TECHNIQUES OF
INTEGRATION

Simpson's Rule estimates
integrals by approximating
graphs with parzbolas.

Because of the Fundamental Theorem of Calculus, we can integrate a function if we know
an antiderivative, that is, an indefinite integral. We summarize here the most important

integrals that we have learned so far.

RS

jx"dx= =50 (g
n+1

J.e‘dx =e¢'+C

J. sinxdy= —cosx + C

j sec’xdxy =tanx + C
jseex tan xdx=secx + C
_[ sinh xdx = coshx + C

J.tanxdx:[nlsecﬂ +C

1 1 x
J.—q—uix = —tan"(l) +C
x*+a a a

1
—dx=In|x|+C
X

+C

cse’xdx = —cotx + C

J
Jard
J.cosxdt—unm~C
]
I

cscxcolxdx = —cscx + C
J. cosh xdx = sinhx + C

jcnt,tdx= In[sinx| + C

In this chapter we develop techniques for using these basic integration formulas to obtain
indefinite integrals of more complicated functions. We learned the most important method of
integration, the Substitution Rule, in Section 5.5. The other general technique, integration by
parts, is presented in Section 7.1. Then we learn methods that are special to particular classes
of functions, such as trigonometric functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that absolutely
guarantee obtaining an indefinite integral of a function. Therefore we discuss a strategy for

integration in Section 7.5.
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7.1

INTEGRATION BY PARTS

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that
corresponds to the Product Rule for differentiation is called the rule for integration by
parts.

The Product Rule states that if f and g are differentiable functions, then

d
= 9] = 7(x)g'(x) + gla)f'(x)
In the notation for indefinite integrals this equation becomes

[ Lrwg@ + gl )] dx = £x)g)

or f f(x)g'(x) dx + f g(x)f'(x) dx = f(x)g(x)

We can rearrange this equation as

0 [ g dx = Fg() = [ gx)f ') v

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let u = f(x) and » = g(x). Then the differentials are
du = f'(x) dx and dv = g'(x) dx, so, by the Substitution Rule, the formula for integration
by parts becomes

(2] Iudv=uv—fudu

EXAMPLE | Find J.x sin x dx.

SOLUTION USING FORMULA | Suppose we choose f(x) = x and g'(x) = sin x. Then f'(x) = 1
and g(x) = —cos x. (For g we can choose any antiderivative of g'.) Thus, using Formula
1, we have

[ xsinxdx = f()g(x) = [ o) dx
= x(—cos x) — j (—cos x) dx
= —xcosx + _[cusxdx
= —xcosx+sinx+ C

It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as
expected.
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It is helpful to use the pattern:
w=0 dv =01
du =101 v=10[]

= It's customary to write [ I dxas [ dx.

Check the answer by differentiating it.

SOLUTION USING FORMULA 1 Let

u=x dv = sin x dx
Then du = dx U= —COS X
and so

i dv I v v du

Ixsinxdx =jx sinxdx = x (—cosx) — J‘(—cosx) dx

—xcos x -+ fcos xdx

= —xcosx +sinx+ C 0O

NOTE | Our aim in using integration by parts is to obtain a simpler integral than the one
we started with. Thus in Example 1 we started with [ x sin x dx and expressed it in terms
of the simpler integral f cos x dx. If we had instead chosen 1 = sin x and dv = x dx, then

du = cos x dx and v = x*2, so integration by parts gives

2
; NN . 1 2 ol
J‘A,sm)cf:i,\—(sm),)2 QJ‘x- cos x dx

Although this is true, [ x*cos x dx is a more difficult integral than the one we started with,
In general, when deciding on a choice for « and dv, we usually try to choose u = f(x) to
be a function that becomes simpler when differentiated (or at least not more complicated)
as long as dv = g'(x) dx can be readily integrated to give v.

i1 EXAMPLE 2 Evaluate j In x dx.

SOLUTION Here we don’t have much choice for it and dv. Let

u=Inx dv = dx
1

Then du = —dx v=2x
x

Integrating by parts, we get

J.Inxa‘x=x1nx—‘[x—
X

xlnx—jdx

=xlnx—x+C

Integration by parts is effective in this example because the derivative of the function
f(x) = In x is simpler than f.

O
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= An easier method, using complex numbers, is
given in Exercise 50 in Appendix H.
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7 EXAMPLE 3 Find J' e dr.

SOLUTION Notice that 1* becomes simpler when differentiated (whereas ¢' is unchanged
when differentiated or integrated), so we choose

=4 dv = é&'dt
Then die = 21 dt v=e¢'
Integration by parts gives
E] f fe'dt = 1% — 2 f te' dt

The integral that we obtained, [ re' d1, is simpler than the original integral but is still not
obvious. Therefore, we use integration by parts a second time, this time with 1 = t and
dv =¢'dt, Then du = dt, v = e', and ’

fte’dr= te' —fe’dz‘ =te'—e' + C
Putting this in Equation 3, we get
f tPe'dt = %' - 2 f te' dt
=’ — 2te' — ¢' + C)
=r'"—- 2te' + 2¢' + C where C, = ~-2C O
K EXAMPLE 4 Evaluate [ ¢*sin x d.
SOLUTION Neither e* nor sin x becomes simpler when differentiated, but we try choosing
= e* and dv = sin x dx anyway. Then du = e*dx and v = —Cos x, $0 integration by
parts gives
(4] Ie"sin xdx = -—e‘cosx+_[e‘cosxdx
The integral that we have obtained, f e*cos x dx, is no simpler than the original one, but
at least it’s no more difficult. Having had success in the preceding example integrating

by parts twice, we persevere and integrate by parts again. This time we use u = e~ and
dv = cos x dx. Then du = e*dx, v = sin x, and

(5] fe‘cosxdx=e’siﬂx —je’sin xdx

At first glance, it appears as if we have accomplished nothing because we have arrived at
f e*sin x dx, which is where we started. However, if we put the expression for J' e*cos x dx
from Equation 5 into Equation 4 we get

f e'sinxdx = —e*cos x + e*sin x — f e*sin x dx




: i a maximum or minimum.

1! 12

« Figure 1 illustrates Example 4 by show-
ing the graphs of f(x} = e*sin x and

F(x) = {e*(sin x — cos x). As a visual check
on our work, notice that {x) = 0 when F has
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§ v Since tan™'x = 0 for x = 0, the intagral in
] Example 5 can be interpreted as the area of the
b region shown in Figure 2.
i
I
y
y=tan"'x
t
|
' 0
/ 1

I i FIGURE 2
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This can be regarded as an equation to be solved for the unknown integral. Adding
j e” sin x dx to both sides, we obtain

2 f e'sin xdx = —e*cos x + e'sinx
Dividing by 2 and adding the constant of integration, we get

f e*sin xdx = 3e*(sin x — cos x) + C O

If we combine the formula for integration by parts with Part 2 of the Fundamentg
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides of
Formula 1 between a and b, assuming f' and g’ are continuous, and using the Fundamenty]
Theorem, we obtain

@ [} 79’ dx = g, — [ gl '(x) e

EXAMPLE 5 Calculate J.D] tan~'x dx.

SOLUTION Let
u=tan"'x dv = dx

dx
1+ x?

Then dit =
So Formula 6 gives
"tan~'x dx = x tan‘lx](l) = j] —X _ix
0 01+ x°

X

1+x2dx

=1-tan'1 —O-tan"O—JAi
0

T 1ox
_I_J‘n 1—}-x2dl

To evaluate this integral we use the substitution ¢t = 1 + x? (since # has another meaning
in this example). Then dt = 2xdx, so xdx = %dt. Whenx=10,r=1; whenx = 1,
t=2;5s0

X 1 2£=1 2
o=t =t

=ilm2-mm1)=1mn2

Therefore J: tan"'x dx = ;z = J.Dl a - dx = .:_:_ _in2 I

2
1 +x 2

N AL Y TR BT T, |
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Equation 7 is called a reduction formula
pecause the exponent z has been reduced 1o
n—1 andn — 2.

7.1 | EXERCISES

SECTION 7.1 INTEGRATION BY PARTS |[||| 457

EXAMPLE 6 Prove the reduction formula

I sin"xdx = —%cos xsin®ly + = ; ) f sin" v dx
where 11 2 2 is an integer.
SOLUTION Let u = sin""'x dv = sin x dx
Then du = (n — 1) sin"?x cos x dx v = —cosx
so integration by parts gives
f sin"xdx = —cos xsin"'x + (n — 1) J' sin""%x cos®x dx

Since cos®x = 1 — sin?x, we have
J.sin"x dx = —cosxsin"'x + (n — 1) j sin" xrdyx — (n — l)f sin"x dx

As in Example 4, we solve this equation for the desired integral by taking the last term
on the right side to the left side. Thus we have

n I sin"xdx = —cos xsin" 'x + (n — 1) J sin"%x dx

1 L n—1 .
or f sin"x dx = ——cos xsin" " 'x + J- sin" "2y dx O
il n

The reduction formula (7) is useful because by using it repeatedly we could eventually
express [ sin"x dx in terms of [ sin x dx (if 1 is odd) or [ (sin x)°dx = [ dx (if n is even).

I-2 Evaluate the integral using integration by parts with the I J‘ arctan 41 dr 1. J'Ps Inp dp

indicated choices of u and dy.

L I-tz Inxdy; u=Inx, dr =x%dx 13. Jrsec221dr 14, f.s‘Z‘ds
2 | Bcos0dd; u=8, dv=cosfd
J. 4 =k 1 Ss0shg [15] J‘ {In x)*dx 16. J. ¢ sinh mt dt
332 Evaluaie the integral. [ exsin 3048 18. [ e~cos 206
;1 XcosSydy 4 xe " dx
j I 9. J'n”:sin 3rdt L‘ (2% + e dx
g J' re'? dr 6. j t sin 21 dr ;
i zl.L'fcoshfd: 22. f:%dy
: I-‘f sin oy dy 8. J..rz cos mx dx i

2 Inx ) w4 !
9. Ilﬂ(Zx + 1) dx 10, J.sin_lxdx 23. L - dx 24, J; x7cosxdx
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1 V3
25. L ?);;dy 26. L arctan(1/x) dx

dx

5 Jn (In x)?

3

217. jm cos 'xdx
1] - 1 X

29. I cos x In(sin x) dx

30 T e
‘ L Ji A+t !

31l j: x*(In x)* dx 32, J: e’ sin(t — 8) ds

e

33-38 First make a substitution and then use integration by parts
to evaluate the integral.

