfies the conditions of the theorem. By (i), f cannot be the
identity, so since it is increasing there is some k such that for all n ≥ k, f(n) > n.
Therefore by (ii), ϕf(n) 6= ϕn for every n ≥ k. However, if f is computable, this
violates Corollary 4.4.3.

Now let’s go back and discuss the theorem and its use in the wider world. The
Recursion Theorem is often described as “a diagonalization argument that fails”;
partiality is, in some sense, a built-in defense against diagonalization. In particular,
if we wanted to define a function that differed from ϕe on input e, we would have
to know whether ϕe(e)↓, which bounces us out of the realm of the computable. The
Recursion Theorem is a strong statement of the failure of that attempt.

In more detail, define the diagonal function δ by δ(e) = ϕe(e). This is a partial
computable function; its domain is K, the Halting Set. For any total f we can
define f ◦ δ(x) as the result of the usual composition if δ(x) halts and undefined
otherwise (confirm to yourself that composition defined in that way gives a partial
computable function). Hence f ◦ δ is ϕe for some e, and if f ◦ δ(e) is defined it
equals δ(e). In that case δ(e) is a fixed point for f , in the literal sense rather than
the machine index sense. Now, we can see f ◦ δ(e) can’t always be defined, because
f(e) = e+ 1 is partial computable, but has no literal fixed point.

What we get instead is Corollary 4.4.2, a fixed point at the machine index level.
The s-m-n theorem gives a total computable function d such that ϕd(i) = ϕδ(i) for
all i such that δ(i)↓, and then the function s such that ϕs(i) = ϕf◦d(i). The argument
from the previous paragraph gives us the rest, with adjusted functions: f ◦ d will
be ϕe for some e, so f(d(e)) = δ(e) (now we are able to assert this is defined). By
definition of d, d(e) and δ(e) index the same function, so ϕd(e) = ϕf(d(e)) and d(e) is
the sought-after fixed point.

This is extraordinarily useful in constructions. Many of the uses can be summed
up as building a Turing machine using the index of the finished machine. The
construction will have early on a line something like “We construct a partial com-
putable function ψ and assume by the Recursion Theorem that we have an index
e for ψ.” This looks insane, but it is completely valid. The construction, which
will be computable, is the function for which we seek a fixed point (at the index
level). Computability theorists think of a construction as a program. It might have
outside components – the statement of the theorem could say “For every function
f of this type, . . . ” – and then the construction’s if/then statements would give
different results depending on which particular f was in play, but such variations

4.5. UNSOLVABILITY 63

will be uniform, as described in §4.3. That is, the construction is like a choose-your-
own-adventure book, or a complicated flowchart. The particular function f selects
the option, but what happens for all possible sequences of options is already laid
out. Likewise, if we give the construction the input e to be interpreted as the index
of a partial computable function, it can use e to produce e′, which is an index of
the function ψ it is trying to build. The Recursion Theorem says the construction
will have a fixed point, some i such that i and i′ both index the same function.
Furthermore this fixed point will be computable from an index for the construction
itself, which by uniformity has such a well-defined index.

4.5 Unsolvability

The word solvable is a synonym of computable that is used in a different context. In
general, it is used to describe the ability to compute a solution to a problem stated
not as a set, but as an algebraic or combinatorial question. Decidable is another
synonym used in the same contexts as solvable.

The celebrity example is Diophantine equations. In 1900 Hilbert posed a list of
unsolved problems in mathematics as a challenge to drive mathematical development
[25]. The tenth problem on the list asked for an algorithm to determine whether an
arbitrary polynomial equation P = 0, where the coefficients of P are all integers, has
a solution in integers. At the time, the idea there may not be any such algorithm did
not occur. In 1970, after a lot of work by a number of mathematicians, Matijacevič
proved the problem is unsolvable [44]. The full proof and story are laid out in a
paper by Davis [13].

The method is to show that every Turing machine may be somehow “encoded” in
a Diophantine equation so that the equation has an integer solution if and only if the
machine halts. The fact that we cannot always tell whether a Turing machine will
halt shows we cannot always tell whether a Diophantine equation has an integer
solution. We omit all details but note that this is the main method to show a
problem is undecidable: show you can encode the halting problem into it.

This section owes a lot to Martin Davis’s book Computability and Unsolvability
[11], where you can find more details about most of the topics below as well as
additional topics, though you must translate into current notation. It is also drawn
from course notes by Rod Downey at Victoria University of Wellington.

Index Sets

Rice’s Theorem 4.4.7 can be viewed as a summary of a large number of undecidability
results. It essentially says that any nontrivial property of the partial computable
functions is unsolvable. Noting the domain of ϕe is typically denoted We, among

64 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

the index sets we might consider are the following:

Fin = {e : We is finite}

Inf = N− Fin

Tot = {e : We = N} = {e : ϕe is total}

Rec = {e : We is computable}

All of the sets above are not only noncomputable, they are at a higher level of the
noncomputability hierarchy than the Halting Set.

Production Systems

Many undecidability examples are combinatorial in nature, having to do with one’s
ability to take a string of symbols and transform it into some other string via some
finitary procedures. For production systems these procedures involve replacing cer-
tain subsequences of a string with other subsequences. We usually call the sequences
words, and abbreviate strings of the same symbol using superscripts.

Example 4.5.1. The most general of productions allows us to replace strings at
the beginning, middle, and end of a given word. Suppose we’re working with the
symbols a and b. We might have a rule that says “if a occurs at the beginning of
a word, ab2 in the middle somewhere, and ba at the end, replace them with b, b2a,
and a2, respectively.” We’d abbreviate that to

aPab2Qba→ bPb2aQa2,

understanding that P and Q are unspecified, possibly empty, strings of a’s and b’s.
We denote the empty string by λ.

We may apply this production to any word which has the correct original fea-
tures. For example, we could do the following:

a3b2a3b2a = a(a)ab2(a3b)ba→ b(a)b2a(a3b)a2 = bab2a4ba2.

The parentheses are there for clarity, around the strings which are playing the roles
of P and Q. Most simply, we could convert the word a2b3a to b3a3, which is the
application of this production to the word aλab2λba.

We usually want to restrict the kinds of productions we work with. For example,
a normal production removes a nonempty sequence from the beginning of a word
and adds a nonempty sequence to the end; e.g., aP → Pb.

4.5. UNSOLVABILITY 65

Definition 4.5.2. Let g, ḡ be finite nonempty words. A semi-Thue production is a
production of the form

PgQ→ P ḡQ.

When it is understood that the production is semi-Thue we may write simply g → ḡ.

Definition 4.5.3. A semi-Thue system is a (possibly infinite) collection of semi-
Thue productions together with a single nonempty word A called the axiom of the
system. If a word W may be produced from A by a finite sequence of applications
of productions of the system, then we call W a theorem of the system.

Our systems all have computable sets of productions and finite alphabets.

Example 4.5.4. Let the semi-Thue system Γ be the axiom ab2ab together with the
productions

a2 → bab;

b→ b3;

aba→ b;

b2a→ ab.

From ab2ab we can get to ab4ab, ab2ab3, or a2b2 via a single production application.
From a2b2 we can get to bab3 or a2b4. We can continue that way potentially indefi-
nitely, generating theorems: it may be that eventually any production applied to any
theorem we’ve already generated produces a theorem we’ve also already generated,
but it is easy to create a semi-Thue system with an infinite list of theorems.

However, if you are presented with a word, how difficult is it to tell whether or
not that word is a theorem of Γ or another semi-Thue system?

Exercise 4.5.5. Construct a semi-Thue system with infinitely many theorems.

Exercise 4.5.6. Suppose you are given a semi-Thue system S and a wordW . If you
know W is a theorem of S, describe an algorithm to find a sequence of production
applications that generates W .

Exercise 4.5.7. (i) Write an algorithm to determine whether or not a given word
W is a theorem of the semi-Thue system S. Exercise 4.5.6 may be helpful.

(ii) With no special assumptions on S, under what conditions will your algorithm
halt?

In fact, given any Turing machine M , we can mimic it with a semi-Thue system
ΓM . We extract and modify the contents of M ’s tape, treating it as a particular
word. We insert an additional symbol into the word beyond the tape contents to
indicate M ’s current state and location of the read/write head (put it just left of
the current tape square), and the productions of ΓM follow naturally:

66 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

(i) Rewriting: if 〈qi, Sj, Sk, q`〉 is in M , add the production qiSj → q`Sk to ΓM .

(ii) Moving: if 〈qi, Sj, R, q`〉 is in M , add the production qiSjSk → Sjq`Sk to ΓM .
Similarly for 〈qi, Sj, L, q`〉.

The axiom of ΓM is the initial state followed by the initial contents of the tape; i.e.,
the input m̄.

The mimicry of M we’re aiming for is to have a particular word be a theorem
of ΓM if and only if M halts on the input m̄. To clean things up and take care
of special cases, we add a special unused symbol (h) to the beginning and end of
each word, and add productions that deal with that. We also add special state-like
symbols q, q′ that are switched into when we hit a dead end: For every state qi and
symbol Sj that do not begin any quadruple of M , add the production qiSj → qSj.
Once we’re in q we delete symbols to the right: for every symbol Si, ΓM contains
qSi → q. When we hit the right end, switch into q′: qh → q′h. Finally, delete
symbols to the left: Siq′ → q′. Ultimately, if M halts on m̄, our production system
with axiom hq0m̄h will produce the theorem hq′h.

We have “proved” the following theorem:

Theorem 4.5.8. It is not possible in general to decide whether or not a word is a
theorem of a semi-Thue system.

Exercise 4.5.9. How did the mimicry of Turing machines by semi-Thue systems
give us Theorem 4.5.8?

Exercise 4.5.10. Write a proof of Theorem 4.5.8. In particular, fill in the de-
tails of the symbol h, formally verify that the construction works, and include the
explanation of Exercise 4.5.9.

Post Correspondence

I’m including this one mostly because it’s cute. We use the term alphabet for the
set of all symbols used. If A is an alphabet and w a word all of whose symbols are
in A we call w a word on A.

Definition 4.5.11 (Post, 1946 [50]). A Post correspondence system consists of an al-
phabet A and a finite set of ordered pairs 〈hi, ki〉, 1 ≤ i ≤ m, of words on A. A word
u on A is called a solution of the system if for some sequence i ≤ i1, i2, . . . , in ≤ m
(the ij need not be distinct) we have u = hi1hi2 · · ·hin = ki1ki2 · · · kin .

That is, given two lists of m words, {h1, . . . , hm} and {k1, . . . , km}, we want
to determine whether any concatenation of words from the h list is equal to the
concatenation of the corresponding words from the k list. A solution is such a
concatenation.

4.5. UNSOLVABILITY 67

Example 4.5.12. The word aaabbabaaaba is a solution to the system

{〈a2, a3〉, 〈b, ab〉, 〈aba, ba〉, 〈ab3, b4〉, 〈ab2a, b2〉},

as shown by the two decompositions

aa abba b aa aba
aaa bb ab aaa ba

In fact, the segments aaabbab and aaaba are individually solutions as well.

Given a semi-Thue process Γ and a word v, we can construct a Post correspon-
dence system that has a solution if and only if v is a theorem of Γ. Then we can
conclude the following.

Theorem 4.5.13. There is no algorithm for determining whether or not a given
arbitrary Post correspondence system has a solution.

Proof. Let Γ be a semi-Thue process on alphabet A = {a1, . . . , an} with axiom u,
and let v be a word on A. We construct a Post correspondence system P such that
P has a solution if and only if v is a theorem of Γ. The alphabet of P is

B = {a1, . . . , an, a
′
1, . . . , a

′
n, [,], ?, ?

′},

with 2n + 4 symbols. For any word w on A, write w′ for the word on B obtained
from w by replacing each symbol s of w by s′.

Suppose the productions of Γ are gi → ḡi, 1 ≤ i ≤ k, and assume these in-
clude the n identity productions ai → ai, 1 ≤ i ≤ n. Note this is without loss
of generality as the identity productions do not change the set of theorems of Γ.
However, we may now assert that v is a theorem of Γ if and only if we can write
u = u1 → u2 → · · · → um = v for some odd m.

Let P consist of the following pairs:

〈[u?, [〉, 〈?, ?′〉, 〈?′, ?〉, 〈], ?′v]〉,
〈ḡj, g′j〉,
〈ḡ′j, gj〉

}
for 1 ≤ j ≤ k

Let u = u1 → u2 → · · · → um = v, where m is odd. Then the word

w = [u1 ? u
′
2 ?
′ u3 ? · · · ? u′m−1 ?

′ um]

is a solution of P , with the decompositions

[u1? u′2 ?′ u3 ? · · ·]
[u1 ? u′2 ?′ · · · ?′um],

68 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

where u′2 corresponds to u1 by the concatenation of three pairs: we can write
u1 = rgjs, u2 = rḡjs for some 1 ≤ j ≤ k. Then u′2 = r′ḡ′js

′ and the correspondence
is given by the productions r → r, s→ s, and gj → ḡj.

For the converse, we show that if w̄ is a solution, it is a derivation or concate-
nation of derivations of v from u. If w̄ begins with [and later has a], let w be the
portion of w̄ up to the first]. Then

w = [u ? · · · ?′ v],

and our decompositions are forced at the ends to be the pairs 〈[u?, [〉, 〈], ?′v]〉. This
gives us the initial correspondences

[u? · · · ?′ v]
[u ? · · · ?′v]

We must have u corresponding to some r′ and v to some s′, where u → r and
s → v. Then the ? and ?′ must correspond to a ?′ and ?, respectively. If they do
not correspond to each other we have

[u? r ?′ · · · ? s ?′ v]
[u ? r ?′ · · · ? s ?′v]

Iterating this procedure, we see that w shows u→ v.
Furthermore, any solution w̄ must begin with [and end with] (possibly with

additional brackets in the middle). We have forced this by adding ′ to the symbols
in half of every pair. For w̄ to be a solution, the symbol at the beginning of w̄
must also begin both elements of a pair of P , and the only symbol that does so is
[; likewise the only symbol that ends both elements of a pair of P is].

Hence, P has a solution if and only if v is a theorem of Γ; if we can always
decide whether a Post correspondence problem has a solution we have contradicted
Theorem 4.5.8.

As a final note, we point out that this undecidability result is for arbitrary Post
correspondence systems. We may get decidability results by restricting the size of
the alphabet or the number of pairs 〈hi, ki〉. If we restrict to alphabets with only one
symbol but any number of pairs, then the Post correspondence problem is decidable.
If we allow two symbols and any number of pairs, it is undecidable. If we restrict
to only one pair or two pairs of words, the problem is decidable regardless of the
number of symbols [18], and at 7 pairs it is undecidable [45]. Between three and six
pairs inclusive the question is still open.

Mathematical Logic

In §2.1 we met predicate logic as a way of writing formulas; it includes negation
(¬), the connectives &, ∨, → and ↔, and the quantifiers ∀ and ∃. Here we must

4.5. UNSOLVABILITY 69

broaden our perspective a bit to define a logic which is a whole unto itself rather
than just a notational system.

A particular (predicate) logic consists of the symbols above as well as variables,
constants, functions, and relations; all together they are called the language. We
used this idea without comment in §2.1 when writing formulas about N or other
number systems, using constants for elements of N, arithmetic functions, and the
relations = and <. We define the notion of formula recursively (see §2.4), beginning
with simpler notions.

A term is a constant, a variable, or a function of terms. For example, if ·, +,
and 2 are in our language, 2 · (x+ y) is a term because 2, x, and y are individually
terms, x + y is a term because it is a function of x and y, and 2 · (x + y) is a term
because it is a function of the terms 2 and x+ y.

An atomic formula is a relation of terms, such as 2 · (x + y) > 5. All atomic
formulas are formulas, and if ϕ, ψ are formulas, so are (ϕ&ψ), (ϕ∨ψ), ¬(ϕ), ∀x(ϕ),
and ∃x(ϕ).

To define a particular logic we explicitly state the collections of constants, func-
tions, and relations included. As an aside, this allows distinctions of in which
systems a particular property is definable by a predicate formula. Any given logic
may have multiple interpretations, structuresM in which every constant, predicate,
and function has a specified meaning. For example, N with the usual arithmetic
and {0, 1, . . . , 11} with arithmetic modulo 12 are distinct interpretations of the logic
with constants 0 and 1, functions + and ·, and relation =. The structureM mod-
els a formula ψ, written M |= ψ, if ψ is true under the interpretation. ψ is valid
(tautological) if it is true in all interpretations, denoted ` ψ.

The problem is this: given a logic Σ, determine whether the Σ-formula ψ is valid.
To prove that this is unsolvable, for each Turing machine M we construct a logic
ΣM and a formula ψM of ΣM such that ψM is valid if and only if M halts. We give
only a sketch of the proof, which is very similar to the construction for semi-Thue
systems, Theorem 4.5.8.

Given a Turing machineM on the alphabet {0, 1} with internal states {q0, . . . , qn},
let the constants of the language ΣM be {0, 1, q0, . . . , qn, q, q

′, h}. ΣM has one func-
tion f and one relation Q. The function f(x, y), also written (xy), concatenates
constants: the terms of ΣM are words on the alphabet of constants and variables.
The binary relation Q(t1, t2) (for quadruple), which we will also write t1 7→ t2, holds
exactly when t2 is obtained from t1 by one of the semi-Thue productions in the
proof of Theorem 4.5.8. That is, we have the formula (∀x, y)[xAy 7→ xBy] whenever
A→ B is one of the productions of ΓM .

We now have a collection of finitely-many formulas we’ll call axioms, one for
each semi-Thue production. We need two more. The first says f is associative:

(∀x, y, z)[((xy)z) = (x(yz))].

70 CHAPTER 4. WORKING WITH COMPUTABLE FUNCTIONS

The second says Q is transitive:

(∀x, y, z)[(x 7→ y & y 7→ z)→ (x 7→ z)].

Let the conjunction of all the above axioms be called ϕ. Then the Turing ma-
chine M halts on input x with initial configuration q0 if and only if the formula
ψ := ϕ→ (h q0 xh 7→ h q′ h) holds. That is, M halts if and only if ` ψ.

Exercise 4.5.14. Formally prove that mathematical logic is undecidable by filling
in the gaps in the proof sketch above.

Chapter 5

Computable and Computably
Enumerable Sets

We’ve talked about computability for functions; now let’s discuss sets. First, we
address a practical matter.

5.1 Dovetailing

Suppose we have a partial function f : N→ N, and we would like to know what it
does. If we knew f were total, we could find f(0), then f(1), then f(2), and so on.
However, since f is partial, at some point we’re going to get hung up and not find
an output. This could even happen at f(0), and then we would know nothing. In
order to do much of anything with partial functions we need a way to obtain their
outputs, when they exist.

The procedure used is called dovetailing, a term that comes from carpentry. A
dovetailed joint is made by notching the end of each board so they can interlock
(the notches and tabs that remain are trapezoidal, reminiscent of the tail of a bird
seen from above, giving the source of the name in carpentry). In computability, we
interleave portions of the computations.

It is easiest to imagine this process in terms of Turing machines, which clearly
have step-by-step procedures. We run one step of the computation for f(0). If it
halts, then we know f(0). Either way, we run two steps of the computation for f(1),
and if necessary, two steps of the computation of f(0). Step (or stage) n of this
procedure is to run the computations for f(0) through f(n − 1) each for n steps,
minus any we’ve already seen halt (though since they only add finitely many steps,
there’s no harm in including them1). Since every computation that halts must halt

1Likewise, we could record our stopping point and just run, e.g., f(0) one additional step
each time instead of starting from the beginning, but there is no harm in starting over each time.
Remember that computable does not imply feasible. As another side note, this procedure would

71

72 CHAPTER 5. COMPUTABLE AND COMPUTABLY ENUMERABLE SETS

in finitely-many stages, each element of f ’s domain will eventually give its output.
To denote the computation after s steps of computation we give the function

a subscript s: fs(n). We could use our halting and diverging notation: fs(n)↓ or
fs(n)↑. Note that fs(n)↑ does not imply f(n)↑; it could be that we simply need to
run more steps.

If we are drawing from an indexed list of functions, we put both the index and the
stage into the subscript: ϕe,s(n). Sometimes the stage number is put into brackets
at the end of the function notation, as ϕe(n)[s]; this will be useful when we have
more than just the function being approximated, as in §6.1. In this case the up or
down arrow goes after everything: ϕe(n)[s]↓.

Any collection of computations we can index can be dovetailed, gradually run-
ning more of them for more steps.

5.2 Computing and Enumerating
Recall that the characteristic function of a set A (Definition 3.1.1), denoted χA or
simply A, is the function outputting 1 when the input is a member of A and 0
otherwise. It is total, but not necessarily computable.

Definition 5.2.1. A set is computable (or recursive) if its characteristic function is
computable.

The word effective is often used as a synonym for computable/recursive, but
only in the context of procedures (you might say a given construction is effective
instead of saying it is recursive or computable; it would be strange to say a set is
effective). Note, however, that they are not always exactly synonymous! Exercise
5.2.17 introduces the notion of computably inseparable sets. While we could say
recursively inseparable for that, effectively inseparable sets are a different collection.

A good way to think about computable sets is that they have an associated
computable procedure that will answer “is n in A?” for any n, correctly and in finite
time.

Claim 5.2.2. (I) The complement of a computable set is computable.

(II) Any finite set is computable.

Proof. (I) Simply note χA = 1 − χA, so the functions are both computable or
both noncomputable.

(II) A finite set may be “hard-coded” into a Turing machine, so the machine has
instructions which essentially say “if the input is one of these numbers, output
1; else output 0”. This is one use of a fact that comes up again and again,

cause f(i) to have its n− 1 step run at stage n, making the dovetailing truly diagonal.

5.2. COMPUTING AND ENUMERATING 73

which is that any finite amount of information may be assumed and not
violate the computability of a procedure.

What about sets whose characteristic functions are noncomputable?

Definition 5.2.3. A set is computably enumerable (or recursively enumerable, ab-
breviated c.e., r.e.) if there is a computable procedure to list its elements (not
necessarily in order).

That definition is maybe a little nebulous. Here are some additional characteri-
zations:

Proposition 5.2.4. Given a set A, the following are equivalent.

(i) A is c.e.

(ii) A is the domain of a partial computable function.

(iii) A is the range of a partial computable function.

(iv) A = ∅ or A is the range of a total computable function.

Notice that property (iv) is almost effective countability, as in §3.4, but not
quite.

Proof. The proofs that (ii), (iii), and (iv) imply (i) are essentially all the same.
Dovetail all the ϕe(x) computations, and whenever you see one converge, enumerate
the preimage or the image involved depending on which case you’re in. This is a
computable procedure so the set produced will be computably enumerable.

(i)⇒(ii): Given A c.e., we define

ψ(n) =

{
1 n ∈ A
↑ n /∈ A

We must show this is computable. To compute ψ(n), begin enumerating A, a
computable procedure. If n ever shows up, at that point output 1. Otherwise the
computation never converges.

(i)⇒(iii): Again, given A c.e., note that we can think of its elements as having an
order assigned to them by the enumeration: the first to be enumerated, the second
to be enumerated, etc. (This will in general be different from their order by size.)
Define the function using that:

ϕ(n) = (n+ 1)st element to be enumerated in A.

74 CHAPTER 5. COMPUTABLE AND COMPUTABLY ENUMERABLE SETS

(We use n + 1 to give 0 an image; this is not important here but we shall use it in
the next part of the proof.) If A is finite, the enumeration will cease adding new
elements and ϕ will be undefined from some point on.

(i)⇒(iv): Suppose we have a nonempty c.e. set A. If A is infinite, the function ϕ
from the previous paragraph is total, and A is its range. If A is finite, it is actually
computable, so we may define

ϕ̂(n) =

{
ϕ(n) n < |A|
ϕ(0) n ≥ |A|

ϕ̂ is computable because ϕ is.

Exercise 5.2.5. Prove that every infinite c.e. set is the range of a one to one total
computable function. This closes the gap in Proposition 5.2.4 (iv) with effective
countability.

Every computable set is computably enumerable, but the reverse is not true.
For example, we’ve seen that the halting set

K = {e : ϕe(e)↓}

is c.e. (it is the domain of the diagonal function δ(e) = ϕe(e)) but not computable.
What’s the difference? The waiting. If A is being enumerated and we have not
yet seen 5, we do not know if that is because 5 is not an element of A or because
it’s going to be enumerated later. If we knew how long we had to wait before a
number would be enumerated, and if it hadn’t by then it never would be, then A
would actually be computable: To find χA(n), enumerate A until you have waited
the prescribed time. If n hasn’t shown up in the enumeration by then, it’s not in
A, so output 0. If it has shown up, output 1.

As in §5.1, we use subscripts to denote partially-enumerated sets. In any con-
struction we will have seen only finitely-many elements of A enumerated at a given
stage s, and we denote that finite subset of A by As. When c.e. sets are constructed,
formally it is the finite sets A0, A1, . . . , that are built, and then A is defined as⋃
sAs.
It is straightforward to see that there are infinitely many sets that are not even

c.e., much less computable. It is traditional to denote the domain of ϕe by We (and
hence the stage-s approximation by We,s). The c.e. (including computable) sets are
all listed out in the enumeration W0,W1,W2, . . ., which is a countable collection of
sets. However, the power set of N, which is the set of all sets of natural numbers, is
uncountable. Therefore in fact there are not only infinitely many but uncountably
many sets that are not computably enumerable.

Exercise 5.2.6. Prove that if A is c.e., A is computable if and only if A is c.e.

5.2. COMPUTING AND ENUMERATING 75

Exercise 5.2.7. Use Exercise 5.2.6 and the enumeration of c.e. sets, {We}e∈N, to
give an alternate proof of the noncomputability of K.

Exercise 5.2.8. Prove that an infinite set is computable if and only if it can be
computably enumerated in increasing order (that is, it is the range of a monotone
total computable function).

Exercise 5.2.9. Prove that if A is computable, and B ⊆ A is c.e., then B is
computable if and only if A− B is c.e. Prove that if A is only c.e., B ⊆ A c.e., we
cannot conclude B is computable even if A−B is computable.

Exercise 5.2.10. Prove the reduction property : given any two c.e. sets A, B there
are c.e. sets Â ⊆ A, B̂ ⊆ B such that

Â ∩ B̂ = ∅ and Â ∪ B̂ = A ∪B.

Exercise 5.2.11. Prove that the c.e. sets are uniformly enumerable: there is a
single computable procedure that enumerates the pair 〈e, x if and only if x ∈ We.

Exercise 5.2.12. Prove that the collection {(An, Bn)}n∈N of all pairs of disjoint
c.e. sets is uniformly enumerable, with the definition in Exercise 5.2.11 modified to
involve triples 〈n, i, x〉, where i ∈ {0, 1} indicates A or B. Note that as with the c.e.
sets, the enumeration will contain repeats.

Exercise 5.2.13. Show that any infinite c.e. set contains an infinite computable
subset.

Exercise 5.2.14. Show that any infinite set contains a noncomputable subset.

Exercise 5.2.15. Prove that if A and B are both computable (respectively, c.e.),
then the following sets are also computable (respectively, c.e.).

(i) A ∪B,

(ii) A ∩B,

(iii) A⊕B := {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}, the disjoint union or join.

Exercise 5.2.16. Show that if A⊕B, as defined above, is computable (respectively,
c.e.), then A and B are both computable (c.e.).

Exercise 5.2.17. Two c.e. sets A, B are computably separable if there is a com-
putable set C that contains A and is disjoint from B. They are computably insepa-
rable otherwise.

(i) Let A = {x : ϕx(x)↓= 0} and B = {x : ϕx(x)↓= 1}. Show A and B are
computably inseparable.

76 CHAPTER 5. COMPUTABLE AND COMPUTABLY ENUMERABLE SETS

(ii) Let {(An, Bn)}n∈N be the enumeration of all disjoint pairs of c.e. sets as in
Exercise 5.2.12. Let x ∈ A iff x ∈ Ax and x ∈ B iff x ∈ Bx, and show A and
B are computably inseparable. Hint: What if C were one of the Bn?

Exercise 5.2.18. Show that if A is computably enumerable, the union B =
⋃
e∈A

We

is computably enumerable. If A is computable, is B computable? Can you make
any claims about C =

⋂
e∈A

We given the computability or enumerability of A?

Exercise 5.2.19. (i) Call a relation computable if when coded into a subset of
N, that set is computable. Given a computable binary relation R, prove the
set A = {x : (∃y)((x, y) ∈ R)} is c.e.

(ii) With R and A as above, prove that if A is noncomputable, for every total
computable function f , there is some x ∈ A such that every y such that
(x, y) ∈ R satisfies y > f(x).

5.3 Noncomputable Sets Part I

So how do we create a noncomputable set? One way is by making its characteristic
function nonequal to every total computable function. We can do this diagonally,
by making A such that χA(e) 6= ϕe(e).

We want to say “Let χA(e) = 1 if ϕe(e) = 0, and otherwise let it be 0.” It’s not
so hard to prove A defined that way is c.e., but to generalize we have to be a little
more careful, enumerating A gradually as we learn about the results of the various
ϕe(e) computations.

Let’s consider this diagonal example further. We can think of this definition as
an infinite collection of requirements

Re : χA(e) 6= ϕe(e).

We win each individual requirement if either ϕe(e)↑, or ϕe(e)↓ but gives a value
different from χA(e). We must also make sure A is c.e., which is a single requirement
that permeates the construction.

To make sure A is c.e., we put elements into it but never take them out, and
we make sure every step of the construction is computable. The construction itself,
then, is the computable procedure that enumerates A.

Meeting each Re will be local; none of the requirements will interact with any
others. We dovetail the computations in question as in §5.1, so we will eventually
see the end of any convergent computation. If ϕe(e)↓= 0 at stage s we put e into A
at that stage. If we never see that we keep e out; that’s the whole construction.

5.4. NONCOMPUTABLE SETS PART II: SIMPLE SETS 77

Why does this give a noncomputable set? In other words, why does it satisfy
the requirements? Because if ϕe(e) ↑, we win that requirement. Otherwise the
computation converges at some finite stage. If it converges to 0, at that stage
we put e into A, and χA(e) = 1 6= ϕe(e). Otherwise we keep e out of A, and
χA(e) = 0 6= ϕe(e).

5.4 Noncomputable Sets Part II: Simple Sets
Definition 5.4.1. A c.e. set A is simple if its complement is infinite but contains
no infinite c.e. subsets.

That is, if We is infinite, it must have nonempty intersection with A, but there
still has to be enough outside of A that A is infinite. Note that having an infinite
or finite complement is often called being coinfinite or cofinite, respectively.

Exercise 5.4.2. (i) Prove that if A is simple, it is not computable.

(ii) Prove that a coinfinite c.e. set is simple if and only if it is not contained in any
coinfinite computable set.

(iii) Prove that if A and B are simple, A ∩B is simple and A ∪B is either simple
or cofinite.

(iv) Prove that if A is simple and We is infinite, A ∩We must be infinite (not just
nonempty).

We now discuss the construction of a simple set. This perhaps seems technical,
but is the most common way to force a set to be noncomputable in modern construc-
tions (we often want to construct sets with certain properties and use construction
“modules” to do so; the simplicity module is the most common for noncomputability,
because it turns out to be easier to work with than the module we met in §5.3).

Just as before, we have an infinite collection of requirements to meet:

Re : (|We| =∞)⇒ (A ∩We 6= ∅).

Additionally we have two overarching requirements,

A is c.e.

and
|A| =∞.

As before, to make sure A is c.e., we will enumerate it during the construction
and make sure every step of the construction is computable.

78 CHAPTER 5. COMPUTABLE AND COMPUTABLY ENUMERABLE SETS

To meet Re while maintaining the size of A, we look for n > 2e such that n ∈ We.
When we find one, we enumerate n into A. Then we stop looking for elements of
We to put into A (the requirement Re is satisfied).

Since We may be finite, we have to dovetail the search as in §5.1, so at stage s
we look at We,s for e < s such that We,s ∩ As = ∅.

Why does this work?

• As discussed before, A is c.e. because the construction is computable, and
numbers are only put into A, never taken out.

• A is infinite because only k-many requirements Re are allowed to put numbers
below 2k into A for any k, leaving at least k of those numbers in A.

• For each We that is infinite, there must be some element x > 2e in We.
Eventually s is big enough that (a) we are considering We, and (b) such an x
is in We,s. At that point we will put x into A and Re will be satisfied forever
after.

One thing to note: we cannot tell during enumeration whether any given We

will be finite or infinite. There could be a long lag time between enumerations, and
we can’t tell whether we need to wait longer to get more elements or whether we’re
done. Because of this, we may act on behalf of some finite sets We unnecessarily.
That’s okay, though, because we set up the 2e safeguard to make sure we never
put so much into A that A becomes finite, and that would be the only way extra
elements in A could hurt the construction.

Chapter 6

Turing Reduction and Post’s
Problem

6.1 Reducibility of Sets

We’d like a definition of relative computability that allows us to say (roughly) that
set A is more or less computable than set B. Certainly it should be the case that
the computable sets are “more computable” than all noncomputable sets; we can
get a finer-grade division than those two layers, however. Intuitively, A is reducible
to B if knowing B makes A computable.

Definition 6.1.1. An oracle Turing machine with oracle A is a Turing machine
that is allowed to ask a finite number of questions of the form “is n in A?” during
the course of a single computation.

The restriction to only finitely-many questions is so the computation remains
finite. We think of oracle machines as computers with CD drives. We pop the
CD of A into the drive, and the machine can look up finitely many bits from the
CD during its computation on input n. Another way to think of it would be the
machine having an additional internal tape that is read-only and pre-printed with
the characteristic function of A. That perhaps clarifies how we might code oracle
Turing machines, as well as making very concrete the fact that only finitely-many
questions may be asked of the oracle.

The number and kind of questions the machine asks may vary with not only the
input value, but also the answers it gets; i.e., with the oracle. However, once again
we must have uniformity; you can think of a pre-existing flowchart or tree diagram
of the procedure. For example, a simple, pointless function might have a process as
follows:

• Given input n, find if n ∈ A.

79

80 CHAPTER 6. TURING REDUCTION AND POST’S PROBLEM

– If so, test each k ∈ N. If any k2 = n, halt and output k.

– If not, ask if n2 ∈ A.
∗ If so, halt and output n.
∗ If not, go into an infinite loop.

We notate oracles by superscript: MA for a machine, ϕA for a function. This is
where we start needing the “brackets” notation from §5.1, because we consider the
stage-s approximation of both the oracle and the computation: ϕAs

e,s(n) abbreviates
to ϕAe (n)[s].

Definition 6.1.2. A set A is Turing reducible to a set B, written A ≤T B, if for
some e, ϕBe = χA. A and B are Turing equivalent, A ≡T B, if A ≤T B and B ≤T A.

This definition may also be made with functions. To match it to the above, we
conflate a function f with its (coded) graph {〈x, y〉 : f(x) = y}.

Exercise 6.1.3. Prove A ≡T A.

Exercise 6.1.4. (i) Prove that ≤T is a preorder on P(N); that is, it is a reflexive,
transitive relation.

(ii) In fact, ≤T is uniformly transitive, which is easiest from the function point of
view: prove there is a function k such that for all i, e, f, g, h, if h = ϕge and
g = ϕfi , then h = ϕfk(e,i).

(iii) Prove that ≡T is an equivalence relation on P(N).

Exercise 6.1.5. (i) Prove that if A is computable, then A ≤T B for all sets B.

(ii) Prove that if A is computable and B ≤T A, then B is computable.

One could think of Turing-equivalent sets as being closely related, like A and A
are. The following is about as close as a relationship can get.

Definition 6.1.6. The symmetric difference of two sets A and B is

A M B = (A ∩B) ∪ (A ∩B).

If |A M B| <∞ we write A =∗ B and say A and B are equal modulo finite difference.
We let A∗ denote A’s equivalence class modulo finite difference and write A ⊆∗ B
when A ∩B is finite.

Exercise 6.1.7. Prove =∗ is an equivalence relation on P(N).

Exercise 6.1.8. (i) Prove that if A =∗ B, then A ≡T B.

6.1. REDUCIBILITY OF SETS 81

(ii) Prove that A ≡T B does not imply A =∗ B.

On the opposite end of the c.e. sets from the computable sets are the complete
sets (or Turing complete): sets that are c.e. and that compute all other c.e. sets.
Recall that the halting set is

K = {e : ϕe(e)↓}.

Theorem 6.1.9 (Post, 1944; see Davis [12]). K is c.e., and if A is computably
enumerable, then A ≤T K.

Proof. GivenA, we construct a computable function f such that x ∈ A⇔ f(x) ∈ K.
Let e be such that A = We, and define the function ψ(x, y) to equal 0 if ϕe(x)↓, and
diverge otherwise. Since ϕe is partial computable, so is ψ, so it is ϕi(x, y) for some
i. By the s-m-n Theorem 4.3.1, there is a total computable function S1

1 such that
ϕS1

1(i,x)(y) = ϕi(x, y) for all x and y. However, since i is fixed, we may view S1
1(i, x)

as a (computable) function of one variable, f(x). Now,

x ∈ A ⇒ ϕe(x)↓ ⇒ ∀y(ϕf(x)(y) = 0) ⇒ ϕf(x)(f(x))↓ ⇒ f(x) ∈ K;

x /∈ A ⇒ ϕe(x)↑ ⇒ ∀y(ϕf(x)(y)↑) ⇒ ϕf(x)(f(x))↑ ⇒ f(x) /∈ K.

Exercise 6.1.10. Another way to show K is complete is via an augmented halting
set. Recall that 〈x, y〉 is the code of the pair x, y under the standard pairing function.
Define K0 = {〈x, y〉 : ϕx(y)↓}. You show K0 is c.e. via dovetailing, as with K, and
it is clear that every c.e. set is computable from K0. To complete Theorem 6.1.9,
we need only show K0 ≤T K. Prove this directly, using the s-m-n Theorem 4.3.1.

When working with oracle computations we need to know how changes in the
oracle affect the computation, or really, when we can be sure changes won’t affect
the computation. Since each computation asks only finitely many questions of the
oracle, we can associate it with a value called the use of the computation. There
are various notations for use; I’ll stick to u(A, e, x), the maximum n ∈ N that ϕe
asks A about during its computation on input x, plus one.

Another piece of notation: A � n (A restricted to the first n elements)
means A ∩ {0, 1, . . . , n − 1} (the reason for the “plus one” above). Note that if
A � (u(A, e, x)) = B � (u(A, e, x)), then u(B, e, x) = u(A, e, x) and ϕAe (x) = ϕBe (x).
In words, if A and B agree up to the largest element ϕe(x) asks about when
computing relative to A, then in fact on input x there is no difference between
computing relative to A and relative to B because ϕe is following the same path in
its “ask about 5: if yes, then ask about 10; if no, then ask about 8” flowchart for
computation. If B differs from A up to the use with oracle A, then both the use
and the output with oracle B could be different.

82 CHAPTER 6. TURING REDUCTION AND POST’S PROBLEM

What this means for constructions is that if you want to preserve a computation
ϕAe (x) while still allowing enumeration into A, you need only prevent enumeration
of numbers ≤ u(A, e, x). Any others will leave the computation unharmed.

In §4.5 we saw a collection of problems that correspond to c.e. sets: the set of
theorems of a semi-Thue system or logic is enumerable; the set of concatenations
that might be solutions to a Post correspondence system is enumerable. In full
generality every one of those is equivalent to the halting problem (we noted that
embedding the halting problem into the decision problem was a standard method
to prove undecidability), and it is not clear how one would reduce the generality
in such a way as to become weaker than the halting problem without becoming
computable.

This prompted Emil Post to ask the following question.

Question 6.1.11 (Post’s Problem). Is there a set A such that A is noncomputable
and incomplete?

The answer is yes, though it took a while to get there. A refinement of the
question asks whether there is a c.e. set that is noncomputable and incomplete. Why
is that a refinement? Because any complete set will be Turing-above some non-c.e.
sets as well as all the c.e. ones. So if we build an intermediate set without worrying
about its enumerability, we might well end up with a non-c.e. one. However, we can
also answer yes to the problem of whether there is a c.e. set between computable
and complete, as proved in the next section.

Theorem 6.2.3. There is a c.e. set A such that A is noncomputable and incomplete.

6.2 Finite Injury Priority Arguments

Suppose we have an infinite collection {Re}e∈N of requirements to meet while con-
structing a set A. We’ve seen this in the noncomputable set constructions of §5.3
and §5.4. However, suppose further that these requirements may interact with each
other, and to each other’s detriment. As an extremely simplified example, suppose
R6 wants to put even numbers into A and R8 wants there to be no even numbers
in A. Then if R6 puts 2 into A, R8 will take it back out, and R6 will try again with
2 or some other even number, and again R8 will take it back out. We’ll go round
and round in a vicious circle and neither requirement will end up satisfied (in fact
in this example, A may not even be well-defined).