33. _[ cos 1/: dx

34, J. e dt

B5] IJ; ? cos(6?) dBt 36. j; ™ gin 2t dt

Jafl

37. J‘\. In{l + x) dx 38. I sin(In x) dx

e

39-42 Evaluate the indefinite integral. Illustrate, and check that
r answer is reasonable, by araphing both the function and its
antiderivative {take C = 0).

29, j (2x + 3)e“dx 40. jxm In x dx

41. jx:'«ll + x? dx

——_——________‘____—————__—______

42, J- xtsin 2x dx

43, (a) Use the reduction formula in Example 6 to show that

5 in2
Isinzxdx=£—ﬁi+ C

2 4
{b) Use part (a) and the reduction formula to evaluate

| sin'xdx.
44, () Prove the reduction formula

n=1 e 1

1 4
_‘- cos"x dx = —cos" 'x sin x + j cos” *x dx
n

(b) Use part (a) to evaluate | cos*x dx.
(¢) Use parts (a) and (b) to evaluate | cos'x dx.
45, (a) Use the reduction formula in Example 6 to show that

n—

a2 . 1 w2 . .
L sin"x dx = J.U sin" ?x dx

n

where n = 2 is an integer.

(b) Use part (a) to evaluate /2 gin’x dx and [ sin’x dx.
(c) Use part (a) to show that, for odd powers of sine,
it s _ Q4G 20
[ sint i dx = 5T )

46. Prove that, for even powers of sine,

5""'(211"1)1
4620

.
L sin?'v dx =
)

1-3-
2
47-50 Use integration by paris to prove the reduction formula.

j- (In x)"dx = x(In x)" — » I (In x)"'dx

48, J-x"e‘dx =x"e* —n j x"letdx

n=1

tan” X
49, tan"x dx = . j' " ixdx (= 1)
o
tanx see 2 n— 2
50. j- sec'vdx = _:—T_ + : J sec” i dx (n#1)
n- n—

e T = e e

51. Use Exercise 47 to find [ (In x) dx.

52. Use Exercise 48 to find | x*e* dx.

5354 Find the area of the region bounded by the given curves.

53, y=xe %, y=0, x= 5

54 y=3lnx y=xhnx

A e ey

55-56 Use a graph to find approximate y-coordinates of the

points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.
55, y = x sinx, y=(x -2 |

56. y = arctan 3x, ¥y = %x

57-60 Use the method of cylindrical shells to find the volume J
generated by rotating the region bounded by the given curves |

about the specified axis.
B7 y = cos(wx/2), y=0, 0 =x= 1:  about the y-axis

58, y= ¢’ y=¢ %, x=1; about the y-axis

59. y=¢ %, y=0,x=-1 x= 0; aboutx =1
60, y=¢', x = 0, y=m about the x-axis |
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61. Find the average value of f(x) = x?In x on the interval [1, 3].

62. A rocket accelerates by burning its onboard fuel, so its mass
decreases with time. Suppose the initial mass of the rocket at
liftoff (including its fuel) is m, the fuel is consumed at rate r,
and the exhaust gases are ejected with constant velocity v.
(relative to the rocket). A model for the velocity of the rocket
at time 7 is given by the equation

m—rt

o{t) = —gt — v.In
m
where g is the acceleration due to gravity and ¢ is not too
large. If g = 9.8 m/s?, m = 30,000 kg, r = 160 kg/s, and
ve = 3000 m/s, find the height of the rocket one minute
after liftoff.

A particle that moves along a straight line has velocity
v(f) = t*™" meters per second after # seconds. How far will
it travel during the first 1 seconds?

64. If f(0) = g(0) = O and f" and g” are continuous, show that

[y 70"@) dx = flalg'@) - fadgta) + [ £ (gl dx

65. Suppose that f(1) = 2, f(4) = 7, f'(1) = 5, f'(4) =3, and
f* is continuous, Find the value of [} xf"(x) dx.

(a) Use integration by parts to show that
f fx) dx = xf(x) - fo (x) dx

(b) If £ and g are inverse functions and f' is continuous,
prove that

[ 76 ax = bs0) - ar@) - [ gty ay

S (=)

[Hint: Use part (a) and make the substitution y=f(x).]
(c) In the case where f and g are positive functions and
b > a > 0, draw a diagram to give a geometric interpre-
tation of part (b).
(d) Use part (b) to evaluate [l x dx.

67, We arrived at Formula 6.3.2, V = " 27x f(x) dx, by using
cylindrical shells, but now we can use integration by parts to
Prove it using the slicing method of Section 6.2, at least for
the case where £ is one-to-one and therefore has an inverse
function g. Use the figure to show that

V=abld — wa’c — f:’ wlg(y)]dy

Make the substitution y = £(x) and then use integration by

SECTION 7.1 INTEGRATION BY PARTS [||| 459

parts on the resulting integral to prove that

V= J:' 27x f(x) dx

68. Let [, = [ sin"x dx.

(a) Show that Ly = T = by,
(b) Use Exercise 46 to show that

Luts  2n+1
by 2n + 2

(c) Use parts (a) and (b) to show that

2Tl i+ 1 = 12n+l <
2n+ 2 b,

and deduce that lim, .. fa,s1/h, = 1.
(d) Use part (c) and Exercises 45 and 46 to show that

and is called the Wallis product.

(e) We construct rectangles as follows. Start with a square of
area 1 and attach rectangles of arca 1 alternately beside or
on top of the previous rectangle (see the figure). Find the
limit of the ratios of width to height of these rectangles.

I
B ey ““—‘r—"}
[
|
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Figure 1 shows the graghs of the integrand

sin’x cos®x in Example 2 and its indefinite inte-

gral {with € = 0). Which is which?

0.2

FIGURE |

-0

D,
-

7.2‘ TRIGONOMETRIC INTEGRALS

In this section we use trigonometric identities to integrate certain combinations of trigo-
nometric functions. We start with powers of sine and cosine.

EXAMPLE | Evaluate j cos’x dx.

SOLUTION Simply substituting u = cOS X isn’t helpful, since then du = —sin x dx. In order
to integrate powers of cosine, we would need an extra sin x factor. Similarly, a power of
sine would require an extra cos x factor. Thus here we can separale one cosine factor and
convert the remaining cos’x factor to an expression involving sine using the identity
sin*x + cos’x = I:
cos’x = cos®x + cos x = (I — sin’x) cos x
We can then evaluate the integral by substituting 1 = sin x, 50 du = C0S X dx and
I Lt o e > 5
Icosxdz = J.cosx cos xdx = j (1 — sin’x) cos x dx
= .[ (1-u?)du=u— qut+ C
= sin x — 3sin’x + C m|
In general, we try to write an integrand involving powers of sine and cosine in a form
where we have only one sine factor (and the remainder of the expression in terms of

cosine) or only one cosine factor (and the remainder of the expression in terms of sine).
The identity sin® + cos’x = 1 enables us to convert back and forth between even powers

of sine and cosine.

EXAMPLE 2 Find J. sin’x cos®x dx.
SOLUTION We could convert cosix to 1 — sinx, but we would be left with an expression in
terms of sin x with no extra cos x factor. Instead, we separate a single sine factor and
rewrite the remaining sin“x factor in terms of cos x:

sin®x cose = (sin%x)? cosx sinx = (1 — cos®x)” cos’x sin x
Substituting 1 = cos x, we have du = —sin x dx and so

j. sin’x cos’x dx = j (sin®x)* cos’x sin x dx

= J (1 — cos®x)*cos’ sin x dx

I

J. (1 — u*)u?(—du) = -j (? — 2u* + u®)du

u? W’
Y Ly SIS
(3 ) 7)

1 2 1
= —1cos’x + cos™x — jcos'x + C




» Example 3 shows that the area of the region
shown in Figure 2 is /2.

1.5

y=sin’x

DL JT.—

-0.5

FIGURE 2
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In the preceding examples, an odd power of sine or cosine enabled us to separate a
single factor and convert the remaining even power. If the integrand contains even powers
of both sine and cosine, this strategy fails. In this case, we can take advantage of the fol-
lowing half-angle identities (see Equations 17b and 17a in Appendix D)

sinx = 1(1 — cos 2x) and cos’ = (1 + cos 2x)

7 EXAMPLE 3 Evaluate fﬂh sinZx dx.

SOLUTION If we write sin®x = 1 — cos’x, the integral is no simpler to evaluate. Using the
half-angle formula for sin’v, however, we have

J:sinzxdx = %Lﬁ(l — cos 2x) dx = [%(J. — %sin 2):)];T
=3 = 1sin 27) = §(0 — §sin0) = im

Notice that we mentally made the substitution # = 2x when integrating cos 2x. Another
method for evaluating this integral was given in Exercise 43 in Section 7.1. O

EXAMPLE 4 Findj sinx dx.
SOLUTION We could evaluate this integral using the reduction formula for J sin"x dx
(Equation 7.1.7) together with Example 3 (as in Exercise 43 in Section 7.1), but a better

method is to write sin‘x = (sin%)? and use a half-angle formula:

sin‘x dx = | (sin®)?dx
J ]

j 1 — cos 2x Zd
= — | dx
2

%f (1 = 2cos2x + cos?2x) dx

Since cos®2x occurs, we must use another half-angle formula

cos?2x = (1 + cos 4x)

This gives

jsin"’xdx = éj[l — 2c0s 2x + 5(1 + cos 4x)] dx

-

I(%*2C082x+%cos4x)dx

~31(§x—sin2x+§sin4x) gt O

To summarize, we list guidelines to follow when evaluating integrals of the form
_fsin”‘x cos"x dx, where m = O and n = 0 are integers.




462

CHAPTER 7 TECHNIQUES OF INTEGRATION

STRATEGY FOR EVALUATING | sin™x cos"x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use
cos?x = 1 — sin to express the remaining factors in terms of sine:

J. sin"x cos*lx dx = j sin”x (cos™x)fcos x dx
= j sin"x (1 — sin’x)*cos x dx

Then substitute # = sin x.