In this example the requirements are actually set directly in opposition. At the
other end of the spectrum, we can have requirements that are completely indepen-
dent from each other and still have to worry about injury to a requirement. The
reason is that information is parceled out slowly, stage by stage, since we’re working

6.2. FINITE INJURY PRIORITY ARGUMENTS 83

with enumerations rather than full, pre-known characteristic functions. Our infor-
mation is at best not known to be correct and complete, and at worst is actually
incomplete, misleading, or outright wrong. Therefore we will make mistakes acting
on it. However, we can’t wait to act because what we’re waiting for might never
happen, and not acting is almost certainly not correct either. For example, in the
simple set construction, there was no waiting until we determine whether a set is
finite or not. We can’t ever know if we’ve seen all the elements of the set, so we
have to act as soon as we see a chance (a large-enough number). This “mistake"
we make there is putting additional elements into the set that we didn’t have to.
We eliminate the damage from that mistake by putting a lower bound on the size
of the elements we can enumerate. In this more complicated construction, we will
make mistakes that actually cause damage, but set up the construction in such a
way that the damage can be survived.

The key to getting the requirements to play nicely together is priority. We put
the requirements into a list and only allow each to injure requirements further down
the list. Then in our situation above, R6 would be allowed to injure R8, but not
vice-versa.

The kind of priority arguments we will look at in this section are finite-injury
priority arguments. That means each requirement only breaks the ones below it a
finite number of times. We show every requirement can recover from finitely-much
injury, and so after the finite collection of requirements earlier in the list than Re

have finished causing injury, Re can act to satisfy itself and remain satisfied forever.
[The proofs, therefore, are induction arguments.]

Let’s work through a different version of the simple set construction. Recall the
definition.

Definition 6.2.1. A c.e. set A is simple if A is infinite but contains no infinite c.e.
subset.

Theorem 6.2.2. There is a simple set.

Proof. We will construct A to be simple via meeting the following two sets of re-
quirements:

Re : (|We| =∞)⇒ (A ∩We 6= ∅).

Ne : (∃n > e)(n ∈ A).

The construction will guarantee that A is computably enumerable. It is clear, as
discussed in §5.4, that meeting all Re will guarantee A contains no infinite c.e.
subsets.

To see that meeting all Ne guarantees A is infinite, consider a specific Ne. If it is
met, there is some n > e in A. Now consider Nn. If it is met, there is some n′ > n

84 CHAPTER 6. TURING REDUCTION AND POST’S PROBLEM

in A; we may continue in this way. Thus satisfying all Ne requires infinitely many
elements in A.

We first discuss meeting each requirement in isolation, starting with Re. If
We,s ∩ As = ∅, but an element enters We at stage s + 1, Re puts that element into
A. It is then permanently satisfied, as we do not take elements out of A. Each Ne

chooses a marker ne > e and prevents its enumeration into A.
The negative (N) requirements will prohibit some positive (R) requirements

from enumerating elements into A. Some R requirements will enumerate elements
into A that N requirements want to keep out of A. The priority ordering on these
requirements is as follows:

R0, N0, R1, N1, R2, N2, . . .

Recall that requirements earlier in the list have higher priority.
Now each Re requirement may enumerate anything fromWe into A except for the

elements prohibited by N0, N1, . . . , Ne−1. Thus Re might injure Ne′ for some e′ > e,
by enumerating its chosen value into A. This will cause the negative requirements
from that point on to move their chosen ne values past the number Re enumerated
into A. We therefore refer to ne,s, the value of the marker ne at stage s.

One further definition will streamline the construction. We say a requirement
Re requires attention at stage s+ 1 if We,s ∩As = ∅ (so Re is unsatisfied) and there
is some x ∈ We,s+1 such that x 6= nk,s for all k < e (there is a suitable witness that
we are able to use to satisfy Re at stage s+ 1).
Construction:

Stage 0: A0 = ∅. Each Ne chooses value ne,0 = e+ 1.
Stage s+ 1: If any Re, e ≤ s, requires attention, choose the least such e and the

least witness x for that e and let As+1 = As ∪ {x}; if x is nk,s for any k ≥ e, let
nk′,s+1 = nk′+1,s for all k′ ≥ k. Note that this preserves the ordering ne < ne+1 for
all e.

If no Re requires attention, let As+1 = As and ne,s+1 = ne,s for all e. In either
case move on to stage s+ 1.
End construction.

Now we must verify the construction has succeeded in meeting the requirements.
Lemma 1. Each Re acts at most once.
Proof. Once We ∩ A 6= ∅, Re will never act again. It is clear this will require at
most one enumeration on the part of Re. a
Lemma 2. For each e, ne = lims ne,s exists. That is, the markers eventually stop
shifting to the right. Moreover, for all e, ne /∈ A.
Proof. The value of a marker changes only when it or one of its predecessor markers
is enumerated into A. Therefore, the value of ne can change only when some Rk for
k ≤ e acts. By Lemma 1, each such requirement acts at most once. Therefore the

6.2. FINITE INJURY PRIORITY ARGUMENTS 85

value of ne will change at most e+1 times during the construction, and afterward will
remain fixed. The value ne is in A because each time a marker’s value is enumerated
into A, that marker is moved to a different value. a
Lemma 3. If We is infinite, then We ∩ A is nonempty.
Proof. Suppose We is infinite, and let s be a stage at which all requirements Rk for
k < e have stopped acting, which exists by Lemma 1. This means also, as in the
proof of Lemma 2, that all markers nk for k < e have attained their final values. As
there are only finitely many such markers, and all others may be disregarded by Re,
at stage s a finite list of disallowed enumeration values is fixed. As We is infinite, it
must contain values not on that list, and if Re has not yet been satisfied by stage
s at the next stage at which We contains a value not on the list, Re will have the
opportunity to act and will be satisfied. a

Lemma 2 shows each Ne is satisfied, and Lemma 3 that each Re is satisfied.
Combined with the discussion preceding the construction, we see the proof of the
theorem is complete.

We can now construct a set that gives a positive answer to Post’s Problem,
Question 6.1.11.

Theorem 6.2.3. There is a c.e. set A such that A is noncomputable and incomplete.

The proof I will give combines the construction of A simple with creation of a
specific c.e. set B that is not computed by A, to show A is incomplete.

Again, as in the previous constructions, the fact that A and B are c.e. will be
implicit in the construction, by making sure the construction is computable and
then enumerating elements into A and B but not taking them back out. The
construction that makes an intermediate but not necessarily c.e. set takes elements
back out again.

Proof of Theorem 6.2.3. We build A simple and B c.e. such that B 6≤T A. The
requirements are the following.

Re : (|We| =∞)⇒ (A ∩We ∩ {x ∈ N : x > 2e} 6= ∅).

Ne : ϕAe 6= χB.

A and B will be c.e. by construction.
The method for solving an Re requirement in isolation is the same as in our

original work on the simple set construction in §5.4.
We win an Ne requirement if ϕAe is not total or if we can produce a witness

n such that ϕAe (n) 6= χB(n). The incompleteness of information we have in this
construction is that we can never know whether a computation diverges, or whether
we need to let it chug along for a few more stages – this part is very much like
the first construction of a noncomputable set in §5.3. Each Ne will again pick a

86 CHAPTER 6. TURING REDUCTION AND POST’S PROBLEM

witness ne, as in Theorem 6.2.2, but this time it will keep ne out of B unless it sees
ϕAe (ne)↓= 0 (meaning ϕAe and χB agree on ne).1 In that case Ne puts the witness
into B. The difference between this and §5.3 is that with an oracle, the computation
might not “stay halted.” That is, as A changes, the behavior of ϕAe may also change.
Therefore Ne tries to preserve its computation by restricting enumeration into A:
it wants to keep any new elements ≤ u(A, e, ne) out of A (recall the use function
from the end of §6.1).

The priority ordering is as in Theorem 6.2.2:

R0, N0, R1, N1, R2, N2, . . .

Each Re must obey restraints set by Nk for k < e, but may injure later N require-
ments by enumerating into A below the restraint of that N , after N has enumerated
its witness into B. In that case, N must choose a later witness and start over.

Again, we make a streamlining definition: Re requires attention at stage s if
We,s ∩ As = ∅ and there is some x ∈ We,s such that x > 2e and x is also greater
than any restraints in place from Nk for k < e. Ne requires attention at stage s if it
has a defined witness ne,s, and ϕAe (ne)[s]↓= 0 but ne,s /∈ Bs.
Construction:
A0 = B0 = ∅.

Stage s: Set ns,s to be the least number not yet used in the construction (as
there have been only finitely-many stages and only finitely much happens in any
given stage, there will always be an infinite tail of N to work with).

Ask if any Re or Ne with e < s requires attention. If so, take the highest-priority
such and act to satisfy it:

• If Ne, put ne,s into Bs+1 and restrain A up to u(As, e, ne,s).

• If Re, put the least applicable x into As+1. Cancel the witnesses (and re-
straints, if any were set) of requirements Nk for e ≤ k ≤ s and give them new
witnesses nk,s+1, distinct unused large numbers, increasing in k.

If no requirement needs attention, do nothing.
In either case, any ne,s+1 that was not specifically defined is equal to ne,s; re-

straints hold until they are cancelled by injury.
End construction.

Now, the verification.
Lemma 1. Each Re requirement acts at most once.
Proof. Clear. a
Lemma 2. For every e, ne = lims ne,s is defined.

1Why pick a specific ne instead of just looking for some difference somewhere? Because it
streamlines the construction and doesn’t make it any more difficult to verify.

6.2. FINITE INJURY PRIORITY ARGUMENTS 87

Proof. As before, this lemma follows entirely from Lemma 1: since every Re require-
ment acts at most once, the finite collection of them preceding Ne in the priority list
will all be finished acting at some finite stage. After that stage, whatever witness
ne is in place is the permanent value. a

Lemma 3. Every Ne requirement is met. Moreover, each Ne either has no restraint
from some stage s on, or it has a permanent finite restraint that is unchanged from
some stage s on.

Proof. Consider some fixed Ne. By Lemma 2, ne eventually reaches its final value,
and by Lemma 1, all higher-priority positive requirements eventually stop acting.
Thus after some stage, Ne will never be injured again and will have a single witness
ne to worry about. By induction, assume all higher-priority Ne requirements have
stopped acting. There are two cases:

Case 1: ϕAe (ne) never converges to 0. That is, it either never converges, or it
converges to some value other than 0. In this case the correct action is to keep ne
out of B, which Ne does by default. Ne is the only requirement that could put ne
into B, since witnesses for different requirements are always distinct values, so ne
will remain out of B. In this case Ne never sets a restraint for the permanent value
of ne, and any restraints it set on behalf of earlier witnesses are cancelled. Ne will
never act again.

Case 2: ϕAe (ne)↓= 0. Suppose the final value of ne is assigned to Ne at stage s
(so we know additionally that by stage s all higher-priority Re requirements have
stopped acting), and that at stage s′ ≥ s all higher-priority N requirements have
stopped acting. Then at the first stage s′′ ≥ s′ such that ϕAe (ne)[s

′′]↓= 0, Ne will
be the highest-priority requirement needing attention and will set restraint on A up
to u(As′′ , e, ne) and enumerate ne into B. As the only positive requirements that
might still act are bound to obey that restraint, it will never be violated and thus
the computation ϕAe (ne)↓= 0 is permanent and unequal to χB(ne). Likewise, the
restraint set is at its final level, and Ne will never act again. a

Lemma 4. Every Re requirement is met.

Proof. Consider some fixed Re. By Lemma 3, let s be a stage by which each
requirement Nk, k < e, has set its permanent restraint rk or has had its restraint
canceled and never thereafter sets a new one. By Lemma 1, let s also be large
enough that all higher-priority R requirements that will ever act have already done
so. Let r = max{2e, rk : k < e}; note this is a finite value. If We is finite, then Re

is met automatically. If We is infinite, then it must contain a number x > r. If Re

is not already satisfied by stage s, then at the first stage thereafter in which such
an x enters We, Re will be the highest-priority requirement needing attention and
will be able to enumerate x into A, making it permanently satisfied. a

This completes the proof of the theorem.

88 CHAPTER 6. TURING REDUCTION AND POST’S PROBLEM

Notes on Approximation

So far, our approximations have all been enumerative processes: sets gain elements
one by one, or functions gradually give results for various input values. There
are other ways to get information about noncomputable sets; being c.e. is actually
quite strong. The weakest condition on a set computable from 0′ is simply to be
computable from 0′, or ∆0

2 (see §7.2.5). For A to be ∆0
2 means there is a computable

function g(x, s) such that for each x, lims→∞ g(x, s) = χA(x), and the number of
times g “changes its mind” on each x is finite:

(∀x) (|{s : g(x, s) 6= g(x, s+ 1)}| <∞) .

This is not a definition but a theorem, of course, and you can see its proof in §8.1.
In the context of a finite injury priority argument, we must be able to cope with
injury caused by additional elements we hadn’t counted on as well as the removal of
elements we thought were in the set. Restraint on the set being constructed serves
to control both addition and removal of elements. We also no longer know only one
change will be made; we only know the changes to each element’s status will be
finite, so eventually the approximation will be correct.

In between there are various families of approximability. For a given computable
function f(x), a set is f -c.e. if it has a ∆0

2 approximation g such that the number
of mind changes of g on x is bounded by f(x). If f is the identity, we call the set
id-c.e.

An approximation useful in the study of randomness (see §9.2) is left computable
enumerability. In a left-c.e. approximation, it is always okay to put elements in,
but only okay to take x out if you have put in something less than x. This is more
natural in the context of characteristic functions viewed as infinite binary sequences.
If you think of the sequence given by χA as an infinite binary expansion of a number
between 0 and 1 then it is left-c.e. if we can approximate it so that the numerical
value of the approximation is always increasing.

Exercise 6.2.4. Using a finite injury priority construction, build a computable lin-
ear ordering L isomorphic to the natural numbers N such that the successor relation
of L is not computable. That is, take N and reorder it by ≤L such that the ordering
is total and has a least element, and so that there is a total computable function
f such that f(x, y) = 1 if and only if x ≤L y, but no total computable function g
such that g(x, y) = 1 if and only if y is the successor of x. The computability of the
ordering will be implicit in the construction: place s into the ordering at stage s.
For the remainder, satisfy the following requirements:

Pe : ϕe total ⇒ (∃x, y)[ϕe(x, y) = 1 but (∃z)(x ≤L z ≤L y)]

Nx : there are only finitely-many elements L-below x

6.2. FINITE INJURY PRIORITY ARGUMENTS 89

Exercise 6.2.5. Using a finite injury priority argument, build a bi-immune ∆0
2 set

A. That is, A such that A and A both intersect every infinite c.e. set. Meet the
following requirements:

Pe : |We| =∞⇒ (∃n)(n ∈ We ∩ A)

Re : |We| =∞⇒ (∃n)(n ∈ We − A)

Pe puts things in, Re takes them out. Remember since A is merely ∆0
2 these “things”

can be the same numbers, provided they only seesaw finitely-many times apiece.

Chapter 7

Turing Degrees

7.1 Turing Degrees

Recall from Exercise 6.1.4 that Turing equivalence is an equivalence relation on
P(N), the power set of the natural numbers. As in §2.3, we may define a quotient
structure.

Definition 7.1.1. (i) The Turing degrees (or degrees of unsolvability) are the
quotient of P(N) by Turing equivalence.

(ii) For a set A ⊆ N, the degree of A is deg(A) = [A], the equivalence class of A
under Turing equivalence. This is often notated a, or a∼ on the chalkboard.

The Turing degrees are partially ordered by Turing reducibility, meaning
deg(A) ≤ deg(B) iff A ≤T B. This is well-defined (i.e., not dependent on the
choice of degree representative A, B) by definition of Turing equivalence and the
fact that it is an equivalence relation.

Exercise 7.1.2. Prove the following.

(i) The least Turing degree is deg(∅) (also denoted 0,∅); it is the degree of all
computable sets.

(ii) Every pair of degrees deg(A), deg(B) has a least upper bound; moreover, that
l.u.b. is deg(A⊕B) (A⊕B is defined in Exercise 5.2.15).

(iii) For all sets A, deg(A) = deg(A).

Note that for part (ii) you must show not only that deg(A⊕B) ≥ deg(A), deg(B),
but also that any degree ≥ deg(A), deg(B) is also ≥ deg(A⊕B).

91

92 CHAPTER 7. TURING DEGREES

It is not the case that every pair of degrees has a greatest lower bound. The
least upper bound of a pair of sets is often called their join and the greatest lower
bound, should it exist, their meet.

Part (iii) of Exercise 7.1.2 explains the wording of the following definition.

Definition 7.1.3. A degree is called c.e. if it contains a c.e. set.

The maximum c.e. degree is degK, the degree of the halting set, which follows
from Theorem 6.1.9.

Exercise 7.1.4. Prove that each Turing degree contains only countably many sets.

Corollary 7.1.5. There are uncountably many Turing degrees.

7.2 Relativization and the Turing Jump

The notion of relativization is one of fixing some set A and always working with A
as your oracle: working relative to A. Then computability becomes computability
in A (being equal to ϕAe for some e, also called A-computability) and enumerability
become enumerability in A (being equal to WA

e := dom(ϕAe) for some e). Some
examples follow.

Theorem 7.2.1 (Relativized S-m-n Theorem). For every m,n ≥ 1 there exists a
one-to-one computable function Smn of m + 1 variables so that for all sets A ⊆ N
and for all e, y1, . . . , ym ∈ N,

ϕASm
n (e,y1,...,ym)(z1, . . . , zn) = ϕAe (y1, . . . , ym, z1, . . . , zn).

Two important points: 1) this is a poor example of relativization, though it is
important for using relativization; this is because 2) Smn is not just computable in A,
it is computable. The proof here is essentially the same as for the original version;
the only difference is with oracle machines the exact enumeration of ϕe is different.

Here’s a better example:

Exercise 7.2.2. Prove that B ≤T A if and only if B and B are both c.e. in A.

Here’s a very important example of relativization.

Theorem 7.2.3. The set A′ = {e : ϕAe (e)↓} is c.e. in A but not A-computable.

7.2. RELATIVIZATION AND THE TURING JUMP 93

The proof is essentially the same as for the original theorem. This is the halting
set relativized to A, otherwise known as the jump (or Turing jump) of A and read “A-
prime” or “A-jump”. The original halting set is often denoted ∅′ or 0′, and therefore
the Turing degree of the complete sets is denoted ∅′ or 0′ (this is never ambiguous,
whereas K could easily be). If we want to iterate the jump that is indicated by
adding additional primes (for small numbers of iterations only) or using a number
in parentheses: A′′ is the second jump of A, a.k.a. (A′)′, but for the fourth jump we
would write A(4) rather than A′′′′.

The jump of a set is always strictly Turing-above the original set, and computes
it. Jump never inverts the order of Turing reducibility, though it may collapse it.
That is, the jump operator is not one-to-one.

Proposition 7.2.4. (i) If B ≤T A, then B′ ≤T A′.

(ii) There exist sets A,B such that B �T A but B′ ≡T A′.

One example of part (ii) is noncomputable low sets, sets A such that A′ ≡T ∅′.
The degrees ∅,∅′, . . . ,∅(n), . . . are, in some sense, the “spine” of the Turing de-

grees, in part because starting with the least degree and moving upward by iterating
the jump is the most natural and non-arbitrary way to find a sequence of strictly
increasing Turing degrees.

Additionally, however, those degrees line up with the number of quantifiers we
need to write a logical formula. The arithmetic hierarchy is a way of categorizing
relations according to how complicated the logical predicate representing them has
to be. Let’s have some definitions.

Definition 7.2.5. (i) A set B is in Σ0 (equivalently, Π0) if it is computable.

(ii) A set B is in Σ1 if there is a computable relation R(x, y) such that

x ∈ B ⇐⇒ (∃y)(R(x, y)).

(iii) A set B is in Π1 if there is a computable relation R(x, y) such that

x ∈ B ⇐⇒ (∀y)(R(x, y)).

(iv) For n ≥ 1, a set B is in Σn if there is a computable relation R(x, y1, . . . , yn)
such that x ∈ B ⇐⇒ (∃y1)(∀y2)(∃y3) . . . (Qyn)(R(x, y1, . . . , yn)), where the
quantifiers alternate and hence Q = ∃ if n is odd, and Q = ∀ if n is even.

(v) Likewise, B is in Πn if there is a computable relation R(x, y1, . . . , yn) such that
x ∈ B ⇐⇒ (∀y1)(∃y2)(∀y3) . . . (Qyn)(R(x, y1, . . . , yn)), where the quantifiers
alternate and hence Q = ∀ if n is odd, and Q = ∃ if n is even.

(vi) B is in ∆n if it is in both Σn and Πn.

94 CHAPTER 7. TURING DEGREES

(vii) B is arithmetical if for some n, B is in Σn ∪ Πn.

We often say “B is Σ2” instead of “B is in Σ2”. These definitions relativize to
A by allowing the relation to be A-computable instead of just computable, and in
that case we tack an A superscript onto the Greek letter: ΣA

n ,Π
A
n ,∆

A
n .

I should note here that these are more correctly written as Σ0
n and the like, with

oracles indicated as Σ0,A
n . The superscript 0 indicates that all the quantifiers have

domain N. If we put a 1 in the superscript, we would be allowing quantifiers that
range over sets in addition to numbers, and would obtain the analytic hierarchy.
That’s outside the scope of this course.

Exercise 7.2.6. Prove the following basic results.

(i) If B is in Σn or Πn, then B is in Σm and Πm for all m > n.

(ii) B is in Σn if and only if B is in Πn.

(iii) B is computable if and only if it is in ∆1 (i.e., ∆0 = ∆1).

(iv) B is c.e. if and only it is in Σ1.

(v) The union and intersection of two Σn sets (respectively, Πn, ∆n sets) are Σn

(Πn,∆n).

(vi) The complement of any ∆n set is ∆n.

That this actually is a hierarchy, and not a lot of names for the same collection
of sets, needs to be proven. Note that the Σn formulas with one free variable (the
formulas that define subsets of N) are effectively countable, as in Exercise 3.4.4.
This gives us a universal Σn set S, analogous to the universal Turing machine and
itself Σn, such that 〈e, x〉 ∈ S if and only if the eth Σn set contains x.

From S define P := {x : 〈x, x〉 ∈ S}. P is also Σn, but it is not Πn. If it were, by
part (ii) of Exercise 7.2.6, P would be Σn. However, then P is the êth Σn set for some
ê. We have ê ∈ P ⇔ 〈ê, ê〉 ∈ S on the one hand, but ê ∈ P ⇔ ê /∈ P ⇔ 〈ê, ê〉 /∈ S,
for a contradiction.

The complement P , then, is Πn but not Σn.

Exercise 7.2.7. Prove that there is a ∆n+1 set that is neither Πn nor Σn. Hint:
use P and P as above, merge them, and use parts (i) and (v) of Exercise 7.2.6.

The strong connection to Turing degree continues as we move up the scale of
complexity.

Definition 7.2.8. A set A is Σn-complete if it is in Σn and for every B ∈ Σn there
is a total computable one-to-one function f such that x ∈ B ⇔ f(x) ∈ A (we say
B is 1-reducible to A). Πn-completeness is defined analogously.

7.2. RELATIVIZATION AND THE TURING JUMP 95

Theorem 7.2.9. ∅(n) is Σn-complete and ∅(n) is Πn-complete for all n > 0.

The index sets we saw in §4.5 are all complete at some level of the hierarchy.
Fin is Σ2-complete, Inf and Tot are Π2-complete, and Rec is Σ3-complete.

In fact, the following also hold. Theorem 7.2.9 combined with the proposition
below is known as Post’s Theorem.

Proposition 7.2.10. (i) B ∈ Σn+1 ⇐⇒ B is c.e. in some Πn set ⇐⇒ B is c.e.
in some Σn set.

(ii) B ∈ Σn+1 ⇐⇒ B is c.e. in ∅(n).

(iii) B ∈ ∆n+1 ⇐⇒ B ≤T ∅(n).

This strong tie between enumeration and existential quantifiers should make
sense – after all, you’re waiting for some input to do what you care about. If it
happens, it will happen in finite time (the relation on the inside is computable),
but you don’t know how many inputs you’ll have to check or how many steps you’ll
have to wait, just that if the relation holds at all, it holds for some value of the
parameter.

Theorem 7.2.9 and Proposition 7.2.10 both relativize. For Theorem 7.2.9 the
relativized version starts with “for every n > 0 and every set A, A(n) is ΣA

n -complete”
(recall to relativize the arithmetical hierarchy we allow the central relation to be
A-computable rather than requiring it to be computable). The others relativize
similarly.

One more exercise, for practice.

Exercise 7.2.11. (i) Prove A is Σ2 if and only if there is a total computable
function g(x, s) with codomain {0, 1} such that

x ∈ A ⇔ lim
s
g(x, s) = 1.

(ii) Prove A is Π2 if and only if there is a total computable function g(x, s) with
codomain {0, 1} such that

x ∈ A ⇔ lim
s
g(x, s) 6= 0.

Some general rules for working in the arithmetic hierarchy:

• Like quantifiers can be collapsed to a single quantifier. For example,
(∃x1)(∃x2)(∃x3)(R(y, x1, x2, x3)) is still Σ1. This follows from codability
of tuples.

• It bears mentioning in particular that adding an existential quantifier to the
beginning of a Σn formula keeps it Σn, and likewise for universal quantifiers
and Πn formulas.

96 CHAPTER 7. TURING DEGREES

• Bound quantifiers, ones which only check parameter values on some initial
segment of N, do not increase the complexity of a formula. For example,
(∃x < 30)(∀y)(R(x, y)) is just Π1.

• It is possible to turn a Πn statement into an infinite collection of Σn−1 state-
ments by bounding the leading universal quantifier with larger and larger
bounds. That is, turn (∀x)[Σn−1] into the set {(∀x < m)[Σn−1] : m ∈ N}.
The original Πn formula is true if and only if all Σn−1 formulas in the set are
true. This is useful because in general we have a much better idea of how to
cope with Σ formulas (since they are c.e. over some iteration of the halting
problem) than Π formulas (which are co-c.e.; there is not as much machinery
developed for them).

Chapter 8

More Advanced Results

This chapter contains some miscellaneous results and ideas in computability theory
that come up with some frequency.

8.1 The Limit Lemma
Recall that a set A is low if A′ ≡T ∅′. If A is c.e., it suffices to show A′ ≤T ∅′,
because if ∅ ≤T A, we always have ∅′ ≤T A′.

In the construction of a low set, we work by making sure that if the computation
ϕAe (e)[s] converges infinitely-many times (i.e., for infinitely-many stages s), then
it converges. That is, it either eventually forever diverges or eventually forever
converges. We argue that if we can accomplish such a feat for all e, A is low. The
following general theorem proves rigorously why that works and is useful for more
than just constructing low sets.

Theorem 8.1.1 (Limit Lemma). For any function f , f ≤T B′ if and only if there
is a B-computable function g(x, s) such that f(x) = lims g(x, s).

In particular, f ≤T ∅′ iff there is a computable function g which limits to f .
Since we are working with output values in N, note that to limit to a value means
to take that value on all but finitely-many inputs.

To make A low in the discussion above, we are taking a computable function
which limits to the characteristic function of A′. That computable function is defined
as follows.

g(e, s) =

{
0 if ϕAe (e)[s]↑
1 if ϕAe (e)[s]↓

It is computable provided the construction is computable (so that As may be ob-
tained from s), and by making sure the computation eventually either converges
or diverges, we are making sure for each e lims g(e, s) exists. It is clear from the
definition that if the limit exists it has to match the characteristic function of A′.

97

98 CHAPTER 8. MORE ADVANCED RESULTS

Since not all sets which are reducible to ∅′ (i.e., ∆0
2 sets) are c.e., this is often

the most useful way to work with them. There is a way to use the approximating
function to distinguish between c.e. and general ∆0

2 sets, and in fact we need part
of it in order to prove the Limit Lemma, so let’s consider it now.

Recall that the mu-operator returns the minimal example satisfying its formula:
(µx)[x > 1 & (∃y)(y2 = x)] would be 4.

Definition 8.1.2. Suppose g(x, s) converges to f(x). A modulus (of convergence)
for g is a functionm(x) such that for all s ≥ m(x), g(x, s) = f(x). The least modulus
is the function m(x) = (µs)(∀t ≥ s)[g(x, t) = f(x)].

Exercise 8.1.3. All notation is as in Definition 8.1.2.

(i) Prove that the least modulus is computable in any modulus.

(ii) Prove that B ≥T g(x, s).

(iii) Prove that f is computable from g and any modulus m for g.

In general we cannot turn the reducibility of (iii) around, but for functions of c.e.
degree there will be some modulus computable from f (and hence the least modulus
will also be computable from f).

Theorem 8.1.4 (Modulus Lemma). If B is c.e. and f ≤T B, then there is a
computable function g(x, s) such that lims g(x, s) = f(x) for all x and a modulus m
for g which is computable from B.

Proof. Let B be c.e. and let f = ϕBe . Define the functions

g(x, s) =

{
ϕBe (x)[s] if ϕBe (x)[s]↓
0 otherwise

m(x) = (µs)(∃z ≤ s)[ϕB�ze (x)[s]↓ & Bs � z = B � z].

Clearly g is computable; m is B-computable because the quantifier on z is bounded
and hence does not increase complexity, the first clause is computable, and the
second clause is clearly B-computable (it gives the desired property – that m is a
modulus – because B is c.e. and hence once the approximation Bs matches B it will
never change to differ from B).

Proof of Theorem 8.1.1. (=⇒) Suppose f ≤T B′. We know B′ is c.e. in B, so g(x, s)
exists and is B-recursive by the Modulus Lemma relativized to B.

(⇐=) Suppose the B-computable function g(x, s) limits to f(x). Define the
following finite sets:

Bx = {s : (∃t)[s ≤ t & g(x, t) 6= g(x, t+ 1)]}.

8.2. THE ARSLANOV COMPLETENESS CRITERION 99

If we let C = {〈s, x〉 : s ∈ Bx} (also notated ⊕xBx), then C is ΣB
1 and hence

c.e. in B; therefore C ≤T B′. Additionally, given x it is computable from C
(and hence from B′) to find the least modulus m(x) = (µs)[s /∈ Bs]. Hence
f ≤T m⊕B ≤T C ⊕B ≤T B′.

Properties of the modulus of the limiting function are what give us a character-
ization of the c.e. degrees.

Corollary 8.1.5. A function f has c.e. degree iff f is the limit of a computable
function g(x, s) which has a modulus m ≤T f .

Exercise 8.1.6. Prove Corollary 8.1.5; for (=⇒) apply the Modulus Lemma; for
(⇐=) use C from the proof of the Limit Lemma.

8.2 The Arslanov Completeness Criterion
This is a result that can be viewed as the flip side of the Recursion Theorem, and is
presented mostly as a companion to the Recursion Theorem. Recall that a complete
c.e. set is one that has the same degree as the halting problem. We need an extension
of the Recursion Theorem, due to Kleene.

Theorem 8.2.1 (Recursion Theorem with Parameters). If f(x, y) is a computable
function, then there is a computable function n(y) such that ϕn(y) = ϕf(n(y),y) for all
y.

Proof. Define a computable function d by

ϕd(x,y)(z) =

{
ϕϕx(x,y)(z) if ϕx(x, y)↓;
↑ otherwise.

Choose v such that ϕv(x, y) = f(d(x, y), y). Then n(y) = d(v, y) is a fixed point,
since unpacking the definitions of n, d and v (and then repacking n) we see

ϕn(y) = ϕd(v,y) = ϕϕv(v,y) = ϕf(d(v,y),y) = ϕf(n(y),y).

In fact we may replace the total function f(x, y) with a partial function ψ(x, y)
and have total computable n such that whenever ψ(n(y), y) is defined, n(y) is a
fixed point. The proof is identical to the proof of the Recursion Theorem with
Parameters. Note that the parametrized version implies the original version by
considering functions which ignore their second input.

Theorem 8.2.2 (Arslanov Completeness Criterion, Arslanov 1977/1981). A c.e.
set A is complete if and only if there is a function f ≤T A such that Wf(x) 6= Wx

for all x.

100 CHAPTER 8. MORE ADVANCED RESULTS

Proof. (=⇒) We note without proof {x : Wx = ∅} is of complete c.e. degree and
hence Turing equivalent to whatever A we were given. Define f by

Wf(x) =

{
∅ if Wx 6= ∅
{0} otherwise.

By the observation f ≤T A, and it clearly satisfies the right-hand side of the theorem.
(⇐=) Let A be c.e., and assume (∀x)[Wf(x) 6= Wx] where f ≤T A. By the

Modulus Lemma there is a computable function g(x, s) that limits to f and such
that g has a modulus m ≤T f (and hence m ≤T A). Let K denote the halting set,
and let θ(x) = (µs)[x ∈ Ks] if x ∈ K; θ(x)↑ otherwise. By the Recursion Theorem
with Parameters define the computable function h by

Wh(x) =

{
Wg(h(x),θ(x)) if x ∈ K;
∅ otherwise.

Now if x ∈ K and θ(x) ≥ m(h(x)), then g(h(x), θ(x)) = f(h(x)) andWf(h(x)) = Wh(x)

contrary to assumption on f . Hence1 for all x

x ∈ K ⇐⇒ x ∈ Km(h(x))

so K ≤T A.

Corollary 8.2.3. Given a c.e. degree a, a < 0′ if and only if for every function
f ∈ a there exists n such that Wn = Wf(n).

The condition of being computably enumerable is necessary – there is a ∆0
2 degree

such that some f reducible to that degree has the property (∀e)[We 6= Wf(e)]. What
else can be said about fixed points? We might look at ∗-fixed points; that is, n such
that Wn =∗ Wf(n) (see §8.3). These are also called almost fixed points. Weaker still
are Turing fixed points, n such that Wn ≡T Wf(n).

Just as a catalogue:

• Any function f ≤T ∅′ has an almost fixed point.

• A Σ0
2 set A ≥T ∅′ is Turing-equivalent to ∅′′ if and only if there is some f ≤T A

such that f has no almost fixed points.

• If f is total and computable in ∅′′ then f has a Turing fixed point.

In fact, there is a whole hierarchy of fixed-point completeness criteria. We can
define equivalence relations ∼α for α ∈ N as follows:

(i) A ∼0 B if A = B,
1This “hence” hides a long string of consequences of θ(x) < m(h(x)).

8.3. E MODULO FINITE DIFFERENCE 101

(ii) A ∼1 B if A =∗ B,

(iii) A ∼2 B if A ≡T B,

(iv) A ∼n+2 B if A(n) ≡T B(n) for n ∈ N.

Now completeness at higher levels of complexity may be defined in terms of
computing a function that has no ∼α-fixed points.

Theorem 8.2.4 (Generalized Completeness Criterion). Fix α ∈ N. Suppose
∅(α) ≤T A and A is c.e. in ∅(α). Then

A ≡T ∅(α+1) ⇐⇒ (∃f ≤T A)(∀x)[Wf(x) 6∼α Wx].

8.3 E Modulo Finite Difference
Recall from §6.1 that A =∗ B means A and B differ only by finitely-many elements,
and =∗ is an equivalence relation that implies Turing equivalence. When A =∗ B,
we often treat A and B as interchangeable, and say we are working modulo finite
difference. The usefulness of working modulo finite difference is that it gives you
wiggle room in constructions – as long as eventually you’re putting in exactly the
elements you want to be, it doesn’t matter if you mess up a little at the beginning and
end up with a set which is not equal to what you want, but is ∗-equal. Momentarily
I’ll show you the main use (which is essentially the above but on a grander scale).

The structure of the (c.e.) sets modulo finite difference has been the object of
much study. We usually use E to denote the c.e. sets, and E∗ to denote the quotient
structure E/=∗. The letters N and R are used to denote the collection of all subsets
of N and of the computable sets, respectively. Unlike when we work with degrees,
the lattice-theoretic operations we’d like to perform are defined everywhere (well,
at least more than with degrees).

Definition 8.3.1. E , R, and N are all lattices ; that is, they are partially ordered
sets where every pair of elements has a least upper bound (join) and a greatest lower
bound (meet). The ordering in each case is subset inclusion. The join of two sets
A and B is A ∨ B := A ∪ B; their meet is A ∧ B := A ∩ B. In each case these
operations distribute over each other, making all three distributive lattices. All three
lattices have least and greatest element, moreover (not required to be a lattice): the
least element in each case is ∅ and the greatest is N. A set A is complemented if
there is some B in the lattice such that A ∨ B is the greatest element and A ∧ B
is the least element; the lattice is called complemented if all of its elements are.
A complemented, distributive lattice with (distinct) least and greatest element is
called a Boolean algebra.

Exercise 8.3.2. (i) Show N and R are Boolean algebras but E is not.

102 CHAPTER 8. MORE ADVANCED RESULTS

(ii) Characterize the complemented elements of E .

(iii) How small may a Boolean algebra be?

Definition 8.3.3. A property P is definable in a language (i.e., a set of relations,
functions, and constants) if using only the symbols in the language and standard
logical symbols one may write a formula with one free variable such that an object
has property P if and only if when filled in for the free variable it makes the formula
true. Likewise we may define n-ary relations (properties of sequences of n objects)
using formulas of n free variables.

For example, the least element of a lattice is definable in the language L = {≤}
(where we interpret ≤ as whatever ordering relation we’re actually using; here it
would be ⊆) by the formula

(∀x)[y ≤ x].

The formula is true of y if and only if y is less than or equal to all elements of the
lattice, which is exactly the definition of least element.

Exercise 8.3.4. Let the language L = {≤} be fixed.

(i) Show greatest element is definable in L.

(ii) Show meet and join are definable (via formulas with three free variables) in L.

Definition 8.3.5. An automorphism of a lattice L is a bijective function from L
to L which preserves the partial order.

Exercise 8.3.6. (i) Show that automorphisms preserve meets and joins.

(ii) Show that a permutation of N induces an automorphism of N .

(iii) What restrictions could we set on permutations of N to ensure they induce
automorphisms of R? Of E?

Definition 8.3.7. Given a lattice L, a class X ⊆ L is invariant (under automor-
phisms) if for any x ∈ L and automorphism f of L, f(x) ∈ X ⇐⇒ x ∈ X. X
is an orbit if it is invariant and transitive: that is, for any x, y ∈ X there is an
automorphism f of L such that f(x) = y.

Exercise 8.3.8. What sort of structure (relative to automorphisms) must an in-
variant class that is not an orbit have?

Definition 8.3.9. A property P of c.e. sets is lattice-theoretic (l.t.) in E if it is
invariant under all automorphisms of E . P is elementary lattice theoretic (e.l.t.)
if there is a formula of one free variable in the language L = {≤,∨,∧, 0, 1} which
defines the class of sets with property P in E , where ≤, 0, 1 are interpreted as ⊆, ∅,N,
respectively.

8.3. E MODULO FINITE DIFFERENCE 103

Exercise 8.3.10. Show that a definable property P is preserved by automorphisms;
that is, that e.l.t. implies l.t.

The definition and exercise above still hold when we switch from E to E∗. Here’s
where the additional usefulness of working modulo finite difference comes in. We
almost always are worried about properties which are preserved if only finitely many
elements of the set are changed; that is, properties which are closed under finite
difference. One can show that the collection of all finite sets and the relation =∗ are
both definable in E , and from there it is straightforward to show that any property
P closed under finite differences is e.l.t. in E if and only if it is e.l.t. in E∗. To
show something is not e.l.t., one would likely show it is not l.t. by constructing
an automorphism under which it is not invariant. Automorphisms are easier to
construct in E∗ than E , and by the agreement of definability between those two
structures we can get results about E from E∗.

Chapter 9

Areas of Research

In this chapter I try to give you a taste of various areas of computability theory
in which research is currently active, with some of the questions currently under
investigation. Actually, only §9.1 discusses “pure” computability theory; the others
are independent areas that intersect significantly with computability.

9.1 Lattice-Theoretic Properties
The Turing degrees are a partially ordered set under ≤T , as we know, and we also
know any pair of degrees has a least upper bound and not every pair of degrees has
a greatest lower bound (a meet). What else can be said about the structure of this
poset?

Definition 9.1.1. D is the partial ordering of the Turing degrees, and D(≤ a) is
the partial order of degrees less than or equal to a. R is the partial order of the c.e.
Turing degrees (so R ⊂ D).

An automorphism of a poset is a bijection f from the poset to itself that preserves
the order relation; that is, if x ≤ y, f(x) ≤ f(y). It is nontrivial if it is not the
identity. The big open question here is:

Question 9.1.2. Is there a nontrivial automorphism of D? Of R?

I should note that it is still open whether there is a “natural” intermediate degree.
That is, the decidability problems we stated all gave rise to sets which were complete,
and to get something noncomputable and incomplete we resorted to a finite-injury
priority argument. Is there an intermediate set that arises naturally from, say, a
decision problem? Researchers in the area have varying opinions on how important
that question is, given the many ways we have to construct intermediate degrees.