(b) If the power of sine is odd (m = 2k -+ 1), save one sine factor and use
sinx = 1 — cos?x to express the remaining factors in terms of cosine:

j sin®**1x cos"x dx = J. (sin®x)*cos"x sin x dx
= I (1 — cos®x)!cos”x sin x dx

Then substitute = cos x. [Note that if the powers of both sine and cosine are
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities
sin?x = 3(1 — cos 2x) cos’x = 3(1 + cos 2x)

It is sometimes helpful to use the identity

: i
sin x cos x = 3sin 2x

We can use a similar strategy to evaluate integrals of the form j'tan'"x sec"x dx. Since
(d/dx) tanx = sec’x, we can separate a sec2y factor and convert the remaining (even)

power of secant to an expression involving tangent using the identity secly = 1 + tan’x.
Or, since (d/dx) sec x = sec x tan x, we can separate a sec x tan x factor and convert the
remaining (even) power of tangent to secant,

i1 EXAMPLE 5 Evaluatej tan®x sec'x dx.

SOLUTION If we separate one sec?y factor, we can express the remaining sec?x factor in
terms of tangent using the identity secly = 1 + tan®x. We can then evaluate the integral
by substituting ¢ = tan x s0 that du = sec’x dx:

j. tan®y sectx dx = j tan®y sec®x sec®x dx
= J. tan®x (1 + tan’x) sec’x dx

= J‘ u®(l + u)du= j (u® + u®)du

=ltan’x + jtan’x + C




ce
n)

ne
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EXAMPLE 6 Find f tan®# sec’0 de.

SOLUTION If we separate a sec?d factor, as in the preceding example, we are left with

a sec®@ factor, which isn’t easily converted to tangent. However, if we separate a

sec @ tan ¢ factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity tan®6 = sec®@ ~ 1. We can then evaluate the
integral by substituting u = sec 6, so du = sec § tan 8 46:

j tan®@ sec’8dg = f tan*® sec®d sec @ tan 6§ d6
= | (sec’d — 1)*sec®@ sec 6 tan 0 d6
J
= j (u* — 1)Pubdu

= f (' — 2u® + u%) dy

u" TR
=——-22 12 ¢
11 9 7
= fysec’d — 3 sec®0 + Lsec’d + C O

The preceding examples demonstrate strategies for evaluating integrals of the form
_[ tan"x sec”x dx for two cases, which we summarize here.

STRATEGY FOR EVALUATING [tan"‘x sec'x dx T

(a) If the power of secant is even (n = 2k, k = 2), save a factor of secy and use
sec’x = 1 + tan’s to express the remaining factors in terms of tan x-

f tan"x sec?y dx = f tan”x (sec’x)* !secx dx

= f tan"x (1 + tan®)* ' secZx dx

Then substitute # = tan x.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x and
use tan’x = sec’r — [ to express the remaining factors in terms of sec x:

f tan**'x sec"y dx = f (tan*x)*sec” 'x sec x tan x dx

= J- (sec®x — 1)*sec” 'x sec x tan x dx

Then substitute u = sec x.

For other cases, the guidelines are not as clear-cut. We may need to use identities, inte-
gration by parts, and occasionally a little ingenuity. We will sometimes need to be able to
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integrate tan x by using the formula established in (5.5.5):

jtanxdx=1n|secx| +C

We will also need the indefinite integral of secant:

1 L Jsecxdx=ln|secx+tanx|+c

We could verify Formula I by differentiating the right side, or as follows. First we multi-
ply numerator and denominator by sec x + tan X%

sec x + tan x

'[secdec:J‘secx dx

sec x -+ tan X

dx

J- seclx + sec x tan x
sec x + tan x

If we substitute ¥ = sec x + tan x, then du = (sec x tan x -+ secx) dx, so the integral
becomes [ (1/u) du = In || + C. Thus we have

jsecxdx=ln]secx+ tanx| + C

EXAMPLE 7 Find j' tan’x dx.

§0LUTION Here only tan x occurs, S0 We Use tanx = sec’r — 1 to rewrite a tanZx factor in
terms of sec?x:

j tan’x dx = j tan x tan’x dx = I tan x (sec’x — 1) dx

= j tan x sec’x dx — j tan x dx

tan’x
=T~—ln|secx[+ C

In the first integral we mentally substituted 1 = tan x so that du = sec’x dx. O

If an even power of tangent appears with an odd power of secant, it is helpful to express
the integrand completely in terms of sec x. Powers of sec x may require integration by
parts, as shown in the following example.

EXAMPLE 8 Find j secx dx.

SOLUTION Here we integrate by parts with

I =secx dv = sec’x dx

il

tan x

du = sec x tan x dx v
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» These product identities are discussed in
Appendix D.
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Then J. sec’x dx = sec x tan x — j' sec x tan’y dx

sec x tan x — J sec x (sec?x — 1) dx

sec X tan x — jsecﬁ- dx + j sec x dx
Using Formula 1 and solving for the required integral, we get

Jsec3xdx=%(secxlanx-'r1n|secx T+ tEml'D+ c =

Integrals such as the one in the preceding example may seem very special but they
oceur [requently in applications of integration, as we will see in Chapter 8. Integrals of
the form j cot"x csc"x dx can be found by similar methods because of the identity
I + cot’x = csc’x.

Finally, we can make use of another set of trigonometric identities:

(2] To evaluate the integrals (a) [ sin mx cos nx dx, (b) [ sin mx sin nx dx, or
(c) _[ cos mx cos nx dx, use the corresponding identity:

(a) sinA cos B = 3[sin(A — B) + sin(A + B)]
(b) sinA sin B = j[cos(4 — B) — cos(4 + B)]
(c) cos A cos B = 3[cos(4 — B) + cos(A + B)]

EXAMPLE 9 Evaluate f sin 4x cos 5x dx.

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to use
the identity in Equation 2(a) as follows:

j sin 4x cos 5x dx = f 3[sin(—x) -+ sin 9x] dx

= %J‘ (—sin x -+ sin 9x) dx

= Heosx — dcos ) + C ]
@ EXERCISES
1~49 Evaluate the integral. . 3
9. L sin*(31) dt 10. '[0 cost0 dg
L jsin"x cos’x dx 2. f sin®x cos’x dx
IL | (1 + cos 6)*d8 [2. | xcos’xdx
A X
E I H sin’x cos’x dx 4, J'--/l cos’y dx J‘ j
/2
3 WU en gl L] 4
5 Ism (mx) cos®(rrx) dx I sin (\/_ [13] J.n sin®x cos?x dx 14, J:) sin®t cos*t dt

W[ coa o

w2 . cos’a -
2 15. 16. 7] 6) d8
8. J; sin?(26) do -[\/SlTE fcos cos’(sin 6)
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i7. J. cos?x tan’x dx 18. '[ cot®@ sin*f do
x4 sin 2x
19. I M dx 20. J cos?x sin 2x dx
_ sinx
21. J. sec’x tan x dx 22. j:ﬂ sec’(1/2) dt
z] j tan’x dx 24. J. (tan®x -+ tan'x) dx
25. Isec"tdt 26. J:rm sec’f tan*0d@
w3 s 4 3 5
27. J.n tan’x sec’x dx 28. I tan*(2x) sec’(2x) dx
3 LZE I 5
J- tan’x sec x dx 30. L tan®y sec®x dx
31 I tan’x dx 32. I tan®(ay) dy
tanf
I _an_4 de 34, J. tan’x sec x dx
s 6
35 jxqecxtantdr 36 jSi—ndeq)
d : xd; « iera
37. J‘ﬂ2 cot?x dx 38. r’m cot’v dx
/6 LE)
39. I cot’a cscla da 40. J csetx cot®x dx
41. I csc x dx 42, J‘m’s cscix dx
/6
[43] J. sin Bx cos 5x dx 44, J cos 7x cos dax dx
. . cos x + sinx
45, j sin 50 sin # df 46. I - dx
sin 2x
1 — tan’x dx
47. | ———da 48, | —
-[ seciy * J. cosx — |

49, I t sec(1?) tan®(r?) dr

53. j sin 3x sin 6x dx

54. j sec? % dx

[55. Find the average value of the function f {x) = sin’ cos’x on
the interval [—m, 7]

56. Evaluate { sin x cos x dx by four methods:
(a) the substitution # = cos x
(b) the substitution u = sin x
{c) the identity sin 2x = 2 sin x cos x
(d) integration by parts
Explain the different appearances of the answers.

57-58 Find the area of the region bounded by the given curves.
57. y = sin’x, y = cos’x, —m/d<x<wf4

58. y = sin’x, y =cos’x, wA=<x= 57/4

59-60 Use a graph of the integrand to guess the value of the

integral. Then use the methods of this section to prove that your
guess is correct.

59, j:ﬂ cos’x dx 60. J: sin 27rx cos 57X dx

61-64 Find the volume obtained by rotating the region bounded
by the given curves about the specified axis.

y=sinx, y=0, #/2<x<m; aboutthe x-axis
62. y =sin’x, y=0, 0 <x =< m; about the x-axis
63. y =sinx, y =cOsX, 0<x=<a/4; abouty=1

64, y=secx, y=cosx, 0 =x= a/3; abouty= —1

50. If [/* tan®x sec x dx = /, express the value of

[ tan®x sec x dx in terms of /.

51-54 Evaluate the indefinite integral. Illustrate, and check that
your answer is reasonable, by graphing both the integrand and its

antiderivative (taking C = 0).

51 '[x sin*(x?) dx 52. j. sin®x cos’x dx

65. A particle moves on a straight line with velacity function
#(r) = sin wt cos’et. Find its position function s = f (1)
if f(0)=0.

66. Houschold electricity is supplied in the form of alternating
current that varies from 155 V to —155 V with a frequency
of 60 cycles per second (Hz). The voltage is thus given by
the equation

E(7) = 155 sin(12077)

where ¢ is the time in seconds. Voltmeters read the RMS

(root-mean-square) voltage, which is the square root of the

average value of [£()]* over one cycle.

{a) Calculate the RMS voltage of household current.

(b) Many electric stoves require an RMS voltage of 220 V.
Find the corresponding amplitude A needed for the volt-
age E(f) = A sin(1207).




67-69 Prove the formula, where m and n are positive integers.