I think of classes of Turing degrees as being picked out by two kinds of definitions:

105

106 CHAPTER 9. AREAS OF RESEARCH

• Computability-theoretic definitions are of the form “A degree d is (name) if it
contains a set (with some computability-theoretic property)”.

• Lattice-theoretic definitions are properties defined by predicates that use basic
logical symbols (&, ∨, ¬,→, ∃, ∀) plus the partial order relation. Their format
is somewhat less uniform, but could be summed up as “A degree d is (name)
if (it sits above a certain sublattice/it sits below a certain sublattice/there is
another degree with a specified lattice relationship to it)”.

An example of a lattice-theoretic definition would be least upper bound and
greatest lower bound. Least upper bound (join) may be defined as follows.

z = x ∨ y ⇐⇒ (z ≥ x & z ≥ y & (∀w)[(w ≥ x & w ≥ y)→ w ≥ z]).

Greatest lower bound is defined similarly; the top and bottom element can also be
defined.

Here’s a more complicated but still purely lattice-theoretic definition.

Definition 9.1.3. A degree a ∈ R is cuppable if there is some c.e. degree b < ∅′

such that a ∨ b = ∅′. The degree a is cappable if there is some c.e. degree c > ∅
such that a ∧ c = ∅.

Another aspect of lattices that help distinguish them from each other is their
substructures.

Definition 9.1.4. A poset L is embeddable into another poset M if there is a
one-to-one order-preserving function from L into M .

For example, in Example 2.3.23 we had a lattice with eight elements. We can
embed the four-element diamond lattice into that lattice in many different ways,
where in some embeddings the least element of the diamond maps to the least
element of the eight-node lattice, in some the greatest element of the diamond maps
to the greatest element of the eight-node lattice, and in some both happen together.

We have various directions to travel:

• Given a computability-theoretic degree definition, is there an equivalent
lattice-theoretic definition?

• Given a lattice-theoretic definition, does it correspond to anything in these
particular lattices or is it empty? If the former, is there an equivalent
computability-theoretic definition?

• What lattices embed into D and R? Can we preserve lattice properties like
least and greatest element?

9.1. LATTICE-THEORETIC PROPERTIES 107

On the second topic, let’s return to cuppable and cappable degrees. Both do
exist, and in fact they relate to a purely computability-theoretic property. First a
definition.

Definition 9.1.5. A coinfinite c.e. set A is promptly simple if there is a computable
function p and a computable enumeration of A such that for every e, ifWe is infinite,
there is some s such that for some x that enters We at stage s, x enters A no later
than stage p(s).

As usual, a degree is promptly simple if it contains a promptly simple set.

Theorem 9.1.6. The promptly simple degrees are exactly the non-cappable degrees.

Remember a set is low if its Turing jump is equivalent to ∅′. A c.e. degree is low
cuppable if it is cuppable with a low c.e. degree as its cupping partner.

Theorem 9.1.7. The non-cappable degrees are exactly the low cuppable degrees.
Furthermore, every degree either caps or low cups, though none do both.

It is possible for a degree to cap and cup, just not cap and low cup. It is also,
as we will see below, not possible for a degree to cap and cup via the same partner
degree.

An example of a lattice-theoretic definition of a degree which may or may not
have any examples is the following.

Definition 9.1.8 (Li). A c.e. degree a is a center of R if for every c.e. degree
x 6= ∅′, there are c.e. degrees c < b such that

• c < a ∨ x, and

• (a ∨ x) ∧ b = c,

where ∨ denotes least upper bound and ∧ denotes greatest lower bound.

Recall greatest lower bound need not even exist for a pair of degrees. When x
is above a, so their join is simply x again, we just need some b incomparable to x
such that the meet of b and x exists (that will be c); thus everything above a center
has a meet with something. If x is below a, so their join is a, then we need some b
incomparable to a which has a defined meet with a. If a and x are incomparable
we get the picture below. For any x, there are b and c such that:

108 CHAPTER 9. AREAS OF RESEARCH

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

B
B
B
B
B

t

t

t
t

t

a x

a ∨ x

c = (a ∨ x) ∧ b

b

Note that neither a nor x need be above c individually. The following question,
as far as I can tell, is still open.

Question 9.1.9. Is there a center in R?

Definition 9.1.8 is an example of a definition made purely in the language of
lattice theory: we do not have to know where the poset R comes from to understand
it, it simply uses the partial order relation (meet and join are both definable in terms
of the partial order relation: exercise). However, solving it will likely take the form
of a priority argument, constructing a set A and at the same time constructing
an infinite sequence of sets Be, Ce so that for the c.e. set We (using the standard
enumeration of c.e. sets to represent all possible c.e. degrees x) deg(Be) and deg(Ce)
allow deg(A) to satisfy the definition of center with deg(We).

Onward to embeddability. First let me introduce some simple lattices. All of
these have a least and greatest element.

The diamond lattice is a four-element lattice with two incomparable intermediate
elements. The pentagon, or N5, has five elements; two of the intermediate elements
are comparable and the other is not. The 1-3-1, or M3, is a five-element lattice
with three incomparable intermediate elements. Finally, S8 is a diamond on top of
a 1-3-1, for eight total elements.

�
�
�
�
@
@
@
@����

QQQQt
t

ttt
�
�
�
�
@
@
@
@�

�
�
�
@
@
@
@t

t
t

t t
N5 M3

An important distinction between these lattices is distributivity. A lattice is
distributive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c); i.e., meet and join distribute over each
other. The diamond is distributive, but neither the pentagon nor the 1-3-1, and

9.1. LATTICE-THEORETIC PROPERTIES 109

hence S8, is distributive. In fact, the non-distributive lattices are exactly those that
contain the pentagon and/or the 1-3-1 as a sublattice.

Let’s consider embeddings that preserve the least and/or greatest elements sep-
arately.

• All finite distributive lattices embed into R preserving least element, as do
the pentagon and 1-3-1, but not S8.
Open: where does the embeddable/nonembeddable cutoff lie?

• The same results as above hold preserving greatest element.
Conjecture: a lattice embeds into R preserving greatest element if and only
if it embeds preserving least element.

• We lose out when we try to embed preserving both least and greatest element.
The Lachlan non-diamond theorem says even the diamond does not embed
into R preserving both least and greatest element. This is what tells us a c.e.
degree cannot cup and cap with the same partner degree, because such a pair
would then form the center of a diamond with least element ∅ and greatest
element ∅′.

We meet with success if the lattice L to be embedded can be decomposed into
two sublattices L1, L2 such that all elements of L1 are above all elements of
L2, L1 can be embedded preserving greatest element, and L2 can be embedded
preserving least element. In that case we can stitch together the embeddings
of the sublattices to get an embedding of L that preserves both least and
greatest element.

We can also consider embedding questions for intervals of R, where the interval
[a, b] is {c : a ≤ c ≤ b}.

Now an open question about the Turing degrees as a whole. For a poset to be
locally countable means the set of predecessors of any one element x (that is, the set
of elements of the poset less than or equal to x) is countable.

Question 9.1.10 (Sacks). Suppose P is a locally countable partially ordered set of
cardinality less than or equal to that of P(N). Is P embeddable into D?

This question is essentially asking “if a partially ordered set has no obvious block-
ades to embeddability, does it embed?” The Turing degrees are locally countable
and of the same size as P(N), so anything that is not locally countable or is any
bigger clearly cannot be embedded.

We can also discuss the lattice of c.e. sets, ordered by ⊆. We call this E . The top
element is N and the bottom is ∅. Every pair of sets has a defined meet and join,
given by intersection and union. The complemented sets are those c.e. sets whose

110 CHAPTER 9. AREAS OF RESEARCH

set-theoretic complement is also c.e.; in other words, the computable sets. Recall
that the set-theoretic difference of two sets A and B is A−B = {x : x ∈ A & x /∈ B}.

Definition 9.1.11. Two sets A and B are equivalent modulo finite difference, de-
noted A =∗ B, if the symmetric difference (A−B) ∪ (B − A) is finite.

Definition 9.1.12. A coinfinite c.e. set W 6= N is maximal in E if for any c.e. set
Z such that W ⊂ Z ⊂ N, either W =∗ Z or Z =∗ N.

That is, anything between a maximal set and N is either essentially the maximal
set or essentially all of N. The complement of a maximal set is called cohesive.
Maximal sets do exist. They put an end to Post’s program to find a set which had
such a small complement, was so close to being all of N without being cofinite and
hence computable, that it would have to be incomplete. A maximal set has the
smallest possible complement from a c.e. set point of view, but not all maximal sets
are incomplete.

One family of theorems particularly suited to E are splitting theorems. A splitting
of a c.e. set B is a pair of disjoint c.e. sets that union to B. Two useful splitting
theorems follow.

Theorem 9.1.13 (Friedberg Splitting). If B is noncomputable and c.e. there is a
splitting of B into c.e., noncomputable A0, A1 such that if W is c.e. and W − B
is non-c.e., then W − Ai is also non-c.e. for i = 0, 1 (this implies the Ai are
noncomputable by setting W = N).

Note that if W meets the hypothesis of the implication, it must have not only
an infinite intersection with B, but with each of A0 and A1. If W ∩ A0 were finite,
say, then W −A0 =∗ W , and equality modulo finite difference preserves computable
enumerability. Therefore, anything that takes a big bite out of B does so in such
a way that it takes a big bite out of both of the splitting sets. That’s what makes
this theorem surprising and useful; the splitting is somehow very much down the
“middle” of B.

A generalization of the Friedberg Splitting Theorem is the Owings Splitting
Theorem. It is said of a very good computability theorist that he has made his career
on clever uses of the Owings Splitting Theorem. It’s not entirely true, of course,
but he has several very nice theorems that rely heavily on innovative applications
of splitting.

Theorem 9.1.14 (Owings Splitting). Let C ⊆ B be c.e. such that B − C is not
co-c.e. (so if it is c.e., it is not computable). Then there is a splitting of B into c.e.
sets A0, A1, such that

(i) Ai − C is not co-c.e. for i = 0, 1, and

9.2. RANDOMNESS 111

(ii) for all c.e. W , if C ∪ (W − B) is not c.e., then C ∪ (W − Ai) is not c.e. for
i = 0, 1.

As in Friedberg, setting W = N in (ii) gives (i). Setting C = ∅ gives the
Friedberg Splitting Theorem.

Splitting questions in general ask “if B has a certain computability-theoretic
property, can we split it into two sets which both have that same property?” Or,
“Can every c.e. set be split into two sets with a given property?” For example,
consider the following definition.

Definition 9.1.15. A c.e. set B is nowhere simple if for every c.e. C such that
C −B is infinite, there is some infinite c.e. set W ⊆ C −B.

Theorem 9.1.16 (Shore, 1978). Every c.e. set can be split into two nowhere simple
sets.

9.2 Randomness

Birds-Eye View

With a fair coin, any one sequence of heads and tails is just as likely to be obtained
as any other sequence of the same length. However, our intuition is that a sequence
of all heads or all tails, presented as the outcome of an unseen sequence of coin flips,
smells fishy. It’s just too special, too nonrandom. Here we’ll quantify that intuitive
idea of randomness and briefly explore some of the consequences and applications.

We’ll be discussing randomness for infinite binary sequences. There are three
main approaches to randomness.

• Compression: is there a short description of the sequence?

• Betting: can you get unboundedly rich betting on the bits of the sequence?

• Statistics: does the sequence have any “special” properties?

Intuitively, the answer to each of those should be “no” if the sequence is to be con-
sidered random: a random sequence should be incompressible, unpredictable, and
typical. There are different ways to turn these approaches into actual mathematical
tests. The most fundamental are the following, in order as above.

• Kolmogorov complexity: how long an input does a prefix-free Turing machine
need in order to produce the first n bits of the sequence as output? If it’s
always approximately n, the sequence is random. (prefix-free TMs will be
defined shortly.)

112 CHAPTER 9. AREAS OF RESEARCH

• Martingales: take a function that represents the capital you hold after bet-
ting double-or-nothing on successive bits of a sequence (so the inputs are fi-
nite strings and the outputs are non-negative real numbers; double-or-nothing
means that for every string σ, the capital held at σ0 and σ1 must average
to the capital held at σ). Take only such functions that are computably ap-
proximable from below. Those are the c.e. martingales; if every such function
has bounded output on inputs that are initial segments of your sequence, the
sequence is random.

• Martin-Löf tests: a computable sequence of c.e. sets {Un} such that the mea-
sure of Un is bounded by 2−n will have intersection of measure zero; this
measure-zero set represents statistical “specialness”. If your sequence is out-
side every such measure zero set, it is random. (Measure will also be defined
shortly.)

The nice thing about the implementations above is that they coincide [52]: A
sequence is random according to Kolmogorov complexity if and only if it is random
according to c.e. martingales if and only if it is random according to Martin-Löf
tests. We call such a sequence 1-random.

The changes made to these approaches to implement randomness in a different
way tend to be restricting or expanding the collection of Turing machines, betting
functions, or tests. We might take away the requirement that the machine be prefix-
free, or we might allow it a particular oracle. In the opposite direction we could
require our machines not only be prefix-free, but obey some other restriction as
well. We could allow our martingales to be more complicated than “computably
approximable” or we could require they actually be computable. Finally, we could
require our test sets have measure equal to 2n or simply require their measure
limit to zero with no restriction on the individual sets, and we could play with the
complexity of the individual sets and the sequence.

What does one do with this concept?

• Prove random sequences exist.

• Look at computability-theoretic properties of random sequences, considering
them as characteristic functions.

• Compare different definitions of randomness.

• Consider relative randomness : if I know this sequence, does it help me bet
on/compress this other sequence? (just like oracles for Turing machines)

• Look for sequences to which every random sequence is relatively random.
Prove noncomputable examples exist.

9.2. RANDOMNESS 113

• Extend the definition to other realms, like sets or functions instead of just
sequences.

Significant references for randomness are the books by Downey and Hirschfeldt
[14] (in preparation and available online), Nies [48], and Li and Vitányi [40]. For
historical reading I suggest Ambos-Spies and Kučera [2], section 1.9 of Li and Vitányi
[40], and Volchan [63].

Some Notation and Basics

Some of this is reminders and some is new.
2N is the collection of all infinite binary strings (often referred to as reals) and

2<N the collection of all finite binary strings. If you read computer science papers,
you may see {0, 1}∗ for 2<N. I will use λ for the empty string; it is also often called
〈〉. 1n is the string of n 1s and likewise for 0, and if σ and τ are strings, στ (or
σ_τ , when it seems clearer) is their concatenation. The notation σ ⊆ τ means σ
is a (possibly non-proper) initial segment of τ , or in other words that there is some
string ρ (possibly equal to λ) such that σρ = τ . Restriction of a string X to its
length-n initial segment is denoted X � n.

In this field we tend to use n and the binary expansion of n interchangeably, so
we would say the length of n, notated |n|, is log n (all our logarithms have base 2).
If we are working with a string σ, then |σ| is simply the number of bits in σ.

A bit of topology: the basic open sets in 2N are intervals [σ] = {X : σ ⊂ X}, for
any finite binary string σ. The open sets are countable unions of intervals. Measure
is a way to assign a numerical value to a set to line up with some intuitive notion
of size. We use the coin-toss probability measure; the measure of an interval [σ] is
µ([σ]) = 2−|σ|. It is the probability of landing inside [σ] if you produce an infinite
binary string by a sequence of coin flips from a fair coin. Intervals defined by longer
strings have smaller measure; the sum of the measure of all intervals generated by
strings of a fixed length is 1, and the measure of the whole space is 1. The measure
of the union of a pairwise-disjoint collection of intervals is the sum of the measure of
the intervals; the notion of measure extends to all subsets of 2N in a straightforward
manner.

Big O notation is shorthand to describe the asymptotic behavior of functions,
or really their asymptotic upper bound. To say the function f(n) is O(g(n)) means
there is some number n0 and constant M such that |f(n)| ≤M |g(n)| for all n ≥ n0.
Big O notation can also be used as functions approach a finite value, but we will
only use it as an asymptotic. The order of a function will correspond to its fastest-
growing term; coefficients are disregarded as well as lower-order terms. For more see
any computer algorithms textbook. We will primarily be concerned with O(1). If
we write f(x, y) ≤ (something)+O(1), the constant is always independent of both
x and y (all input variables).

114 CHAPTER 9. AREAS OF RESEARCH

Kolmogorov Complexity

Prefix-free machines and 1-randomness

Prefix-free Turing machines were suggested by Levin [38, 67] and later Chaitin [5]
as the best way to approach the compressibility of strings.

Definition 9.2.1. A Turing machine M is prefix-free if for every pair of distinct
strings σ, τ ∈ 2<N such that σ ⊂ τ , M halts on at most one of σ, τ . Such a machine
is generally taken to be self-delimiting, meaning the read head has only one-way
movement; this does not restrict the class of functions computed by the machines.

What that means is that no string in the domain ofM is a proper initial segment
(or prefix) of any other string. Halting is therefore not contingent on knowing
whether you’ve reached the end of the string: if you don’t halt with the first n bits
of input, either there is more input to be had or you will never halt.

Fortunately, there is a universal prefix-free machine. It can be taken to receive
1e0σ and interpret that as “run the eth prefix-free machine on input σ.”1 Call such a
machine U . It is prefix-free because in order to have σ ⊂ τ we must have σ = 1e0σ′

and τ = 1e0τ ′ with σ′ ⊂ τ ′, and since machine e is prefix-free this cannot happen.
We make the following definition.

Definition 9.2.2. The prefix-free Kolmogorov complexity of a string x is

K(x) = min{|p| : U(p) = x}.

Certainly if we hard-code a string into an input we can output any amount of
it with just the constant cost of the program that says “print out the string that’s
listed here.” We may have to do some additional work to put it into a prefix-free
form, but this tells us the complexity of a string is going to have an upper bound
related to the string’s length. We say a string is random if we can’t get much below
that upper bound.

Definition 9.2.3. (i) A finite binary string x is random if K(x) ≥ |x|.

(ii) An infinite binary sequence X is 1-random if all of its initial segments are
random, up to a constant. That is, for all n, K(X � n) ≥ n−O(1).

1Of course this begs the question of whether the prefix-free machines can be enumerated. They
can, by taking the enumeration of all Turing machines and modifying the machines which turn out
to be non-prefix-free. We work stagewise, M the given machine and P the one we’re building. At
stage s, run M for s steps on the first s binary strings. If M is not prefix-free, at some finite stage
s∗ M will halt on a string which is comparable to one on which M previously halted. Through
stage s∗ − 1 we let P exactly mimic M , and when (if) we see stage s∗ define P to diverge on
all remaining strings (including the one which witnessed that M was not prefix-free). If M is
prefix-free, P will mimic it exactly (in terms of halting behavior, input, and output).

9.2. RANDOMNESS 115

Here is an interesting theorem I stumbled across while researching finite injury
priority arguments for a seminar talk. I include it because it’s sort of magic and
cool. Recall that a simple set is a c.e. set A such that A is infinite but contains no
infinite c.e. subsets.

Theorem 9.2.4 (Kolmogorov [30, 31]). The set of nonrandom numbers is simple.

Proof. The set we need to prove simplicity for is A = {x : K(x) < |x|}. It is
c.e. because x ∈ A if and only if (∃e < x)(U(e) = x)2, or to make it clearer
(∃s)(∃e < x)(Us(e) ↓= x). This is a computable predicate preceded by a single
existential quantifier, so it is Σ0

1 and hence corresponds to a c.e. set. We know the
set of random numbers is infinite, so |A| is infinite.

We now show that every infinite c.e. set We contains a nonrandom element.
There is a uniform description of the elements of We: xe,n is the nth element in the
enumeration of We. Therefore by an application of the S-m-n Theorem, there is a
one-to-one computable function h such that U(h(e, n)) = xe,n. We use this to show
every infinite c.e. set has an infinite subset such that h is a description of xn, shorter
than xn, for some n. That element xn will be nonrandom and in the original set, so
the original set has a nonrandom element.

To that end, set t(n) = maxe≤n h(e, n). The important point is that for any
index e, t(n) will take h(e, n) into account on all but finitely-many values of n.

Given a c.e. set X, enumerate a subset Y so that the nth element of Y , yn,
is greater than t(n). This is possible, and results in an infinite set Y , when X is
infinite because t(n) is some fixed value for each n, so X will contain infinitely many
elements greater than it. Y will be c.e. because of that, and because t is computable.

Since Y is c.e., it is We for some e. However, by the choice of yn > t(n) and
the fact that for almost all n, t(n) ≥ h(e, n), we know there is some n such that
xe,n = yn > t(n) ≥ h(e, n). For that n, h(e, n) gives a short description of xe,n, so
xe,n is a nonrandom element of We = Y and hence of X.

This uses Berry’s paradox (Russell 1906): Given n, consider the least number
indescribable by < n characters. This gives a description of length c+ |n| for fixed
c, which is paradoxical whenever c+ |n| ≤ n (i.e., for almost every n).

The size of K and Kraft’s inequality

To decide what it means to be incompressible, we needed to know something about
the size of K. What upper bound can we assert about it, in terms of the length of

2We’re fudging a little here since the complexity will be determined by the length of such e
and the length of two nonequal numbers may be equal, but it’s not too important and streamlines
the argument substantially.

116 CHAPTER 9. AREAS OF RESEARCH

x? The following is part of a larger, more technical theorem, which I have trimmed
in half.

Theorem 9.2.5 (Chaitin, [5]). For every x of length n,

K(x) ≤ n+K(n) +O(1). (9.2.1)

Proof. To obtain (9.2.1), consider a prefix-free Turing machine T which computes
T (qx) = x for any q such that the universal prefix-free machine U gives U(q) = |x|.
Since T is prefix-free it has an indexm in the enumeration of all prefix-free machines,
and hence U(1|m|0mqx) = x. That description has length 2|m| + |q| + |x|, or (if q
is as short as possible) |x|+K(|x|) + 2|m|, where m does not depend on x, and its
length certainly bounds the size of K(x).

This upper bound leads to recursive further bounds like

K(x) ≤ n+ |n|+ ||n||+ |||n|||+ . . .

Why do we not use this upper bound in our definition of randomness? Because
there is no infinite string X such that for all n, K(X � n) ≥ n + K(n) − O(1).
We could kludge by saying “for infinitely-many n” instead of for all, but that’s
unsatisfying. And, of course, the definition we gave for randomness is the one that
lines up with Martin-Löf tests and martingales.

A (very rough) lower bound comes from the Kraft Inequality, a very useful tool
in randomness. In a prefix-free set there are a lot of binary strings missing. Thus we
would expect the length of these strings to grow rapidly. They do, as the theorem
below shows. The proof is included because it’s not so difficult.

Theorem 9.2.6 (Kraft Inequality, [34]). Let `1, `2, . . . be a finite or infinite sequence
of natural numbers. There is a prefix-free set of binary strings with this sequence as
its elements’ lengths if and only if ∑

n

2−`n ≤ 1.

Proof. First suppose there is a prefix-free set of finite binary strings x1 with lengths
`i. Consider

µ

(⋃
i

[xi]

)
as a subset of 2N. Certainly this is bounded by 1, and since the set is prefix-free the
intervals are disjoint. Hence the measure of their union is the sum of their measures,
and the inequality holds.

Now suppose there is a set of values `1, `2, . . . such that the inequality holds.
Because we are not working effectively, we may assume the set is nondecreasing. To

9.2. RANDOMNESS 117

find a prefix-free set of binary strings which have those values as their lengths, start
carving up the complete binary tree, taking the leftmost string of length `i which
is incomparable to the previously-chosen strings. [For example, if our sequence of
values began 3, 4, 7, we would choose 000, 0010, 0011000.] Every binary string of
length ` corresponds to an interval of size exactly 2−`, so by the inequality there
will always be enough measure left to fit the necessary strings, and by our selection
procedure all the remaining measure will be concentrated on the right and thus
usable.

This tells us that K(x) has to grow significantly faster than length (over-
all). The set of programs giving the strings x is the prefix-free set here, and
if those programs have length approximately |x|, the sum

∑
n 2−`n is essentially

2−1 + 2−1 + 2−2 + 2−2 + 2−2 + 2−2 + . . ., which diverges.
Notice that in the proof, we assumed the lengths we were given were in increasing

order. Next we will see an effectivized version of Theorem 9.2.6 (Theorem 9.2.7),
where we can be given the required lengths of strings in any order and still create
a prefix-free set with those lengths. As written, if the string lengths are given out
of order and misbehave enough, our procedure could take bites of varying sizes out
of the tree so that we get to length `n, and although there is at least 2−`n measure
unused in the tree, it is not all in one piece. Having the ability to cope with strings
given in no particular order is very useful.

Theorem 9.2.7 (Kraft-Chaitin [5, 6], also Levin [38]). Let `1, `2, . . . be a collection
of values (in no particular order, possibly with repeats, possibly finite) satisfying the
Kraft Inequality; in other words, such that

∑
i 2
−`i ≤ 1. Then from the sequence `i

we can effectively compute a prefix-free set A with members σi of length `i.

Proof. The organization of this proof is as written in Downey and Hirschfeldt [14],
where they say it was suggested by Joe Miller.

Assume that we have selected strings σi, i ≤ n, such that |σi| = `i. Suppose
also that we have a string x[n] = .x1x2 . . . xm = 1 −

∑
j≤n 2−`j , and that for every

k ≤ m such that xk = 1, there is a string τk ∈ 2<N of length k incomparable to all
σj, j ≤ n and all τj, j < k and xj = 1.

Notice that since x[n] is the measure of the unchosen portion of 2<N, the fact
that there are strings of lengths corresponding to the positions of 1s in x[n] means
the remaining measure is concentrated into intervals of size at least as large as 2−`n+1

for any `n+1 which would allow satisfaction of the Kraft Inequality. Note also that
the τk are unique and among them they cover the unchosen measure of 2<N.

Now we select a string to correspond to `n+1. If x`n+1 = 1, let σn+1 = τ`n+1 and
let x[n + 1] be x[n] but with x`n+1 = 0; all τk for k 6= `n+1 remain the same. If
x`n+1 = 0, find the largest j < `n+1 such that xj = 1 and the leftmost string τ of
length `n+1 extending τj, and let σn+1 = τ . Let x[n + 1] = x[n] − .0`n+1−11. As a
result, in x[n + 1], xj = 0, all of the xk for j < k ≤ `n+1 are 1, and the remaining

118 CHAPTER 9. AREAS OF RESEARCH

places of x[n+ 1] are the same as in x[n]. Since τ was chosen to be leftmost in the
cone τj, there will be strings of lengths j+1, . . . , `n+1 to be assigned as τj+1, . . . , τ`n+1

(namely, τj+i = τj0
i−11), as required to continue the induction.

One way to think of this is as a way to build prefix-free machines by enumerating
a list of pairs of lengths and strings, with the intention that the string is described
by an input of the specified length.

Theorem 9.2.8 (Kraft-Chaitin, restated). Suppose we are effectively given a set of
pairs 〈nk, σk〉k∈N such that

∑
k 2−nk ≤ 1. Then we can recursively build a prefix-free

machine M and a collection of strings (descriptions) τk such that |τk| = nk and
M(τk) = σk.

Kraft-Chaitin allows us to implicitly build machines by computably enumerating
“axioms” 〈nk, σk〉 and arguing that the set {nk}k∈N satisfies the Kraft Inequality. The
machine houses the construction, from which the axioms are enumerated, and on
input τ enumerates them while performing Kraft-Chaitin until such a time as τ is
chosen to be an element of the prefix-free set, corresponding to some 〈nk, σk〉. At
that point (if it ever comes), the machine halts and outputs σk.

So why prefix-free?

We could define the complexity of x as the minimum length input that produces
x when given to the standard universal Turing machine, rather than the universal
prefix-free Turing machine. That is studied; we call it the plain Kolmogorov com-
plexity of x and denote it C(x). However, as a standard for complexity it has some
problems.

To say an infinite string is random if and only if all its initial segments are
random sounds right, but without the restriction to prefix-free machines it is an
empty definition: no such string exists. In fact, this is the reason there is no infinite
string X such that for all n, K(X � n) ≥ n + K(n) − O(1). The proof is from
Martin-Löf [43] and may be found in Li and Vitányi [40], §2.5.

Even at the level of finite strings plain Kolmogorov complexity has some unde-
sirable properties. The first is non-subadditivity. That is, for any constant c you
like there are x and y such that the plain complexity of the coded pair 〈x, y〉 is more
than C(x)+C(y)+ c. K, on the other hand, is subadditive, because with K we can
concatenate the descriptions p and q of x and y, respectively, and the machine will
be able to tell them apart: the machine can read until it halts, assume that is the
end of p, and then read again until it halts to obtain q. Some constant-size code to
specify that action and how to encode the x and y that result, and we have 〈x, y〉.

The second undesired property of C is nonmonotonicity on prefixes: the com-
plexity of a substring may be greater than the complexity of the whole string.
For example, a power of 2 has very low complexity, so that if n = 2k then

9.2. RANDOMNESS 119

C(1n) ≤ log log n + O(1) (i.e., a description of k, which is no more than log k in
size, plus some machinery to print 1s). However, once k is big enough, there will
be numbers smaller than n which have much higher complexity because they have
no nice concise description in terms of, say, powers of smaller numbers. For such a
number m, the plain complexity of 1m would be higher than that of 1n even though
1m is a proper initial segment of 1n.

What is the underlying problem? The C(x) measure contains information about
the length of x (that is, n) as well as the pattern of bits. For most n, about log n
of the bits of the shortest description of x will be used to determine n. What that
means is that for simple strings of the same length n, where by “simple” I mean
each having plain Kolmogorov complexity less than log n, any distinction between
the information content of the two strings will be lost to the domination of the
complexity of n.

Another way of looking at it is that C allows you to compress a binary sequence
using a ternary alphabet: 0, 1, and “end of string”. That’s not a fair measure of
compressibility, and as stated above, it leads to some technical problems as well as
philosophical ones.

The main practical argument forK over C, though, is thatK gives the definition
that lines up with the characterizations of randomness in terms of Martin-Löf tests
and martingales.

Relative Randomness

Next we would like to be able to compare sets to each other, in a finer-grained
way than saying both, one, or neither is n-random for some n. For example, the
bit-flip of a random sequence is random, but if we are given the original sequence
as an oracle, its bit-flip can be produced by a constant-size program. Therefore no
sequence’s bit-flip is random relative to the original sequence.

The generalization is very simple: add an oracle to the prefix-free Turing ma-
chines.

Definition 9.2.9. (i) The prefix-free Kolmogorov complexity of x relative to A is
KA(x) = min{|p| : UA(p) = x}.

(ii) A set or sequence B is A-random (or 1-A-random) if

(∀n)[KA(B � n) ≥ n−O(1)].

It should be clear that if B is nonrandom, it is also non-A-random for every A.
Adding an oracle can never increase the randomness of another string; it can only
derandomize.

Two extremely useful theorems about relative randomness rely on the join of
sequences. We’ve seen this definition before, but to remind you:

120 CHAPTER 9. AREAS OF RESEARCH

Definition 9.2.10. The join of two sets (or sequences) A and B is their disjoint
union

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}.

Its Turing degree is the least upper bound of the degrees of A and B, so A ⊕ B
corresponds to join in the lattice of Turing degrees.

Theorem 9.2.11 (van Lambalgen [60]). If A ⊕ B is 1-random, then B is 1-A-
random (and hence 1-random).

Note that likewise A will be 1-B-random in the theorem above. There is a
converse to this, though it is slightly stronger: instead of needing A to be 1-B-
random and B to be 1-A-random, we only need one of those conditions plus 1-
randomness for the other set.

Theorem 9.2.12 (van Lambalgen [61]). If A is 1-random and B is 1-A-random,
then A⊕B is 1-random.

The two theorems together show that if A and B are 1-random and one is 1-
random relative to the other, the other is 1-random relative to the first. In fact,
they are only special cases of a much more general pair of theorems that we don’t
have the vocabulary to state.

Lowness and K-Triviality

The idea of lowness for randomness comes from several perspectives. First, there is
the observation that taking 1-randomness relative to A may only decrease the set of
random reals. That is, if RAND is the set of all 1-random reals and RANDA is the
set of all A-random reals, then for any A, RANDA ⊆ RAND. The question is then
for which A equality holds; certainly for any computable A it does, but are there
others? Hence we have the following definition, a priori perhaps an empty one.

Definition 9.2.13. A set A is low for random if it is noncomputable and
RANDA = RAND; that is, any real which is 1-random is still random relative
to A.

The term “low” is by analogy with ordinary computability theory, where A is
low if the halting problem relativized to A has the same Turing degree as the non-
relativized halting problem.

We think of a low set as being “nearly computable”. It clearly cannot itself be
random, else in derandomizing itself and its infinite subsequences it would change
the set of randoms. Therefore, the existence of low for random sets gives a middle
ground between computable and random.

9.2. RANDOMNESS 121

Theorem 9.2.14 (Kučera and Terwijn [36]). There exists a noncomputable A such
that RANDA = RAND.

There is a different aspect of lowness we could consider; this approaches the
“middle ground” between computability and randomness in a different way, directly
tackling the question of initial segment complexity.

Definition 9.2.15. A real α is K-trivial if the prefix-free complexity of its
length-n initial segments is bounded by the complexity of n; that is, for all n,
K(α � n) ≤ K(n) +O(1).

The question is, again, whether there are any noncomputable K-trivial reals.
Certainly all computable reals α are such that K(α � n) ≤ K(n) +O(1); the O(1)
term holds the function which generates the initial segments of α, and then getting
an initial segment is as simple as specifying the length you want.

Theorem 9.2.16 (Zambella [66], after Solovay [57]). There is a noncomputable c.e.
set A such that K(A � n) ≤ K(n) +O(1).

The truly remarkable thing is that these are the same class of reals: a real is low
for random if and only if it is K-trivial. The proof is really, really hard, involving
work by Gács [21], Hirschfeldt, Nies, and Stephan [26], Kučera [35], and Nies [47].

There are some theorems we won’t prove here about the degree properties of
K-trivials; for proofs see Downey and Hirschfeldt [14] or the paper cited. Recall
that a set A ≤T ∅′ is high if A′ ≡T ∅′′.

Theorem 9.2.17 (Chaitin [5]). If A is K-trivial then it is ∆0
2; that is, A ≤T ∅′.

Theorem 9.2.18 (Downey, Hirschfeldt, Nies, Stephan [16]). If A is K-trivial, then
A is Turing incomplete, and in fact not even high.

Theorem 9.2.19 ([16]). If reals α and β are K-trivial, then so is their sum α+ β.

Note that in the above we mean simply the arithmetic sum, not the join. The
next theorem shows that the K-trivials hang together in a strong sense. An ideal of
the Turing degrees is a collection of degrees which is closed downward under Turing
reducibility and upward under join. Therefore the proof must show both that if
α ≤T β and β is K-trivial, α is K-trivial, and that if α and β are K-trivial, α ⊕ β
is K-trivial.

Theorem 9.2.20 (Nies). The K-trivial reals form a Σ0
3-definable ideal in the Turing

degrees.

This is touted as the only natural example of a nontrivial ideal in the Turing
degrees.

122 CHAPTER 9. AREAS OF RESEARCH

9.3 Some Model Theory

Both computable model theory (§9.4) and reverse mathematics (§9.5) use some
model theory, which is an entire other area of mathematical logic. Propositional
and predicate logic, which undergraduates are often exposed to, tend to include
elements of what would be categorized as model theory.

Suppose we have a collection of relation symbols, such as (=, <); call it a language
L. In this example, the relations are both binary. A structure for that language (or
L-structure) is a collection of elements, called the universe, along with an interpre-
tation for each relation. For example, N with the usual equality and ordering is a
structure for the language (=, <); we would denote it (N,=N, <N). There are many
possible structures for any given language, even after you take the quotient of the
collection of structures by the equivalence relation of isomorphism.

To get to a model, we add axioms. Generally we call the collection of logical
sentences (recall sentences are formulas with no free variables, so that they have
a truth value) we’re treating as axioms a theory. These sentences may use all the
standard logical symbols (and, not, quantifiers, etc) as well as variables and any
symbol from the language. A structure for the language is a model of the theory
if, interpreting the language as the structure specifies and letting the domain of
quantification be the universe of the structure, all the sentences in the theory are
true. This may greatly restrict the number of structures we can have; in fact there
are theories for which there is only one model with a countable universe, up to
isomorphism (such theories are called countably categorical).

Properly speaking, languages can have not only relation symbols, but also func-
tion symbols and symbols for distinguished constant values; the arity of the re-
lations and functions must be specified. An isomorphism between L-structures
A = (A, cA, fA, RA) and B = (B, cB, fB, RB) is a bijection F : A → B such that
F (cA) = cB, and for tuples a of the appropriate arity, if F (ai) = bi and F (k) = `,
then fA(a) = k ↔ fB(b) = ` and RA(a) ↔ RB(b). For languages with more than
one constant, function, or relation, this definition extends as expected. When the
isomorphism is between a structure and itself, it is called an automorphism.

Let us consider the example L = (0, 1,=, <,+, ·), where 0 and 1 are constant
symbols, = and < are binary relations, and + and · are binary functions. We can
create many structures for L; let’s look at a few which have countable universes.

(i) N, with the usual meanings for all these symbols;

(ii) Q, with the usual meanings for all these symbols;

(iii) N, with the usual meanings for everything except = and <; = interpreted as
equality modulo 12 (so 12 = 0), and n < m true if n (mod 12) < m (mod 12)
in the usual ordering (so 12 < 1).

9.3. SOME MODEL THEORY 123

(iv) N, with 0 and 1 interpreted as usual, = interpreted as nonequality, < inter-
preted as >, and + and · interpreted as · and exponentiation, respectively.

The point of (iv) is to show we do not have to abide by the conventional uses
of the symbols.3 In fact we could have gone further afield and decided that, say,
= would be the relation that holds of (n,m) exactly when n is even, and < the
relation that holds when n+m is a multiple of 42.

Let us consider some axioms on L.

(I) ¬(0 = 1)

(II) ∀x, y(x < y + 1→ (x < y ∨ x = y))

(III) ∀x(¬(x < 0))

(IV) ∀x, y∃z((¬(y = 0) & ¬(x = 0))→ x · z = y)

Axiom I is true in structures (i), (ii), and (iii), but not (iv): 0 and 1 are nonequal,
but in (iv) that is exactly the interpreted meaning of the symbol =. Axiom II is true
in structures (i) and (iii). It is false in (ii), as shown by x = 2 and y = 1.5. Axiom
II is also true in structure (iv), where in conventional terms it says if x > y · 1, then
x > y or x 6= y.

Axiom III is clearly true in structures (i) and (iii) and false in (ii) and (iv) (where
in the latter it asserts no number is positive). Axiom IV asserts (in structures (i)–
(iii)) that any nonzero number is divisible by any other nonzero number. It is false
in structure (i) and true in (ii); it is false in (iii) but it takes maybe a bit more
thought to see it. An example of axiom IV’s failure in structure (iii) is x = 2 and
y = 3: no multiple of x will be odd, but all members of y’s equivalence class modulo
12 are odd. Axiom IV also fails in structure (iv), where it says in conventional
terms that if x and y are both zero, there is a power to which one can raise x to get
something not equal to y.

We could say structure (i) is a model for the theory containing axioms I, II, and
III. If we call the modelM and the theory T , we notate this asM |= T . However,
structure (i) is not a model for the last axiom; call it ϕ: M 6|= ϕ. Note that for all
sentences ϕ and models M over the same language, either M |= ϕ or M |= ¬ϕ.
However, ϕ may be independent of the theory T , where T 6` ϕ and T 6` ¬ϕ.

This discussion has implied we can go from structures to theories, and indeed we
can. Given a theory T we can talk about models of that theory,M |= T , but given a
structureM, we can speak of the theory of that structure, Th(M) := {ϕ :M |= ϕ}.

Since a theory is just a collection of sentences, it has consequences under log-
ical deduction.4 If ϕ is a logical consequence of the sentences in T , we denote

3However, it is common, perhaps even standard, to make = a special symbol that may only
be interpreted as genuine equality.

4Some authors require theories to be closed under logical deduction.

124 CHAPTER 9. AREAS OF RESEARCH

that by T ` ϕ. If for every L-sentence ϕ, either T ` ϕ or T ` ¬ϕ, T is called
complete. For any structure M, Th(M) is complete. I should note here that we
assume our theories are consistent (i.e., they do not prove any contradictions); oth-
erwise the deductive closure of the theory is literally all sentences in the language.
Gödel’s completeness theorem says that T ` ϕ if and only if for all structures M,
M |= T →M |= ϕ. What this means is that if you want to show ϕ follows from a
T , you must give a logical deduction, but if you want to show T 6` ϕ (which is not
the same as T ` ¬ϕ), you need only construct a model of T in which ϕ is false.

Thus far we have only spoken of first-order theories, ones where only one kind of
object is quantified over. In practice we might want to quantify over both elements
and sets of elements, which puts us in the realm of second-order logic. The discussion
above carries over to second-order logic, but models now consist of a universe M , a
subset of P(M), and interpretations of all the language symbols. A prime example is
N together with P(N), but in computability theory we often can restrict the subsets
included and still get a model of our theory. More on this in forthcoming sections.