617. J‘” sin mx cos nxdx = 0
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70. A finite Fourier series is given by the sum

N
Fx) =3 a,sin nx

=1

68. | " sinmx sin ny dr = {O [1]: =R = aisinx + a;sin 2x + -+ - + gy sin Ny
- 7 ifm=n
Show that the mth coefficient a,, is given by the formula
o [ &3 4 {0 if m=#n 1
; €os mx cos nx dx = . -
6% )., w ifm=n Ay = —f_ F(x) sin mx dx
7.3 | TRIGONOMETRIC SUBSTITUTION

In finding the area of a circle or an ellipse, an integral of the form f vJa? — x? dx arises,
where a > 0. If it were j' x+/a® — x? dx, the substitution # = a? — x? would be effective
but, as it stands, [ /a2 — x2 dx is more difficult., If we change the variable from x to 6 by
the substitution x = a sin 6, then the identity 1 — sin6 = cos2@ allows us to get rid of the
root sign because

va* —x% = ./a? — a’sin20 = Ja¥ (1 — sin?6) = y/a2cos?0 = a|cos 6|

Notice the difference between the substitution # = a® — x2 (in which the new variable is
a function of the old one) and the substitution x = a sin (the old variable is a function of
the new one).

In general we can make a substitution of the form x = g(£) by using the Substitution
Rule in reverse. To make our calculations simpler, we assume that g has an inverse func-
tion; that is, g is one-to-one, In this case, if we replace u by x and x by ¢ in the Substitution
Rule (Equation 5.5.4), we obtain

[ G ax= [ faw)g ar

This kind of substitution is called inverse substitution.

We can make the inverse substitution x = g sin 8 provided that it defines a one-to-one
function. This can be accomplished by restricting 8 to lie in the interval [-a/2, w/2]

In the following table we list trigonometric substitutions that are effective for the given
radical expressions because of the specified trigonometric identities. In each case the restric-
tion on 6 is imposed to ensure that the function that defines the substitution is one-to-one.
(These are the same intervals used in Section 1.6 in defining the inverse functions.)

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

Expression Substitution Identity
e . 7 ™ o5 4
Va? — x? X = asin 8, —?S 8$? I — s5in°8 = cos*@
T T R
a? + x? x=atan 8, —?-( 8<? 1 + tan’8 = sec?s
< - 7 37 5 5
Vxt—a? x=asecl 0=0<— or 7r~<_6<7 sec @ — 1 = tan*@
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9 — 2
£ EXAMPLE | Evaluate |~ = dx.

SOLUTION Let x = 3 sin 6, where —wf2=0= ar/2. Then dx = 3 cos 0 d6 and

SO = x% =./9 - 9sin?f = +/9cos’ = 3|cos 6| = 3cos 6

(Note that cos § = 0 becanse —7/2 = 0 = 77/ 2.) Thus the Inverse Substitution Rule

gives
J9 - x? 3cos 6
[2 == [ 5 5g 3c0s 040
2
e
= j C?s., do = j cot>0 df
sin“6

= j (csc?6 — 1) dB

=—cotf—0+C

Since this is an indefinite integral, we must return to the original variable x. This can be

3 done either by using trigonometric identities to express cot @ in terms of sin @ = x/3 or
x by drawing a diagram, as in Figure 1, where 6 is interpreted as an angle of a right tri-

angle. Since sin 8 = x/3, welabel the opposite side and the hypolenuse as having lengths x

t
= and 3. Then the Pythagorean Theorem gives the length of the adjacent side as v9 — x4
9-x so we can simply read the value of cot @ from the figure:
FIGURE | g
sin 8= -;* cot 0 = X

(Although 6 > 0in the diagram, this expression for cot @ is valid even when 6 < 0.)
Since sin # = x/3, we have 6 = sin~'(x/3) and so

j——gr;lf-dx=———9—;£——sin"('—;) + C |

EXAMPLE 2 Find the area enclosed by the ellipse

x2 y2
F i ]
at b

SOLUTION Solving the equation of the ellipse for y, we get

xr at—x N
= or y==
o 22

;‘a'l s xZ

L]
~
oo

2
(0.b) —;’2—= -

g
/; (.0 Because the ellipse is symmetric with respect to both axes, the total area A is four times
\ the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant 15
given by the function

b
D= uP =zt 0=x=a
FIGURE 2
2 2 b
:‘_2 %:1 and so0 A= :'—\/ﬂz-xzdx
a = a
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To evaluate this integral we substitute x = g sin 6, Then dx = g cos 0 d6. To change
the limits of integration we note that when x = 0, sin § = 0.50 8 =0; when x = g,
sinf@=1,s0 8= 7/2. Also

var —x? = Ju? — a?5in?d = /a? cos?g = a|cos 6| = acos @

since 0 < 0 = 77/2. Therefore

A =4£F“/“2_x2 dx=4£f'"'/2ac058-acos 6do
a Jo a Jo

o fﬂ”/z cos’0.d0 = 4ab [ 1(1 + cos 26) df

= 2ab[0 + 3sin 20]7 = Z“b(g +0- 0) = mab

We have shown that the area of an ellipse with semiaxes @ and b is 7ab. In particular, s
taking @ = b = r, we have proved the famous formula that the area of a circle with
radius r is 72, O

NOTE | Since the integral in Example 2 was a definite integral, we changed the limits

of integration and did not have to convert back to the original variable .

1
7 EXAMPLE 3 Findj.—ﬁ‘dx.
X X -

SOLUTION Letx = 2tan §, —#/2 < 6 < /2. Then dx = 2 sec®6 d and

Va2 + 4 = /Han?0 + 1) = \/Fsec?d = 2|sec 8] = 2 sec §

Thus we have

2sec?@ d@ 1 rsecH
5 f 8

J' dx _ _
/¥ + 4 4tan’4 - 2 sec @ tan?g
To evaluate this trigonometric integral we put everything in terms of sin # and cos 6:

secd 1 cos’0  cos 8

tan’d  cos 6 sin?0  sin@

Therefore, making the substitution 1 = sin 8, we have

J‘__dff_=i
P e i

= We use Figure 3 to determine that csc § = +/x + 4 /x and so

Vxl+ 4

dx
ting= £ ——
2 j x/x2+ 4 4x i
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FIGURE 4

sec § =

X

d
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X
EXAMPLE 4 Find J' o dx.
=

SOLUTION Tt would be possible to use the tnoonometnc substitution x = 2 tan @ here (as in
Example 3). But the direct substitution u = x* + 4 is simpler, because then du = 2xdx
and

[ == ?Ipmtzjm‘.ﬁ4c=Jﬁ?Z+c o

[ WoTE | Example 4 illustrates the fact that even when trigonometric substitutions are
possible, they may not give the easiest solution. You should look for a simpler method first.

dx
EXAMPLE 5 Evaluate I \/——— , where a > 0.
xl i a'l

SOLUTION | We let x = a sec 0, where 0 < < w/2orm< < 377/2. Then
dx = a sec 6 tan 0 d6 and

JxZ— a? = Ja¥(sec?@ — 1) = Jattan?d = a|tan 6| = atan 0

Therefore
asec dtan 0

I\/Iﬁ? j- atan 0 “wel o

=jsec §d0 = In|sec @ + tan 6| + C

The triangle in Figure 4 gives tan g = /x? — a?/a, so we have

J- dx =1n£+\/x2—a2
IIZ _.aZ

+C
a a

=In|x+ x2—a*|—lna+C

Writing C, = C — lna, we have

0 [ —mlx+ V@] 4 G

SOLUTION 2 For x > 0O the hyperbolic substitution x = a cosh ¢ can also be used. Using the
identity cosh®y — sinh*y = 1, we have

Jxr—at = Ja?(cosh?t — 1) = Ja? sinh*t = a sinh?

Since dx = asinh t dt, we obtain

asinh t dt

Im J. asinht

Since cosh f = x/a, we have ¢ = cosh™'(x/a) and

—jm=r+c

2] J f__xzdf o = cosh"(%) +C
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Although Formulas 1 and 2 look quite different, they are actually equivalent by
Formula 3.11.4. O

As Example 5 illustrates, hyperbolic substitutions can be used in place of trigo-
nometric substitutions and sometimes they lead to simpler answers. But we usually use
trigonometric substitutions because trigonometric identities are more familiar than hyper-
bolic identities.

., (33 %
E —_—
XAMPLE 6 Find L T

SOLUTION First we note that (4x® + 9)* = (y/4x% + 9 )’ so trigonometric substitution

is appropriate. Although +/4x? + 9 is not quite one of the expressions in the table of
trigonometric substitutions, it becomes one of them if we make the preliminary substitu—
tion u = 2x. When we combine this with the tangent substitution, we have x = 3 tan 6,
which gives dx = 7 sec* df and

dx.

VAx2+9 = /9 tan?0 + 9 = 3 sec 6

When x = 0, tan 6 = 0, so 6 = 0; when x = 3/3/2, tan 6 = /3, 50 = 7/3.

Jﬁ/’Z x3 o w3 %taﬂ:ig 5 ,
J;’ (4x? + 9)*? dx = Ju 27 secig 2 oC 6do
. /3 lan39 _ 3 /3 Sin39
= lﬁL P do 15_[0 — 35 de

Now we substitute 1 = cos 6 so that du = —sin 0 4. When @ = 0, u = 1; when
0 = 7/3, u = 3. Therefore

3

3312 x 2 1 — u? 12
_L (4x? + 9P~ dx = _%L du = (1 —u?)du

1/2
=E—6[u+ﬂ =3t +2) -+ )] =2 m|

EXAMPLE 7 Evaluate j —‘/?J—%dx
—LX — X

SOLUTION We can transform the integrand into a function for which trigonometric substitu-
tion is appropriate by first completing the square under the root sign:

3-2%—x*=3-("+2)=3+1—-(x*+2x+ 1)
=4 —(x+1)7?

This suggests that we make the substitutionu = x + 1. Thendu = dxand x = u — 1, s0

-1
J‘ﬁdx=~f#_—;du
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Figure 5 shaws the graphs of the integrand

in Exampla 7 and its indefinite integral (with
C = 0). Which is which?