9.4 Computable Model Theory

The area of computable model theory applies our questions of computability or
levels of noncomputability to structures of model theory. The source for this section
is Ash and Knight’s Computable Structures and the Hyperarithmetical Hierarchy [3];
Volume 1 of the Handbook of Recursive Mathematics [20] and a survey article by
Harizanov [24] are also good references. Note that in this section, all structures will
be countable; in fact one frequently assumes every structure has universe N, and we
will follow this convention.

The degree of a countable structure is the least upper bound of the degrees of
the functions and relations of the language as interpreted in that structure. We can
ask many questions:

• What degrees are possible for models of a theory?

• What degrees are possible for models of a theory within a particular isomor-
phism type (equivalence class under isomorphism)?

• Given a degree d, can we construct a theory with no models of degree d?

• What happens if we restrict to computable models and isomorphisms? Do we
get more or fewer isomorphism types, for example?

One important theory in logic is Peano arithmetic (PA), a theory in the language
(S,+, ·, 0), where S is a unary function, + and · are binary functions, and 0 is a
constant. The axioms of PA abstract the essence of grade-school arithmetic. That

9.4. COMPUTABLE MODEL THEORY 125

addition and multiplication act as we expect follows from the axioms, which more
explicitly fall into the following groups:

• 0 is zero: (∀x)(S(x) 6= 0); (∀x)(x+ 0 = x); (∀x)(x · 0 = 0).

• S means “plus one”: (∀x)(∀y)(S(x) = S(y) → x = y); (∀x)(x+S(y) = S(x+y));
(∀x)(x · S(y) = x · y + x).

• Induction works: for every formula ϕ(u, v) in the language of PA, we have the
axiom

(∀u) (ϕ(u, 0) & (∀y) [ϕ(u, y) → ϕ(u, S(y))] → (∀x)ϕ(u, x)) .

The standard model of PA is denoted N , the natural numbers with successor and
the usual addition, multiplication, and zero.

In fact a “standard model” of PA is any model where the universe is generated
by closing 0 under successor, and those elements are also called standard. Nothing
forbids having elements in the universe that are not obtained in that way. Those
elements and the models that contain them are called nonstandard ; nonstandard
models also contain standard elements.

The induction axiom in PA leads directly to the following useful tool, since the
antecedent need refer only to the successors of zero, but the consequent has an
unrestricted ∀x.

Proposition 9.4.1 (Overspill). IfM |= PA is nonstandard and ϕ(x) is a formula
that holds for all finite elements of M , then ϕ(x) also holds of some infinite element.

Theorem 9.4.2 (Tennenbaum [58]). If M |= PA is nonstandard, it is not com-
putable.

Proof. LetX and Y be computably inseparable c.e. sets (see Exercise 5.2.17). There
are natural formulas that mean x ∈ Xs, y ∈ Ys, as well as pn|u (the nth prime divides
u). Let ψ(x, u) say

∀y([(∃s ≤ x (y ∈ Xs))→ py|u] & [(∃s ≤ x (y ∈ Ys))→ py 6 |u]).

For all finite c,M |= ∃uψ(c, u), because the product of all primes corresponding to
elements of Xc is such a u.

By Overspill, Proposition 9.4.1, there is an infinite c′ such thatM |= ∃uψ(c′, u).
For d such thatM |= ψ(c′, d), let Z = {m ∈ N :M |= pm|d}. Z is a separator for X
and Y , and Z is computable fromM. Since X and Y are computably inseparable,
Z and henceM are noncomputable.

For the following theorem we need a definition.

126 CHAPTER 9. AREAS OF RESEARCH

Definition 9.4.3. A trivial structure is one such that there is a finite set of el-
ements a such that any permutation of the universe that fixes a pointwise is an
automorphism.

For example, {0, 1, 2, . . .} with finitely-many named elements and unary relations
that are all either empty or the entire universe. Any permutation of {0, 1, 2, . . .}
that preserves the named elements will also preserve the relations, and hence be an
automorphism.

Theorem 9.4.4 (Solovay, Marker, Knight [33]). Suppose A is a nontrivial structure.
If A ≤ X, there exists a structure B isomorphic to A via F such that B ≡T X, and
in fact F ⊕A ≡T X.

The proof uses F to code X into B. In particular, if A is a linear order, we may
enumerate the universes A and B as {a0, a1, . . .} and {b0, b1, . . .}. F maps from A
to B so that if a2n <

A a2n+1, then F (a2n) = b2n and F (a2n+1) = b2n+1 if and only
if n ∈ X. Otherwise F swaps the order; if a2n+1 <

A a2n the opposite happens, so
b2n+1 is on top iff n ∈ X. Then B interprets < in the necessary way to make F an
isomorphism from A to B.

Corollary 9.4.5. Peano arithmetic has standard models in all Turing degrees.

This follows from the fact that the standard model N is computable.
Linear orders are a useful example for a number of our questions.

Theorem 9.4.6 (Miller [46]). There is a linear order A that has no computable
copy, but such that for all noncomputable X ≤T ∅′, there is a copy of A computable
from X.

Note that whether we can remove X ≤T ∅′ from the hypothesis is an open
question; there do exist noncomputable Turing degrees that are not above any
noncomputable ∆0

2 degree.
A computably categorical structure is A such that A is computable and if B is

computable and isomorphic to A, the isomorphism may be chosen to be computable.
Exercise 6.2.4 built a linear order on universe N such that the successor relation is
not computable. However, the ordering itself is computable, so as a linear order
the structure is computable. In the standard ordering on N, however, the successor
relation is computable, so these are two isomorphic computable ordering that cannot
be computably isomorphic. The discrete linear order with one endpoint is not
computably categorical.

Dense linear orders without endpoints, such as Q, however, are computably cat-
egorical. The non-computable construction of an isomorphism between two DLOs
is called a back and forth argument: working between A and B, select an unmapped

9.5. REVERSE MATHEMATICS 127

element from A and find an unmapped match to it in B, with the correct inequal-
ity relationships to previously-chosen elements. Then select an unmapped element
of B and match it to an unmapped element of A. Trading off where you select
your element makes sure the map is onto in each direction; using only unused ele-
ments makes sure it is one-to-one. Density and lack of endpoints guarantee finding
a match.

Exercise 9.4.7. Complete the proof sketch above and show it can be done com-
putably whenever the DLOs A and B are computable, proving that DLOs are com-
putably categorical.

If a structure is not computably categorical, we can ask how many equivalence
classes its computable copies have under computable isomorphism. This is called
the computable dimension of the structure, and any finite value may be realized
(Goncharov [22, 23]). However, in linear orders, the only computable dimensions
possible are infinity or 1 (categoricity), and the latter occurs if and only if the
order has only finitely-many successor pairs (Dzgoev-Goncharov [17]). This kind of
analysis of the relationship between the structure of a mathematical object and its
computability-theoretic properties is one of the main themes in computable model
theory, and computable mathematics in general.

9.5 Reverse Mathematics
You may have noticed by now that computability and the related areas we’ve dis-
cussed involve a lot of hierarchies: Turing degrees, the arithmetic hierarchy, relative
randomness. These all classify sets according to some complexity property. The
program of reverse mathematics is also an effort to classify objects according to
complexity, but here the objects are theorems of ordinary mathematics, and the
complexity is the strength of the mathematical tools that are required to prove
them.

The very big picture comes from Gödel’s Incompleteness Theorems. You might
be familiar with the first one, which states that for any sufficiently sophisticated
theory there are true but unprovable statements. As an aside, the sophistication
is in being able to self-reference, to make a formula which almost literally says “I
am not provable”; there are proofs which do not make use of self-reference, but the
systems must be capable of it. The second one, however, is more relevant here, and
roughly says if a theory is consistent, it cannot prove its own consistency. This gives
rise to something referred to as the Gödel hierarchy, where a theory T is less than
another theory Q if Q includes the statement of T ’s consistency.5

5We generally speak as though our theories are closed under deduction, though we specify
them as a non-closed collection of axioms; since any formula that follows from the theory must be
true in all models of the theory, this practice does not cause any harm.

128 CHAPTER 9. AREAS OF RESEARCH

Now, what does this have to do with ordinary mathematics? The logical axioms
we consider, giving rise to these theories T , Q, and so forth, are about induction,
how arithmetic works, what sets we can assert to exist (comprehension), and other
fundamental notions. If we don’t have all the tools of standard mathematics, we
may not be able to prove a theorem that we know is true in the “real world”.
The classification achieved by reverse mathematics is finding cutoff points where
theorems go from nonprovable to provable.

The main reference for reverse mathematics is Steve Simpson’s book Subsystems
of Second-Order Arithmetic [54]; this section is drawn from that book, conference
talks by Simpson, and a course I had on reverse mathematics from Jeff Hirst at
Notre Dame. The material on the arithmetic hierarchy in §7.2 will be useful for this
section; also note some of the theorems of ordinary mathematics mentioned below
will require vocabulary from analysis or algebra that is not defined here.

Second-Order Arithmetic

We work in the world of second-order arithmetic, or Z2. The language of Z2 is
different from the example in §9.3 in that it is two-sorted ; the variables of Z2 come
in two kinds: number variables intended to range over N and set variables intended
to range over P(N). The constants are 0 and 1, the functions are + and ·, and
the relations are =, <, and ∈, where the first two are relations on N × N and the
third on N×P(N). Conventionally we also use ≤, numerals 2 and up, superscripts
to indicate exponentiation, and shorthand negations like /∈; these are all simply
abbreviations and are definable in the original language. A model of Z2 will specify
not only the universe M of the number variables, as explained in §9.3, but also the
universe S for the set variables, where S ⊆ P(M).

The axioms of second-order arithmetic are as follows, with universal quantifica-
tion as needed to make them sentences:

1. basic arithmetic:

a) n+ 1 6= 0, ¬(m < 0)

b) m < n+ 1↔ (m < n ∨ m = n), m+ 1 = n+ 1→ m = n

c) m+ 0 = m, m · 0 = 0

d) m+ (n+ 1) = (m+ n) + 1, m · (n+ 1) = (m · n) +m

2. induction: (0 ∈ X) & (∀n)(n ∈ X → n+ 1 ∈ X))→ (∀n)(n ∈ X).

3. comprehension: (∃X)(∀n)(n ∈ X ↔ ϕ(n)) for each formula ϕ(n) in which X
does not occur freely.

9.5. REVERSE MATHEMATICS 129

The last two axioms together say that for any second-order formula ϕ(n),

(ϕ(0) & (∀n)(ϕ(n)→ ϕ(n+ 1)))→ (∀n)ϕ(n). (9.5.1)

We create subsystems of Z2 by restricting comprehension and induction. Re-
stricting comprehension has the effect of also restricting induction, because the
induction axiom as written works with sets (for which we must be able to assert
existence), so we may or may not want to treat induction separately.

How do we decide what restrictions to set? For comprehension, we might limit ϕ
to certain levels of complexity, such as being recursive (∆0

1) or arithmetic (with only
number quantifiers, no set quantifiers; i.e., Σ0

n or Π0
n for some n). The former gives us

the comprehension axiom for RCA0, and the latter for ACA0, both described below.
We may similarly bound the complexity of the formulas for which the induction
statement (9.5.1) holds.

Recursive Comprehension

The base system of reverse mathematics is called RCA0, which stands for recursive
comprehension axiom. RCA0 contains all the basic arithmetic axioms from Z2, as
well as restricted comprehension and induction. The comprehension axiom of Z2 is
limited to ∆0

1 formulas ϕ; intuitively this means all computable sets exist, though
it is slightly more precise than that.6 RCA0 also has Σ0

1 induction, which is as
(9.5.1) above but where ϕ must be Σ0

1. This is more than would be obtained by
restricting set-based induction (axiom 2 of Z2) via recursive comprehension, which
is done because allowing only ∆0

1-induction gives a system that is too weak to work
with easily.7

Essentially, anything we can do computably can be done in RCA0. This includes
coding finite sequences (such as pairs that might represent rational numbers) and
finite sets as numbers, and coding functions and real numbers as sets. Within
RCA0 we have access to all total computable functions (i.e., all primitive recursive
functions plus whatever we get from unbounded search when it always halts). For
those who have had algebra: RCA0 can prove that (N,+, ·, 0, 1, <) is a commutative
ordered semiring with cancellation, (Z,+, ·, 0, 1, <) is an ordered integral domain
that is Euclidean, and (Q,+, ·, 0, 1, <) is an ordered field. For those who haven’t
had algebra, that roughly says arithmetic behaves as we expect in each of those
three sets.

RCA0 can prove the intermediate value theorem (once continuous functions have
been appropriately coded), that if f is continuous and f(0) < 0 < f(1), then for

6Formally it is
∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n))

for Σ0
1 ϕ and Π0

1 ψ, which could be read as “demonstrably computable (∆0
1) sets exist.”

7Though that system has been studied, under the name RCA∗
0.

130 CHAPTER 9. AREAS OF RESEARCH

some 0 < x < 1, f(x) = 0. It can prove paracompactness : given an open cover
{Un : n ∈ N} of a set X, there is an open cover {Vn : n ∈ N} of X such that for
ever x ∈ X there is an open set W containing x such that W ∩ Vn = ∅ for all but
finitely-many n. As a final example, RCA0 can prove that every countable field has
an algebraic closure – but not that it has a unique algebraic closure. More on that
momentarily.

The canonical model of RCA0 is called REC. Its universe is N, and its collection
of sets is exactly the computable sets, meaning a formula that begins ∀X is read
“for all computable sets X”. In fact, REC is the smallest model of RCA0 possible
with universe N (we call it the minimal ω-model).

An aside on models and parameters here: All systems of reverse math are rel-
ative, in the sense that the induction and comprehension formulas are allowed to
use parameters from the model. It is tempting to think of every model of RCA0 as
simply REC, but that would be a harmful restriction for proving results. We can
have noncomputable sets in a model of RCA0; if we have such a set A the axioms
provide comprehension for sets that are ∆0

1 in A (that is, ∆0,A
1) and induction for

Σ0,A
1 formulas. Moreover, the universe of the model need not be N. Every subsys-

tem of second-order arithmetic has infinitely-many nonstandard models. We will
not address them here, except to say the universes of such models start with N but
include elements that are larger than every element of N. Those “infinite” elements
can act in ways counter to the intuition we have developed from N.

Any theorem that might require a noncomputable set or function pops us out
of RCA0. For example, in reality every field’s algebraic closure is unique (up to
isomorphism), so the fact that RCA0 can’t prove the uniqueness tells us that even for
two computable algebraic closures the isomorphism between them might necessarily
be noncomputable.

Another example of something RCA0 cannot prove – which comes directly from
comprehension, and REC – is weak König’s lemma. This says that if you have a
subtree of 2<N, and there are infinitely-many nodes in the tree, then there must
be an infinite path through the tree (full König’s lemma allows arbitrary finite
branching rather than restricting to the children 0 and 1).8 The proof is quite easy
if you allow yourself noncomputable techniques: start at the root. Since there are
infinitely-many nodes above the root, there must be infinitely-many nodes above at
least one of the children of the root. Choose the left child if it has infinitely-many
nodes above it, and otherwise choose the right. Repeat (walk upward until you hit
a branching node if you are at a node with only one child). Since each time you
have infinitely-many nodes above you, you never have to stop, so you trace out an
infinite path.

Such a tree is computable if the set of its nodes is computable. There exist
computable infinite trees with no computable infinite paths, so these trees are in

8Jeff Hirst states this lemma as “big skinny trees are tall.”

9.5. REVERSE MATHEMATICS 131

REC but none of their infinite paths are. Hence RCA0 cannot prove they have
infinite paths at all. I’ll note in passing that although the failure of weak König’s
lemma in the specific model REC is sufficient to show it does not follow from RCA0,
the result that not every computable tree has a computable path relativizes to say
that for any set A, not every A-computable tree has an A-computable path.

There are, of course, many other theorems RCA0 cannot prove, but we will
discuss those in the subsequent sections.

Weak König’s Lemma

WKL0, or weak König’s lemma, does not fit the same mold as RCA0, ACA0, or
Π1

1-CA0 (described below). In this system comprehension has been restricted, but
not in a way that uniformly addresses the complexity of ϕ in the basic comprehension
axiom scheme. It is more easily stated in the form of the previous section, that
every infinite subtree of 2<N has an infinite path. WKL0 is RCA0 together with
that comprehension axiom.9

I want to note here that it is important that the tree be a subset of 2<N, rather
than any old tree where every node has at most two children. If we let the labels
of the nodes be unbounded, we get something equivalent to full König’s lemma,
which says that any infinite, finitely-branching tree (subtree of NN) has a path and
is equivalent to ACA0. In fact, some reverse mathematicians refer to 0-1 trees
rather than binary-branching trees to highlight the distinction. The difference is
one of computability versus enumerability of the children of a node in a computable
tree. If the labels have a bound, we have only to ask a finite number of membership
questions to determine how many children a node actually has. If not, even knowing
there are at most 2 children, if we have not yet found 2, we must continue to ask
about children with higher and higher labels, a process that only halts if the node
has the full complement of children.

Over RCA0, WKL0 is equivalent to the existence of a unique algebraic closure
for any countable field. It is also equivalent to the statement that every continuous
function on [0, 1] attains a maximum, every countable commutative ring has a prime
ideal, and the Heine-Borel theorem. Heine-Borel says that every open cover of [0, 1]
has a finite subcover.

There is no canonical model of WKL0. In fact, any model of WKL0 with universe
N contains a proper submodel which is also a model of WKL0. The intersection of
all such models is REC, which as we saw is not a model of WKL0. There is a
deep connection between models of WKL0 and Peano Arithmetic (PA; see §9.4).
Formally, a degree d is the degree of a nonstandard model of PA iff there is a model

9This makes WKL0 another system with more induction than is simply given by comprehension
plus set-based induction; the three stronger systems do not have this trait. Without the extra
induction we call the system WKL∗

0.

132 CHAPTER 9. AREAS OF RESEARCH

of WKL0 with universe N consisting entirely of sets computable from d. Informally,
“PA-degree” is to WKL0 what “computable” is to RCA0 and “arithmetic” to ACA0.

The study of computable trees gives us a result called the low basis theorem,
which says any computable tree has a path of low degree (where A is low if A′ ≡ ∅′,
and it is significant that noncomputable low sets exist). This and a little extra
computability theory shows WKL0 has a model with only low sets.

Arithmetic Comprehension

ACA0 stands for arithmetic comprehension axiom. As mentioned, we obtain it from
Z2 by restricting the formulas ϕ in the comprehension scheme to those which may
be written using number quantifiers only, no set quantifiers. Surprisingly, there is
no middle ground between RCA0 and ACA0 in terms of capping the complexity
of ϕ via the arithmetic hierarchy: if we allow ϕ to be even Σ0

1, we get the full
power of ACA0. The proof is easy, as well: given the existence of a set X, we get
the existence of every set that is Σ0,X

1 , which includes X ′. From there, we get the
existence of all sets that are Σ0,X′

1 , which by Post’s Theorem 7.2.10 are the sets
that are Σ0,X

2 . Continuing this process we bootstrap our way all the way up the
arithmetic hierarchy.

RCA0 can prove that the statement “for all X, the Turing jump X ′ exists” (suit-
ably coded) is equivalent to ACA0. Other equivalent statements include: every
sequence of points in a compact metric space has a convergent subsequence; ev-
ery countable vector space over a countable scalar field has a basis (we may also
restrict to the scalar field being Q and still get equivalence); and every countable
commutative ring has a maximal ideal.

ACA0, like RCA0, has a minimal model with universe N. It is ARITH, the
collection of all arithmetic sets. These sets are exactly those definable by formulas
with no set quantifiers but arbitrarily-many number quantifiers, or equivalently, sets
which are Turing reducible to ∅(n) for some n.

Arithmetic Transfinite Recursion

ATR0, like WKL0, is obtained via a restriction to comprehension that feels less
natural than the other systems. Arithmetic transfinite recursion roughly says that
starting at any set that exists, we may iterate the Turing jump on it as many times
as we like and those sets will all exist. This is a very imprecise version, clearly,
since it is not at all apparent this gives more than ACA0; the real thing is quite
technical (“as many times as we like” is a lot), so we will skip it and discuss some
of the equivalent theorems.

The main one is the perfect set theorem. A set X is (topologically) perfect if it
has no isolated points; every point x ∈ X is the limit of some sequence of points
{yi : yi ∈ X, i ∈ N, yi 6= x}. A tree is perfect if every node of the tree has more than

9.5. REVERSE MATHEMATICS 133

one infinite path extending it, which is exactly the previous statement but specific
to the tree topology. The perfect set theorem states that every uncountable closed
set has a nonempty perfect subset, and the version for trees says every tree with
uncountably many paths has a nonempty perfect subtree. Both are equivalent to
ATR0 over RCA0; note that both are comprehension theorems.

Another comprehension theorem which is equivalent to ATR0 is that for any
sequence of trees {Ti : i ∈ N} such that each Ti has at most one path, the set
{i : Ti has a path} exists.

From ATR0 up, there are no minimal models. ATR0 is similar to WKL0 in that
it has no minimal model but the intersection of all its models of universe N is a
natural class of sets. In this case it is HYP, the hyperarithmetic sets, which we will
not define.

Π1
1 Comprehension

Π1
1-CA0 stands for Π1

1 comprehension axiom. It is in the same family as RCA0 and
ACA0, where the comprehension scheme has been restricted by capping the allowed
complexity of the formula ϕ. In this case, ϕ is allowed to have one universal set
quantifier, and an unlimited (finite) list of number quantifiers.

We’ll mention only a few results equivalent to Π1
1-CA0, most strengthenings or

generalizations of theorems equivalent to ATR0. It is equivalent to Π1
1-CA0 that

every tree is the union of a perfect subtree and a countable set of paths.
Two comprehension theorems equivalent to Π1

1-CA0 are that (a) for any sequence
of trees {Ti : i ∈ N}, the set {i : Ti has a path} exists, and (b) for any uncountable
tree the perfect kernel of the tree exists (that is, the union of all its perfect subtrees).

A Spiderweb

It is remarkable that so many theorems of ordinary mathematics fall into five ma-
jor equivalence classes under relative provability. However, it would be misleading
to close this section without mentioning that not every theorem has such a clean
relationship to the Big Five. A lot of research has been done that establishes a
cobweb of implications for results that lie between RCA0 and ACA0, and for many
researchers this is the most interesting part of reverse mathematics. If I were willing
to drown you in acronym definitions I could draw a very large picture with one-way
arrows, two-way arrows, unknown implications, and non-implications, but we will
keep to a manageable list. For this section the primary references are papers by
Cholak, Jockusch, and Slaman [7] and Hirschfeldt and Shore [27].

One of the main focuses of this area of research is Ramsey’s theorem. The general
statement is the following, where [N]n is the set of all n-element subsets of N.

134 CHAPTER 9. AREAS OF RESEARCH

Theorem 9.5.1 (Ramsey’s theorem). Given f : [N]n → {0, . . . ,m− 1}, there is an
infinite set H ⊆ N such that the restricted map f � H : [H]n → {0, . . . ,m − 1} is
constant. H is called a homogeneous set for f .

Ramsey’s theorem is a generalization of the pigeonhole principle, which is the
case n = 1. The pigeonhole principle says if we put infinitely-many objects in
finitely-many boxes, some individual box must contain infinitely-many objects.

We usually think of the range of f as consisting of colors and call f anm-coloring
of (unordered) n-tuples from N. For f a 2-coloring of pairs, we may picture [N]2 as
a graph with vertices the natural numbers and an undirected edge between every
pair of distinct vertices. The map f colors each edge red or blue, and Ramsey’s
theorem asserts the existence of a subset of vertices such that the induced subgraph
on those vertices (the one that contains all edges from the original graph which still
have both their endpoints in the subgraph) will have all edges the same color.

For our use it matters what the values of the parameters are, so we use RTn
m

to denote Ramsey’s theorem restricted to functions f : [N]n → {0, . . . ,m − 1} for
specified n and m. It is the size of the subsets that matters; we can argue the
number of colors can be restricted to 2 without loss of generality.

Exercise 9.5.2. Fix n. Show that by repeated applications of RTn
2 one can obtain

a homogeneous set for the coloring f : [N]n → {0, . . . ,m− 1}. Since it is clear RTn
m

implies RTn
2 for each m ≥ 2, this shows they are actually equivalent.

RTn
m for fixed n ≥ 3, m ≥ 2 is equivalent to ACA0, and the universal quantifica-

tion (∀m) RTn
m is equivalent to ACA0 for n ≥ 3. If we quantify over both parameters

we get the principle RT, which is strictly between ACA0 and ATR0. On the other
side, RT2

2 is strictly weaker than ACA0, and is not implied by WKL0. It is an open
problem whether RT2

2 implies WKL0 or whether they are independent.
A principle which is strictly below both WKL0 and RT2

2 is DNR, which stands
for diagonally non-recursive. DNR says there exists a function f such that
(∀e)(f(e) 6= ϕe(e)). It is clear that DNR fails in REC, since such a function
is designed exactly to be unequal to every computable function.

CAC, or chain-antichain, says that every infinite partial order (P,≤P) has an in-
finite subset that is either a chain (all elements are comparable by ≤P ; i.e., a subset
that is a linear order) or an antichain (no elements are comparable by ≤P). As an ex-
ample, the partial order (P(N),⊆) contains the infinite chain {{0, 1, . . . n} : n ∈ N}
and the infinite antichain {{n} : n ∈ N}.

ADS, ascending or descending sequence, is implied by CAC; it is open whether
they are equivalent or ADS is strictly weaker. ADS says that every infinite
linear order (L,≤L) has an infinite subset S that is either an ascending sequence
((∀s, t ∈ S)(s < t→ s <L t)) or a descending sequence ((∀s, t ∈ S)(s < t→ t <L s)).
For example, if L is (Z,≤Z) coded by n → 2n for n ≥ 0 and n → −2n − 1 for
n < 0, the positive integers form an ascending sequence (their coded ordering <

9.5. REVERSE MATHEMATICS 135

matches their interpreted ordering ≤Z) and the negative integers form a descending
sequence (their coded ordering is opposite from their interpreted ordering).

Neither CAC nor ADS implies DNR and neither is implied by WKL0. Both are
implied by RT2

2. For some justification as to why CAC and ADS should be stronger
than RCA0, see Exercise 6.2.4. Even if the order relation must be computable (as
in REC), things we define from the order relation need not be.

Finally, WWKL0, or weak weak König’s lemma, is a system intermediate between
WKL0 and DNR. The lemma says that if T ⊆ 2<N is a tree with no infinite path,
then

lim
n→∞

|{σ ∈ T : |σ| = n}|
2n

= 0.

This is clearly implied by weak König’s lemma, which says in contrapositive that if
T has no infinite path it must be finite (so this fraction does not just approach 0, it
is identically 0 from some n on). A decent amount of measure theory can be carried
out in WWKL0, but I wanted to mention it in particular because it has connections
to randomness as laid out in §9.2. A modelM of RCA0 is also a model of WWKL0

if and only if for every X in M, there is some Y in M such that Y is 1-random
relative to X [1].

Appendix A

Mathematical Asides

In this appendix I’ve stuck a few proofs and other tidbits that aren’t really part of
computability theory, but have been referenced in the text.

A.1 The Greek Alphabet

As you progress through mathematics you’ll learn much of the Greek alphabet by
osmosis, but here is a list for reference.

alpha A α nu N ν
beta B β xi Ξ ξ
gamma Γ γ omicron O o
delta ∆ δ pi Π π
epsilon E ε or ε rho P ρ
zeta Z ζ sigma Σ σ
eta H η tau T τ
theta Θ θ upsilon Υ υ
iota I ι phi Φ ϕ or φ
kappa K κ chi X χ
lambda Λ λ psi Ψ ψ
mu M µ omega Ω ω

A.2 Summations

When defining the pairing function we needed to sum from 1 to x + y. There is a
very clever way to find a closed form for the sum 1 + 2 + . . . + n. Write out the
terms twice, in two directions:

1 + 2 + . . . + (n− 1) + n
n + (n− 1) + . . . + 2 + 1

137

138 APPENDIX A. MATHEMATICAL ASIDES

Adding downward, we see n copies of n + 1 added together. As this is twice the
desired sum, we get

n∑
i=1

i =
n(n+ 1)

2
.

Related, though not relevant to this material, is the way one proves the sum of
the geometric series with terms ari, i ≥ 0, is a

1−r whenever |r| < 1. We take the
partial sum, stopping at some i = n, and we subtract from it its product with r:

a + ar + ar2 + . . . + arn

− (ar + ar2 + . . . + arn + arn+1)

Letting sn be the nth partial sum of the series, we get sn − rsn = a − arn+1, or
sn = (a− arn+1)/(1− r). The sum of any series is the limit of its partial sums, so
we see

∞∑
i=0

ari = lim
n→∞

a− arn+1

1− r
=

a

1− r
lim
n→∞

(1− rn+1),

and that limit is 1 whenever |r| < 1.

A.3 Cantor’s Cardinality Proofs
Cantor had two beautifully simple diagonal proofs to show the rational numbers
are no more numerous than the natural numbers, but the real numbers are strictly
more numerous. The ideas of these proofs are used for some of the most fundamen-
tal results in computability theory, such as the proof that the halting problem is
noncomputable.

First we show that Q has the same cardinality as N. Take the grid of all pairs
of natural numbers; i.e., all integer-coordinate points in the first quadrant of the
Cartesian plane. The pair (n,m) represents the rational number n/m; all positive
rational numbers are representable as fractions of natural numbers. We may count
these with the natural numbers if we go along diagonals of slope −1. Note that it
does not work to try to go row by row or column by column, as you will never finish
the first one; you must dovetail the rows and columns, doing a bit from the first,
then a bit from the second and some more from the first, then a bit from the third,
more from the second, and yet more from the first, and so on. To count exactly
the rationals, start by labeling 0 with 0, then proceed along the diagonals, skipping
(n,m) if n/m reduces to a rational we’ve already counted, and otherwise counting
it twice to account for the negation of n/m.

Cantor’s proof that R is strictly bigger than N is necessarily more subtle, as
demonstrating the existence of an isomorphism to N (which is exactly what count-
ing with the natural numbers accomplishes) is generally more straightforward than
demonstrating no such isomorphism exists.

A.3. CANTOR’S CARDINALITY PROOFS 139

In fact, we will show even just the interval from 0 to 1 is larger than N. Suppose
for a contradiction that we have an isomorphism between [0, 1] and N. List the
elements of [0, 1] out in the order given by the isomorphism, as infinite repeating
decimals (using all-0 tails if needed):

.65479362895 . . .

.00032797584 . . .

.35271900000 . . .

.00000000063 . . .

.98989898989 . . .

...

Now construct a new number d ∈ [0, 1] decimal by decimal using the numbers on
the list. If the nth decimal place of the nth number on the list is k, then the nth
decimal place of d will be k+ 1, or 0 if k = 9. In our example above, d would begin
.71310. While d is clearly a number between 0 and 1, it does not appear on the list,
because it differs from every number on the list in at least one decimal place – the
nth.

Bibliography

[1] Ambos-Spies K., B. Kjos-Hanssen, S. Lempp, and T.A. Slaman. Comparing DNR and
WWKL. Journal of Symbolic Logic 69:1089–1104, 2004.

[2] Ambos-Spies, K., and A. Kučera. Randomness in computability theory. In Computability
Theory and Its Applications: Current Trends and Open Problems (ed. Cholak, Lempp, Ler-
man, Shore), vol. 257 of Contemporary Mathematics, pages 1–14. American Mathematical
Society, 2000.

[3] Ash, C.J., and J.F. Knight. Computable Structures and the Hyperarithmetical Hierarchy.
Elsevier Science B.V., 2000.

[4] Boolos, G.S., J.P. Burgess, and R.C. Jeffrey. Computability and Logic, fourth edition. Cam-
bridge University Press, 2002.

[5] Chaitin, G.J. Information-theoretical characterizations of recursive infinite strings. Theoret-
ical Computer Science 2:45–48, 1976.

[6] Chaitin, G.J. Incompleteness theorems for random reals. Advances in Applied Mathematics
8:119–146, 1987.

[7] Cholak, P.A., C.J. Jockusch, and T.A. Slaman. On the strength of Ramsey’s theorem for
pairs. Journal of Symbolic Logic 66: 1–55, 2001.

[8] Church, A. An unsolvable problem of elementary number theory. Journal of Symbolic Logic
1:73–74 (1936).

[9] Church, A. On the concept of a random sequence. Bulletin of the American Mathematical
Society 46:130–135, 1940.

[10] Cutland, N. Computability: An introduction to recursive function theory. Cambridge Univer-
sity Press, 1980.

[11] Davis, M. Computability and Unsolvability. McGraw-Hill Education, 1958. Reprinted by
Dover Publications, 1985.

[12] Davis, M. The Undecidable. Raven Press, 1965.

[13] Davis, M. Hilbert’s tenth problem is unsolvable. American Mathematical Monthly
80:233Ð269, 1973.

[14] Downey, R., and D. Hirschfeldt, Algorithmic Randomness and Complexity, in preparation.

141

142 BIBLIOGRAPHY

[15] Downey, R., E. Griffiths, and G. LaForte. On Schnorr and computable randomness, martin-
gales, and machines. Mathematical Logic Quarterly 50(6):613–627, 2004.

[16] Downey, R., D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals, extended abstract. In
Computability and Complexity in Analysis Malaga (Electronic Notes in Theoretical Computer
Science, and proceedings; edited by Brattka, Schröder, Weihrauch, Fern Universität; 294-
6/2002, 37-55), July 2002.

[17] Dzgoev, V.D., and S.S. Goncharov. Autostable models (English translation). Algebra and
Logic 19:28–37, 1980.

[18] Ehrenfeucht, A., J. Karhumaki, and G. Rozenberg. The (generalized) Post correspondence
problem with lists consisting of two words is decidable. Theoretical Computer Science 21(2),
1982.

[19] Enderton, H.B. A Mathematical Introduction to Logic, second edition. Harcourt/Academic
Press, 2001.

[20] Ershov, Yu.L., S.S. Goncharov, A. Nerode, J.B. Remmel, and V.W. Marek, eds. Handbook of
recursive mathematics. Vol. 1: Recursive model theory. Studies in Logic and the Foundations
of Mathematics 138, North-Holland, 1998.

[21] Gács, P. Every set is reducible to a random one. Information and Control 70:186–192, 1986.

[22] Goncharov, S.S. The quantity of non-autoequivalent constructivizations (English transla-
tion). Algebra and Logic 16:169–185, 1977.

[23] Goncharov, S.S. The problem of the number of non-autoequivalent constructivizations (En-
glish translation). Algebra and Logic 19:401–414, 1980.

[24] Harizanov, V. Computably-theoretic complexity of countable structures Bulletin of Symbolic
Logic 8:457–477, 2002.

[25] Hilbert, D. Mathematical problems, Bulletin of the American Mathematical Society 8(1901–
1902):437–479.

[26] Hirschfeldt, D., A. Nies, and F. Stephan. Using random sets as oracles. Submitted.

[27] Hirschfeldt, D., and R.A. Shore. Combinatorial principles weaker than Ramsey’s theorem for
pairs. Journal of Symbolic Logic 72:171–206, 2007.

[28] Kogge, P.M. The Architecture of Symbolic Computers. The McGraw-Hill Companies, Inc.,
1998.

[29] Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933.

[30] Kolmogorov, A.N. On tables of random numbers. Sankhyā, Series A, 25:369–376, 1963.

[31] Kolmogorov, A.N., Three approaches to the quantitative definition of information. Problems
of Information Transmission (Problemy Peredachi Informatsii) 1:1–7, 1965.

[32] Kleene, S.C. General recursive functions of natural numbers. Mathematische Annalen,
112:727–742, 1936.

BIBLIOGRAPHY 143

[33] Knight, J.F. Degrees coded in jumps of orderings. Journal of Symbolic Logic 51:1034–1042,
1986.

[34] Kraft, L.G. A Device for Quantizing, Grouping, and Coding Amplitude Modulated Pulses.
Electrical engineering M.S. thesis. MIT, Cambridge, MA, 1949.

[35] Kučera, A. Measure, Π0
1 classes, and complete extensions of PA. In Springer Lecture Notes

in Mathematics Vol. 1141, pages 245–259. Springer-Verlag, 1985.

[36] Kučera, A., and S. Terwijn. Lowness for the class of random sets. Journal of Symbolic Logic
64(4):1396–1402, 1999.

[37] Levin, L.A. On the notion of a random sequence. Soviet Mathematics Doklady 14:1413–1416,
1973.

[38] Levin, L.A. Laws of information conservation (non-growth) and aspects of the foundation of
probability theory. Problems of Information Transmission 10:206–210, 1974.

[39] Lévy, P. Théorie de l’Addition des Variables Aleatoires. Gauthier-Villars, 1937 (second edition
1954).

[40] Li, M., and P. Vitányi, An Introduction to Kolmogorov Complexity and its Applications,
second edition. Springer Graduate Texts in Computer Science, Springer Science+Business
Media, New York, NY 1997.

[41] Linz, P. An Introduction to Formal Languages and Automata, second edition. Jones and
Bartlett Publishers, 1997.

[42] Martin-Löf, P. The definition of random sequences. Information and Control 9:602–619, 1966.

[43] Martin-Löf, P. Complexity oscillations in infinite binary sequences. Z. Wahrscheinlichkeit-
theorie verw. Gebiete 19:225–230, 1971.

[44] Matijasevič, Yu.V. On recursive unsolvability of Hilbert’s tenth problem. Logic, methodology
and philosophy of science, IV (Proc. Fourth Internat. Congr., Bucharest, 1971). Studies in
Logic and Foundations of Math. 74: 89–110. North-Holland, 1973.

[45] Matijasevič, Y., and G. Senizergues. Decision problems for semi-Thue systems with few rules.
Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, 1996.

[46] Miller, R. The ∆0
2-spectrum of a linear order. Journal of Symbolic Logic 66:470–486, 2001.

[47] Nies, A. Lowness properties and randomness. Advances in Mathematics 197(1):274–305,
2005.

[48] Nies, A. Computability and Randomness. Oxford Logic Guides, 51. Oxford University Press,
Oxford, 2009.

[49] Odifreddi, P.G. Classical Recursion Theory. Studies in Logic and the Foundations of Mathe-
matics 125, Elsevier, 1989, 1992.

[50] Post, E.L. A variant of a recursively unsolvable problem. Bulletin of the American Mathe-
matical Society 52, 1946.

144 BIBLIOGRAPHY

[51] Rogers, H. Theory of Recursive Functions and Effective Computability. The MIT Press, 1987.

[52] Schnorr, C. P. A unified approach to the definition of random sequences. Mathematical Sys-
tems Theory 5:246–258, 1971.

[53] Shafer, G. A counterexample to Richard von Mises’ theory of collectives. Translation with
introduction of an extract from Ville’s Étude Critique de la Notion de Collectif [62], available
from http://www.probabilityandfinance.com.

[54] Simpson, S.G. Subsystems of Second-Order Arithmetic. Perspectives in Mathematical Logic,
Springer-Verlag, 1999.

[55] Smith, D., M. Eggen, and R. St. Andre. A Transition to Advanced Mathematics, third edition.
Brooks/Cole Publishing Company, Wadsworth, Inc., 1990.

[56] Soare, R.I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic,
Springer-Verlag, 1987.

[57] Solovay, R. Draft of paper (or series of papers) on Chaitin’s work. Unpublished notes, May
2004.

[58] Tennenbaum, S. Non-Archimedean models for arithmetic. Notices of the American Mathe-
matical Society 6:270, 1959.

[59] Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, Series 2, 42:230–265 (1937). — A correction.
Proceedings of the London Mathematical Society, Series 2, 43:544–546 (1937).

[60] van Lambalgen, M. Random Sequences. Ph.D. thesis. University of Amsterdam, The Nether-
lands, 1987.

[61] van Lambalgen, M. The axiomatization of randomness. Journal of Symbolic Logic
55(3):1143–1167, 1990.

[62] Ville, J. Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris, 1939.

[63] Volchan, S.B. What is a random sequence. American Mathematical Monthly 109(1):46–63,
2002.

[64] von Mises, R. Probability, Statistics and Truth. Translation of the third German edition,
1951; originally published 1928, Springer. George Allen and Unwin Ltd., London, 1957.

[65] Wald, A. Die Widerspruchsfreiheit des Kollektivbegriffs der Wahrscheinlichkeitsrechnung.
Ergebnisse eines mathematische Kollektives 8:38–72, 1936.

[66] Zambella, D. On sequences with simple initial segments. ILLC technical report ML-1990-05,
University of Amsterdam, 1990.

[67] Zvonkin, A.K., and L.A. Levin. The complexity of finite objects and the development of
concepts of information and randomness by the theory of algorithms. Russian Mathematical
Surveys 25(6):83–124, 1970.