3
P ) 2
=~
-2
FIGURE 5

7.3 ‘ EXERCISES

We now substitute

f;?f%f?ﬂﬁ:

u = 2sin 6, giving du = 2¢os §d6 and /4 — u® = 2cos 0, 50

2sinf—1

2 de
2 cos @ cosid

=j(2sine— 1) do

=—2cos—6+C

-4 —ut - sin*‘(i)
2

—/3— 2x — x* — sin™

+ C

x+1
+ O
(554) e

|-3 Evaluate the integral using the indicated trigonometric sub-

stitution. Sketch and label the associated right triangle.

x=3sechd

1
N v i
2. IxJ\/Q —x2dx; x=23sinf

x}

@Jﬁd'ﬁ x=3tan 6

21. j"‘ﬁ——ﬂw—dx
0 /9 — 25x2

23.j 5T Ax — x° dx

25 = d
' J' Jer x4+ 1 +
27. Jl Jx? 4 2xdx

4-30 Evaluate the integral.

4. j”ﬁ 2

o L/16 — &2 dx

3
2 1 2 4x?— 1
5. Iﬁ Iam d[ 6. .[l __x_'dx
1 x?
-[ 2% /25 — dx B »[ Jx? + 100 dx

. J' ' dx

t5
10. j—ﬁdf
. '[\/1 —dxtdx 12. L‘ /3 ¥ & dx

du

L w [ srew
6 4 3 = 2/3 dx
15. L x*fa?— xtdx 16. L’i/! F\ﬁ——?’__:_l_
x dx
0 | g 8. | oy = o

!
20. j ¥y dt

29. '[x\/] T dx

o [ T

dt
. [
2 —6t+ 13

X
26. | ————=7¢
J 3+ 4x — 4x2)? *
xt+1
28, | ———dx
j(x'—2.1‘+2)2 *

30. J-:.-,h_ cos !

——!
o /1 + sin?t

BI (1) Use trigonometric substitution to show that

dx
[ e et

+al)+C

(b) Use the hyperbolic substitution x = a sinh ¢ to show that

J'——fii—m sioh—{ =) + €
e ;

* ‘These formulas are connected by Formula 3.11.3.

32. Evaluate

X
P

(2) by trigonometric substitution.
(b) by the hyperbolic substitution x = a sinh 1.

33, Find the average value of f(x) = vx* — /e, lsx=T

34. Find the area of the region bounded by the hyperbola
9x? — 4y? = 36 and the line x = 3.




36.

[
Ll

35.

7.

38.
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Prove the formula A = 129 for the area of a sector of

a circle with radius r and central angle 6. |Hint: Assume

0 < 8 < @/2 and place the center of the circle af the origin
50 it has the equation x* + y? = 2 Then A is the sum of the
area of the triangle POQ and the area of the region POR in
the figure.]

V0
0| 0 R «x

Evaluate the integral

J dx

xyxr =2

Graph the integrand and its indefinite integral on the same
screen and check that your answer is reasonable.

Use a graph to approximate the roots of the equation
x2y/4 — x* =2 — x. Then approximate the area bounded by
the curve y = x*/4 — x2 and the line y=2-1x

A charged rod of length L produces an electric field at point
P(a, b) given by

E(P) = J'L—n Ab A

-a dargg(x? + H2)V?

where A is the charge density per unit length on the rod and
& is the free space permittivity (see the figure). Evaluate the
integral to determine an expression for the electric field £ (P).

y

° Pla, b)

7.4
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I

39. (a) Use trigonometric substitution 1o verify that

J‘:\/az — 2 dt = 3a%sin"(x/a) + lx /2T — 2

(b} Use the figure to give trigonometric interpretations of
both terms on the right side of the equation in part (a).

yai

=

40. The parabola y = 3x? divides the disk x* + ¥? = Binto two

41.

42,

43,

parts. Find the areas of both parts.

Find the area of the crescent-shaped region (called a lune)
bounded by arcs of circles with radii » and R, (See the figure.)

A water storage tank has the shape of a cylinder with diam-
eter 10 fi. It is mounted so that the circular cross-sections
are vertical. If the depth of the water is 7 ft, what percentage
of the total capacity is being used?

A tarus is generated by rotating the circle
x* + (y — R)* = r? about the x-axis. Find the volume
enclosed by the torus.

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

In this section we show how to integrate any rational function (a ratio of polynomials) by
expressing it as a sum of simpler fractions, called partial fractions, that we already know
how to integrate. To illustrate the method, observe that by taking the fractions 2/(x—1)
and 1/(x + 2) to a common denominator we obtain

2 1 _2(x+2)—(x~1)_ x+35
x+2 (x=1)x+2) x> +x—2

x'—=1

If we now reverse the procedure, we see how to integrate the function on the right side of
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this equation:

x+5 2 1
__,__.—a'_= RS L S h
J.x2+x-—2 g j(x—l x*lr2)dJL

=2Mn|x—1|—I|x+2|+C

] To see how the method of partial fractions works in general, let’s consider a rational
1 function

- P(x)

¥ =

| o)

il where P and Q are polynomials. It's possible to express f as a sum of simpler fractions
1 provided that the degree of P is less than the degree of Q. Such a rational function is called
| proper. Recall that if

P(x) = a.x" + Buogx™ V4 o+ ax + ag

where a, ¥ 0, then the degree of P is n and we write deg(P) = n.

| If f is improper, that is, deg(P) = deg(Q), then we must take the preliminary step
i of dividing Q into P (by long division) until a remainder R(x) is obtained such that
deg(R) < deg(Q). The division statement is

i P(x) R(x)
il u 160 =509 =5 o
where § and R are also polynomials.
g As the following example illustrates, sometimes this preliminary step is all that is
‘ 1| required.

3 + »
i1 EXAMPLE | Findj i - ;'dx.

SOLUTION Since the degree of the numerator is greater than the degree of the denominator,

- 4y 42
: l e #—IT we first perform the long division. This enables us to write

| =t

l — - 2

1! & J‘A J‘d’x=J‘ 2+x+2+ dx

} = p= x—1

1 2x 3 2

f 2¢—2 _ x X ’ .

| == 3+2+2.1,+21nl.x 1|+ C 0

b The next step is to factor the denominator O(x) as far as possible. It can be shown that
‘ any polynomial Q can be factored as a product of linear factors (of the form ax + b)
I and irreducible quadratic factors (of the form ax? + bx + ¢, where b* — 4ac < 0). For
instance, if Q(x) = x* — 16, we could factor it as

i O(x) = (x? — 4)(x* + 4} = (x — 2)(x + 2)x* + 4)

| The third step is to express the proper rational function R(x)/Q(x) (from Equation 1) 85
a sum of partial fractions of the form

| \ A or Ax + B
it (ax + by (ax® + bx + ¢




jat
b)
or

» Another method for finding A, B, and €
is given in the note after this exampla.
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A theorem in algebra guarantees that it is always possible to do this. We explain the details
for the four cases that occur,

CASE | = The denominator Q(x) is a product of distinct linear factors.

This means that we can write
Q(x) = (a1x + by)(azx + b)) - - (awx + b)

where no factor is repeated (and no factor is a constant multiple of another). In this case
the partial fraction theorem states that there exist constants A, A,, . .., A; such that

R(I) A] Az AJ;
= o
[ Ox) ax+b  ax+ by arx + by

These constants can be determined as in the following example,

m E 3 2

SOLUTION Since the degree of the numerator is less than the degree of the denominator, we
don’t need to divide. We factor the denominator as

207 + 3x% — 2x = x(2x* + 3x — 2) = x(2x — Dix+2)

Since the denominator has three distinct linear factors, the partial fraction decompasition
of the integrand (2) has the form

24+ 2x—1 A B C
3 ==+ +
2x—-DEx+2) x 2x—1 x4+2

To determine the values of A, B, and C, we multiply both sides of this equation by the
product of the denominators, x(2x — 1)(x + 2), obtaining

[4] x4+ 2x — 1 =AQ2x — 1)(x +2) + Bx(x + 2) + Cx(2x — 1)

Expanding the right side of Equation 4 and writing it in the standard form for polyno-
mials, we get

(5] P+ 2x—1=(QA+B+2C)x>+ (3A+ 2B — C)x — 24

The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of x* on the right side, 24 + B + 2C, must equal the coefficient of x? on the
left side—namely, 1. Likewise, the coefficients of x are equal and the constant terms are
equal. This gives the following system of equations for A, B, and C:

24+ B+2C=1

3A+2B—- C=2

—24 =1
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Solving, we get A = 5 B= Land C = — 1, and so
We could check our work by taking the terms X+ 2x—1 11 | 1 | 1
10 a common denominator and adding them. 793 + 3x2 — 2x x = 5y + —5‘ 5w — 1 - TD_ T+ 2
+ Figure 1 shows the graphs of the integrand =1 |.1| + Tlﬁlﬂ 12-" e | | _ f(,ln \x + 2| + K

in Example 2 and its indefinite integral {with
K = 0). Which is which?

In integrating the middle term we have made the mental substitution

2 gives du = 2 dx and dx = du/2.

i = 2x — 1, which

O

WOTE | We can use an alternative method to find the coefficients A, B, and C in

-3 3 Example 2. Equation 4 is an identity; it is true for every value of x. Let’s choose values of
m x that simplify the equation. If we putx =0 in Equation 4, then the second and third terms

o x =1 gives 5B/4 =} and x = —2 gives 10C = —1, 50

for the reason.)

dx
EXAMPLE 3 Find j o where a # 0.
x —a

$0LUTION The method of partial fractions gives

1 1 A
2—a® @x—ax+a x-—a
and therefore Alx+a) + Blx —a)=1

B

x+a

on the right side vanish and the equation then becomes —2A4 = —1, or A = 3. Likewise,
= land C = —5. (You may object
that Equation 3 is not valid for x =0, }, or —2, so why should Equation 4 be valid for those
FIGURE 1| values? In fact, Equation 4 is true for all values of x, even x = 0, 3, and —2.

See Exercise 69

Using the method of the preceding note, we put x = « in this equation and get

A(2a) = 1,50 A = 1/{2a). If we put x = —a, we get B(

_[ dx i_j 1 _ 1
xt—a* 2a r—a =x+a

1
=_— g ] +al) +
o (n|x—a|—ln|jx+al)+C

Thus

Since In x — Iny = In(x/y), we can write the integral as

dx 1 x—a
@ J——_Eln

x*— a? x+ta

See Exercises 55-56 for ways of using Formula 6.

+C

—2a) = 1,50 B = —1/(2a).

CASE Il = Q(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor (@ x + b)) is repeated r time
the factorization of Q(x). Then instead of the single term A,

s; that is, (@i x -+ b)" occurs n
/(ayx + b)) in Equation 2, we




# Another method for finding the coefficients:
Fitx=1in(;: B = 2.

Ptr=-1: c= -
Plx=0:a=p+c=1.
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would use

A Aa A,
7 4 R e —
X + b[ (a.x o b])' (al_\' + bg)r

By way of illustration, we could write

x3—x+1_A+B+ c ,_D L E
xM(x — 1) x 2 x—-1 (x-1)7 (x— 1)

but we prefer to work out in detail a simpler example.

=20+ dx + 1
EXAMPLE 4 Find [ =-—="— ~*
x—x—x+1

dx.
SOLUTION The first step is to divide. The result of long division is

=2+ 4x 4+ 1 4x
- =x+1+

2 —xt—x+1 P -xt—x41

The second step is to factor the denominator O(x) = x> — x% — x + 1. Since (1) = 0
we know that x — 1 is a factor and we obtain

1

Pemxt-xl=(x- - D=(x-Dx—Dx+1)
=(@x-1)x+1
Since the linear factor x — | occurs twice, the partial fraction decomposition is

4x A - B . C
x=1x+1) x—1 (x—1° x+1

Multiplying by the least common denominator, (x — 1*x + 1), we get
4r=Alc = Dx+ 1)+ Bx+ 1) + Clx — 17
=(A+C)x2+(B~2C)x+(—A+B+C)
Now we equate coefficients:
A + C=0
B—-2C=4
—A+B+ C=0

Solving, we obtain A = 1, B =2, and C = —1, 50

I 2 1
X1+ + o dx
I[‘ x=1 " (x—1p x-'rl]l

.2

jx“—2x3+4x+1dx

X —xt—x+1

2
=%+x+ln|x—1|—x—_T—]H,x+ll+K
x? 2 ¢ — 1
=—+4+x- + In |2 + K O
2 x—1 x+1
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CASE 1l = Q(x) contains irreducible quadratic factors, none of which is repeated.

If O(x) has the factor ax? + bx + ¢, where b* — 4ac < 0, then, in addition to the partial
fractions in Equations 2 and 7, the expression for R(x)/Q(x) will have a term of the form

Ax + B
[ ax’+bx+c

where A and B are constants to be determined. For instance, the function given by
Fx) = x/[(x — 2)(x* + 1)(x? + 4)] has a partial fraction decomposition of the form

X A Bx+C Dx+E

+
(x =D+ D> +4) x—12 x+1 X+ 4

The term given in (9) can be integrated by completing the square and using the formula

dx 1 x
5 =—tan"'|— |+ C
Ix'+a2 P (a)
22— x+ 4
4 EXAMPLE 5 Evaluate J- ——3——"dx.
x4+ dx

SOLUTION Since x> + 4x = x(x* + 4) can’t be factored further, we write

P —x+4 _A Bx+ C

W x  xt+d
Multiplying by x(x* + 4), we have
It —x+4=A0C*+4) + (Bx+ Clx
=A+Bx"+Cx+4A
Equating coefficients, we obtain

A+B=2 c=-1 44 =4

Thus A = 1, B=1,and C = —1 and so

J'le—x+4d__j' l+x—1 d
x* + 4dx e x x*+4 *

In order to integrate the second term we split it into two parts:

__1 G
I;+4dx=jx2:4dx_szi4dx

We malke the substitution u = x* -+ 4 in the first of these integrals so that du = 2x dx.
We evaluate the second integral by means of Formula 10 with a = 2

1

J'sz—x+4

1 x
._..—d--_- __d~+ - 5
x(x? + 4) * J.xl j‘x2+4dl J-xl-i-4dr

=In|x| + 3ln(x* + 4) —~ Jtan™'(x/2) + K O




rtial
wm

1 by

wla
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43 — 35+ 2
EXAMPLE 6 Evaluate f T
— a4Xx

SOLUTION Since the degree of the numerator is not less than the degree of the denominator,
we first divide and obtain

4x2—3x+2_1+ x—1
4x* —4x + 3 4x> — 4x + 3

Notice that the quadratic 4x* — 4x + 3 is irreducible because its discriminant is
b* — 4ac = —32 < 0. This means it can’t be factored, so we don’t need to use the
partial fraction technique.
To integrate the given function we complete the square in the denominator:
4x* —dx+3=(02x - 1)*+2

This suggests that we make the substitution u = 2x — 1. Then, dit = 2 dx and
x=3u+1),s

457 —3x + 2 x—1
_— Ay = 14— d-
41':"—4.1;4-3d')L j( 4x2—4x+3) .

(u+1 _ i —1
=x+3 J T2 du X+ 3 J. du

g Bl W il
l+"ju2+2d” “juz+2d”

=x + In(u? + 2) - 4 \/_ (u)-l-C

1
2x )—}-C O

(%

Example 6 illustrates the general procedure for integrating a partial fraction of
the form

=x + zIn(dx? — 4x + 3) —

Ax + B

——————  where b —4dac <0
ax* + bx + ¢

We complete the square in the denominator and then make a substitution that brings the
integral into the form

.,—azdu = Cfﬂ_du -+ D‘[mdu

Then the first integral is a logarithm and the second is expressed in terms of tan™".

CASE IV = Q(x) contains a repeated irreducible quadratic factor.

If O(x) has the factor (ax® + bx + ¢)', where b® — 4ac < 0, then instead of the single
partial fraction (9), the sum

A]JC = B] Azx + Bz A.JC + B,

1]

ax* +bx+ ¢ (ax*+ bx + ¢)? ' (ax*+ bx + o)
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+ 1t would be extremely tedious to work aut by
hand the numerical values of the coefficients in
Example 7. Most camputer algebra systems,
however, can find the numerical values very
quickly, For instance, the Maple command

convert(f, parfrac, X)
or the Mathematica command
Apart[f]
gives the following values:

In the second and fourth terms we made the
mental substitution u = x* + 1.

occurs in the partial fraction decomposition of R(x)/O(x). Each of the terms in (11) can be
integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

PLIE i |
x(x— D+ x+ Dx? + 1)

SOLUTION

S+l
wx — DE*+x+ D+ 1)

Cx+D Ex + F Gx + H Ix+J

A, B + R
Ptrx+r1 o+l (PN (% 1P

+
X x—1

1—x+28*—x .
x(x® + 17

EXAMPLE 8 Evaluate j

50LUTION The form of the partial fraction decomposition is

Dx + E

1-‘x+2x2—x3 ‘A_
(x2+ 1)

x(x2+ 1) x

Bx+C
241

+

Multiplying by x(x? + 1)%, we have
et x+ =AM+ 1 + (Bx + C)yx(x? + 1) + (Dx + E)x
=A(x' + 227+ 1) + B(x" + x¥) + C(* +x) + Dx? + Ex
= (A +Bx*+ Cx* + QA+ B+Dx*+(C+Ex+A
If we equate coefficients, we get the system
C+E=-1 A=1

A+B=0 c=-1 A+B+D=2

which has the solution A = 1,B=-1,C=-—1, D =1, and E = 0. Thus

J-l—x+2x2—x3d j‘ 1 x+1+ x p
r = - —_——_—— _ -
x(x* + 1) x x2+1 (P41 *

; ] i d
e[ PR

| |
=1 -_%1 2 4 s —1’—____.___*.[( 15y
nlx| —3ln(x* + 1) —tan"x o+ 1) :

We note that sometimes partial fractions can be avoided when integrating a rational fun¢
tion. For instance, although the integral

x+1
jx(xz-%- 3) dx
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could be evaluated by the method of Case III, it’s much easier to observe that if
u = x(x* + 3) = x* + 3x, then du = (3x* + 3) dx and so

s 2 TN R S
-[x(x2+3) dr=3Ihn|x*+ 3|+ C

RATIONALIZING SUBSTITUTIONS

Some nonrational functions can be changed into rational functions by means of appropri-
ate substitutions. In particular, when an integrand contains an expression of the form
Vg(x), then the substitution 1 = {/g(x) may be effective. Other instances appear in the
exercises.

EXAMPLE 9 Evaluate

j %4 dx.

SOLUTION Letu = +/x + 4. Thenu?=x+ 4, s0 x = u®> — 4 and dx = 2u du.
Therefore

dut

J.xTde=J : 2udu=2f =

2
93
u-—4 n—4

4
=2I(l+ = )du
u-—4

We can evaluate this integral either by factoring u® — 4 as (« — 2)(u + 2) and using
partial fractions or by using Formula 6 with a = 2:

R

dit

a’xIQ'[du-I-Sj

u?—4
u+8 ——mn|t 2|+ ¢
= 2n . n
: 2.2 |u+2
VJx+4 =2
=2J/x+4 +2In|—/———| + C =
* Jit 4 +2
74 | EXERCISES
I-6 Write out the form of the partial fraction decomposition of the % I |
function (as in Example 7). Do not determine the numerical values 5] @ =1 ® (t* + D(* + 4)?
of the coefficients.
xt 1
I (a) o B (b) N 6 ) (X + (x> —x+3) ®) xb — 53
(x+3)(3x+ 1) X2+ x i . ’ ’ ’
x x?
L (a) L g (b) PR 7-38 Evaluate the integral.
4 x nt
) it — 7. dx 8. dr
()x5+4x3 () (x* — 9)? -[x—ﬁ .[r+4
3 - 1
4 x 2x + 1 x—9
4 (b) e & 0. [ e

Xt 4+ 4x 4 3
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mm [ ———a 12 j'——"'l dx
Lf—; ¥ "h Tz
13 2 dx 14 j—~—l——d,1
i Ny T+ aix+ b
s xP—2xt— 4 xP—4x— 10

b d>
|5I T usJ'A_x_G\
2 4y —Ty— 12 x4 2x—1
_ 18. d;
.Iy(y+2)(y—3) J Sz
1 xt—5x+ 16
| ———————dx 0 | —m—m—m—m—m—mm8m—
2 J(x-i—S)'{x—l) : 2 f(2x+1)(x—z)2 .
44 ds
21._[_t2+4d,1 22. Isz(s—nl
5x* 4+ 3x—2 x2—x+6
23J. 512t —dx 24. J-_H—x!+3x dx
x*+x+1
e 6.
) Nyl ? f(rum
Pt 241 xr=2x—1
2 28. dx
b .[ (x*+ D+ 2) J(x—l)z(x 41
x+4 P+ x+4
—d 0. | ————
-jx Y2z t+s5 .[x“+3x2+2 *
1 1 x
@jf—]dx o J—ﬂxz-%-tl:c-i-l?;dx
x4 2x x?
33.Lmdx 34. Ix] +ld,\
X P S S |
35'-|.Jc(;c2+4)2 36. J.x5+5x3+5x N
x*=3x+7 P+ 27+ 3x—2
—dx .
o »[(t I 4x + 6)° 3BJ. (x2 + 2x + 2)?

dx

39-50 Make a substitution to express the integrand as a rational
function and then evaluate the integral.

d>
40-"2 t3+x

1
39. J.W—le

16 \/; 1 1
4|.Lx_4dz 42..].01+\3/;dx
a7
J. dxr+1 o ,[1/1 xt+ 1

45, J.\/:—i\!/—;d}. [Hint: Substitute u = f/;]
a6. | ——“Etﬁ dx

2x

47 | —4d
-[ez’-}-Se‘-%-Z a4

cos X
48. j B T dx
sin“x + sin x

a9. | Se k dt
Jtan®r 4 3tant 4+ 2

x

50. Imtﬁ

51-52 Use integration by parts, together with the techniques of this

section, to evaluate the integral.

51, j In(x> — x + 2) dx 52. _f xtan~x dx

53, Use a graph of f(x) = 1/(x* — 2x — 3) to decide whether

J3 £(x) dx is positive or negative. Use the graph to give a rough
estimate of the value of the integral and then use partial {ractions

to find the exact value,

54, Graph both y = 1/(x* — 2x”} and an antiderivative on the
same screen.

55-56 Evaluate the integral by completing the square and using

Formula 6.

=

2x+1
T .k E.
J4x2+12x—7 N

}.—21’

57. The German mathematician Karl Weierstrass (1815-1897)
noticed that the substitution ¢ = tan{x/2) will convert any
rational function of sin x and cos x into an ordinary rational
function of 1.

(a) If t = tan(x/2), —7 < x < m, sketch a right trlang]e or
trigonometric identities to show that

use

V2 VR R ) D
€5\ i+ S ) e e

(b) Show that

1-1 - i 2t
T Inx =
1+ 1+

cosx =

(c) Show that

2
dx = —dt
ST

58-61 Use the substitution in Exercise 57 to transform the inte-

grand into a rational function of ¢ and then evaluate the integral.

s -[ 3—S5sinx

1 /2 1
_—..._.-d YIS . SRR
3sinx —4cosx * .[r

#3 1 + sinx — cos ¥

dx




1is

zh

ns

use

-dr

=1 sin2x
i ——dx
& J; 2 + cosx *

62-63 Find the area of the region under the given curve from
[to2.

2+ 1
2

62. y= 63. y=

X +x 3x —x

64. Find the volume of the resulting solid if the region under the
curve y = 1/(x* + 3x + 2) from x = O to x = [ is rotated
about (a) the x-axis and (b) the y-axis.

65. One method of slowing the growth of an insect population
without using pesticides is to introduce into the population
a number of sterile males that mate with fertile females
but produce no offspring. If P represents the number of
female insects in a population, S the number of sterile males
introduced each generation, and r the population’s natural
growth, rate, then the female population is related to time by

P+
I

Suppose an insect population with 10,000 females grows at a
rate of = 0.10 and 900 sterile males are added. Evaluate the
integral to give an equation relating the female population to
lime. (Note that the resulting equation can’t be solved explic-
itly for P.)

66, Factor x* + 1 as a difference of squares by first adding and
subtracting the same quantity. Use this factorization (o evalu-
ate [ 1/(x* + 1) dx.
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[G45]67. (a) Use a computer algebra system to find the partial fraction

[A3] 68,

decomposition of the function

4x3 — 27x + 5y — 32
305 — 13x° + 5027 — 286x% — 299x — 70

fx) =

(b) Use part (a) to find j' S(x) dx (by hand) and compare with
the result of using the CAS to integrate £ directly. Com-
ment on any discrepancy.

(a) Find the partial fraction decomposition of the function

12x% — 733 — 13x2 + 8
100x° — 80x® + 116x* — 80x° + 41x? — 20x + 2

flx) =

(b) Use part () to find [ £(x) dx and graph £ and its indefinite
integral on the same screen.
(c) Use the graph of f to discover the main features of the

graph of [ f(x) dx.

69. Suppose that F, G, and ( are polynomials and
Fa) G
o) Q)
for all x except when Q(x) = 0. Prove that F| (x) = G(x) for
all x. [Hint: Use continuity.]
70. If f is a quadratic function such that £(0) = 1 and
f(x) )
j x4+ 1) de

is a rational function, find the value of J0).

7.5| STRATEGY FOR INTEGRATION

As we have seen, integration is more challenging than differentiation. In finding the deriv-
ative of a function it is obvious which differentiation formula we should apply. But it may
not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we
usually used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and partial
fractions in Exercises 7.4. But in this section we present a collection of miscellaneous inte-
grals in random order and the main challenge is to recognize which technique or formula
to use. No hard and fast rules can be given as to which method applies in a given situation,
but we give some advice on strategy that you may find useful,

A prerequisite for strategy selection is a knowledge of the basic integration formulas.
In the following table we have collected the integrals from our previous list together with
several additional formulas that we have learned in this chapter. Most of them should be
memorized. It is useful to know them all, but the ones marked with an asterisk need not be
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memorized since they are easily derived. Formula 19 can be avoided by using partial frac-
tions, and trigonometric substitutions can be used in place of Formula 20.

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.
n+l ]
I.J.x"a’x= n#=—1 2.j—dx=lnx
n+1 ( ) x | l
3. j e‘dx = e* 4, j a‘dx =
Ina
5. fsinxdx=—cosx 6. _{cosxdx=sinx
7. J sec’xdx = tan x 8. j cscix dx = —cot x
9. jsecxtan xdx=secx 10. Icscxcntxdxm —CSC X
1. '[secxdx =In|secx + tanx| I Icsc xdx = In|csc x — cotx
I3.Itanxa’xcln|secx| I4.J.cotxdx$ln|sinx|
15. j sinh x dx = cosh x 16, ]. cosh x dx = sinh x
nJ‘ dx 1L of x IBI dx N
.| ———=—tan"| — ., | ——==sin""\—
*+at a a Ja? — x? a
dx 1 x—a dx
*l9._[—-—,=—!n *20._[—-—=1 x btk ?
x—a* 20 |x+a 1 N n | ¢ |

Once you are armed with these basic integration formulas, if you don’t immediately see
how to attack a given integral, you might try the following four-step strategy.

I. Simplify the Integrand if Possible Sometimes the use of algebraic manipula-
tion or trigonometric identities will simplify the integrand and make the method of
integration obvious. Here are some examples:

Iﬁ(l+ﬁ)dx=j(\/;+x)dx ;'

tan 6 sin @
dg =
j sec*f J‘ cos d

= j sin 6 cos §df =} [ sin 200

cos?0do

f (sin x + cos x)*dx = J. (sin® + 2 sin x cos x + cos’x) dx

=J.(1 + 2 sin x cos x) dx
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2. Look for an Obvious Substitution Try to find some function u = g(x) in the
integrand whose differential du = g'(x) dx also occurs, apart from a constant fac-
tor. For instance, in the integral

J.——Izi 1 dx

we notice that if # = x* — 1, then dit = 2x dx. Therefore we use the substitu-
tion u = x* — 1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led

to the solution, then we take a look at the form of the integrand f(x).

(a) Trigonometric functions. If f(x) is a product of powers of sin x and cos x,
of tan x and sec x, or of cot x and csc x, then we use the substitutions recom-
mended in Section 7.2.

(b) Rational functions. If f is a rational function, we use the procedure of Sec-
tion 7.4 involving partial fractions.

(c) Integration by parts. If f(x) is a product of a power of x (or a polynomial) and
a transcendental function (such as a trigonometric, exponential, or logarithmic
function), then we try integration by parts, choosing u and dv according to the
advice given in Section 7.1. If you look at the functions in Exercises 7.1, you
will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain
radicals appear.

(i) If v=x* = g? occurs, we use a trigonometric substitution according to
the table in Section 7.3.

(ii) If +/ax + b occurs, we use the rationalizing substitution # = {/ax + b.
More generally, this sometimes works for ¥/g(x).

4, Try Again If the first three steps have not produced the answer, remember that

there are basically only two methods of integration: substitution and parts.

(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration
or ingenuity (or even desperation) may suggest an appropriate substitution.

(b) Try parts. Although integration by parts is used most of the time on products
of the form described in Step 3(c), it is sometimes effective on single func-
tions. Looking at Section 7.1, we see that it works on tan™'x, sin™'x, and In x,
and these are all inverse functions.

(c) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the
denominator or using trigonometric identities) may be useful in transforming
the integral into an easier form. These manipulations may be more substantial
than in Step 1 and may involve some ingenuity. Here is an example:

I _J- I + cosx _Il-i-cosx
1 —cosx 1 —cosx 1+cosx

1+ cosx cos X
—j dx=j<csczx+ ,,)dx
sin*x sin“x

1 — cos’x

(d) Relate the problem to previous problems. When you have built up some expe-
rience in integration, you may be able to use a method on a given integral that
is similar to a method you have already used on a previous integral. Or you
may even be able to express the given integral in terms of a previous one. For
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instance, | tan®x sec x dxis a challenging integral, but if we make use of the iden-
tity tan’x = sec’x — 1, we can write

J.tanzx sec x dx = J- secix dx — j sec x dx

and if [ sec’x dx has previously been evaluated (see Example 8 in Section 7.2),
then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-
ate an integral. The evaluation could involve several successive substitutions
of different types, or it might combine integration by parts with one or more
substitutions.

In the following examples we indicate a method of attack but do not fully work out the
integral.

3

x
5 dx )
cosx

tan

EXAMPLE 1 J‘

In Step 1 we rewrite the integral:

tan’x
I i = J tan’x sec’x dx
cos’x

The integral is now of the form f tan™x sec™x dx with m odd, so we can use the advice in
Section 7.2.
Alternatively, if in Step 1 we had written

tan’x sin®x 1 sin’x
| il —dy= [ ———dx
cos’x cos’x cos’x cos®x

then we could have continued as follows with the substitution ¢ = cos x:

sy 1 - 51 1 — 2
jsmx d.l:=j' cos 2 sin xdx=~|.—-——6u (—du)
u

cos®x cos®x

=_[u2—61du=j(u“’—u‘5)du O -

It

7 EXAMPLE 2 Jeﬁdx

According to (ii) in Step 3(d), we substitute u = ﬁ Then x = u? so dx = 2u du and
I eV dx =2 .[ ue"du

The integrand is now a product of u and the transcendental function e* so it can be inte-
grated by parts.

=

i}
2
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EXAMPLE 3 j—«——'ts Rt S
= X
X3 —3x% — 10x

No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply here.
The integrand is a rational function so we apply the procedure of Section 7.4, remember-
ing that the first step is to divide. O

1 EXAMPLE 4 f m

Here Step 2 is all that is needed. We substitute « = In x because its differential is
du = dx/x, which occurs in the integral. O

1—1x
7 EXAMPLE 5 J Y . N
I+ x

Although the rationalizing substitution

1 —=x
1+ x

=

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier
method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multiply-
ing numerator and denominator by /1 — x, we have

b = 1—x
J‘\;'I+_rdk J.\/l—xz o

“fj/= IJ—d‘
=sin"x+ /1 —-x2+C O

CAN WE INTEGRATE ALL CONTINUQUS FUNCTIONS?

The question arises: Will our strategy for integration enable us to find the integral of every
continuous function? For example, can we use it to evaluate e " dx? The answer is No, at
least not in terms of the functions that we are familiar with.

The functions that we have been dealing with in this book are called elementary fune-
tions. These are the polynomials, rational functions, power functions (x?), exponential
functions (a*), logarithmic functions, trigonometric and inverse trigonometric functions,
hyperbolic and inverse hyperbolic functions, and all functions that can be obtained from
these by the five operations of addition, subtraction, multiplication, division, and compo-
sition. For instance, the function

i xg — 1 e din2x
fx) = 4 ,—xS - — + In(cosh x) — xe

is an elementary function.

If f is an elementary function, then £ is an e]ementary function but j f(x) dx need not
be an elementary function. Consider f(x) = e*. Since f is continuous, its integral exists,
and if we define the function F by

F(x) = fﬂ e dt
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then we know from Part 1 of the Fundamental Theorem of Calculus that

Thus, f{x) = ¢* has an antiderivative F, but it has been proved that F is not an elemen-
tary function. This means that no matter how hard we try, we will never succeed in evalu-
ating J' e* dx i in terms of the functions we know. (In Chapter 11, however, we will see how
to express j'e *dx as an infinite series.) The same can be said of the following integrals:

In fact, the majority of elementary functions don’t have elementary antiderivatives. You
may be assured, though, that the integrals in the following exercises are all elementary

functions.

7.5 | EXERCISES

eX

—dx

5

Imdx

Fl(x) = e

j sin{x*) dx

1
—d
Inx *

J
J

cos{e*) dx
sin x
x
X

1-80 Evaluate the integral.

sin’x
2. J. dx

I. .[C()Sx(l + sin%x) dx
cos x

dx

o

sin x -+ secx
‘[ _— I tan0 40
tan x

2 2t
5. L — dr

o

[F==*

g MrEtan y
.fll+y E.J-xcscxcotxdx
E 4 x—1
9. [ r'inrar 0. [ s
x—1 X
1. jmdﬂ: 12. de,\.
3
13. Isin%’) cos’8do 14. I—lﬁﬁdx
Vijz x?
I5. J‘ (1 2)3/2 16. J.(] mdx
eind
JlSl[‘lxdx 18 |~
19. J.e‘”xdx 20. jezdx
Inx
21. '[arctan\/;dx 22, j Tm
[+ Sxpar M. [InG* — 1)dx

33, j\/3 —2x - x?dx
35, J.j] x¥sinx dx

37. J:'M cos’f tan’f df

J‘ sec ) tan @
sec’d — sec f

[ oran0 do
43. Je‘m dx
Ixse = dx

47, Ixs(x - 1)"dx

_[ -2
x*—2x—8

28. J- sin \[E; dt

26. dx

30. I: |x% — 4x| dx

[

2x + 3

32.

I"J

=/ 1 ‘I" 4 t
34, J‘ Rl T
/4 4 — cotx

36. J. sin 4x cos 3x dx

38. f:’u tan®f sec’d do

1
40, | —d
J‘-\/4y2—4y—3 ’
-1
o [,

xI

44. jmdx

4. _[ 1+smt
1—sm1

2
4B.J' dx
e




tu-
ow
als:

You
tary

1
J xy/4x + 1 A
1
51, jwd}.
53. .[ x? sinh mx dx
dx
35 -f x+ xvx
J‘x\’/:r + ¢ dx

59. j cos x cos’(sin x) dx

Jﬂe*gdx

sin 2x
63. j
1 + cos x

1
65.]——m+ﬁd1

50.

52,

54.

56.

58.

60.

62.

64.

66,

7.6

SECTION 7.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS | 489

i
————dx JT+ 32
-|-x2\14x+ 1 dx 67. ﬁﬁ%dl 68. jmﬁd\
_I.d—l e In(x -+ 1)
x(x*+ 1) [+ o dx 70. J-TH—
(x + sin x)*dx x -+ arcsm.x 47 + 10*
] n [~ 4 72. J'de
s I_IW [t
: (x = 2)(x* + 4) Va2 + )
xinx
_4_.d - x X
J Jxi—1 * 75. _{‘-—\/]‘—i—?dx 76, f(xz — bx) sin 2x dx
dx
S m =L o, [ SmEs
’ 1+ a3 sinx + secx
dx
J‘-‘" + ¥ 79. f_rsinzx cos x dx 80. IS1qlit+C:Z: X
n x

=3 In(tan x)
e
/4 8in X cos x

3 ud+ 1
f = it
T 2
Tyt —

81. The functions y = e* *and y=x%" don t have elementary
dntldenvallveg but y = (2x% + 1)e* does. Evaluate
[(2x% 4+ 1" dx.

INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS

In this section we describe how to use tables and computer algebra systems to integrate
functions that have elementary antiderivatives. You should bear in mind, though, that even
the most powerful computer algebra systems can’t find explicit formulas for the antideriv-
atives of functions like e*’ or the other functions described at the end of Section 7.5.

TABLES OF INTEGRALS

Tables of indefinite integrals are very useful when we are confronted by an integral that is
difficult to evaluate by hand and we don’t have access to a computer algebra system. A rel-
atively brief table of 120 integrals, categorized by form, is provided on the Reference Pages
at the back of the book. More extensive tables are available in CRC Standard Mathe-
matical Tables and Formulae, 31st ed. by Daniel Zwillinger (Boca Raton, FL: CRC
Press, 2002) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and
Products, 6e (San Diego: Academic Press, 2000), which contains hundreds of pages of
integrals. It should be remembered, however, that integrals do not often occur in exactly
the form listed in a table. Usually we need to use substitution or algebraic manipulation to
transform a given integral into one of the forms in the table.

EXAMPLE | The region bounded by the curves y = arctan x, y = 0, and x = 1 is rotated
about the y-axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is

1
V= L 2qrx arctan x dx
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1 . The Table of Integrals appears on Referance
! Pages 6-10 at the back of the book.

85. J. u" cos i du

=pu"sinu—n j u" " sin u du

In the section of the Table of Integrals titled Inverse Trigonometric Forms we locate
Formula 92:

wr+ 1

u
J wtan luduy = tan™'u — 5 +C

Thus the volume is

5 2+ 1 x|
V= 271'}-“ xtan 'xdx = 2171: = tan”'x — E]
Q

1l

'fr[(:c2 + 1) tan 'x — x]; =a(2tan”'1 — 1)
a[2m/4) - 1] =37 — = O

2

7 EXAMPLE 2 Use the Table of Integrals to find J' —\/g%dx.
— 4x

SOLUTION If we look at the section of the table titled Forms involving «/a® — u?, we see
that the closest entry is number 34:

j ,——az_uz du——; az—u2+?sm‘1(a)+c

This is not exactly what we have, but we will be able to use it if we first make the substi-
tution 1 = 2x:

2

u/2) du _ _I_J' u
8

xl
J\IS — 4x? dx—J. B 2 \/5——14"’-'du
Then we use Formula 34 witha? =5 (soa = /3 ):
xl
j‘\/5—4x3d 8.[1/
X s i ( 2x :
SJS_T-Fmsm (\/3- + C O

EXAMPLE 3 Use the Table of Integrals to find Ixz' sin x dx.

SOLUTION If we look in the section called Trigonometric Forms, we see that none of
the entries explicitly includes a u® factor. However, we can use the reduction formula
in entry 84 with n = 3:

J.x3sinxdx = —x’cosx + 3 szcosxdx

We now need to evaluate [ x* cos x dx. We can use the reduction formula in entry 85
with n = 2, followed by entry 82:

szcos;cdx=xlsinx— ijsinxdx

= x*sinx — 2(sinx — xcos x) + K




21 jﬁaz + u?du = gdaz + u?
2
. %In(u +Va v ul)+C
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Combining these calculations, we get
J‘xESinxdx = —x’cosx + 3xsinx + 6xcosx — 6sinx + C

where C = 3K, [E]

EXAMPLE 4 Use the Table of Integrals to find J X/x?+ 2x + 4 dx,

SOLUTION Since the table gives forms involving /a? + x2, var —x?, and /%7 — a?, but
not /ax? + bx + ¢, we first complete the square:

P+ 2x+4=(x+12+3

If we make the substitution # = x + 1 (sox=u—1), the integrand will involve the
pattern +/a® + u?:

J‘x1/x2+2x+4dx=j(za-— 1) v/u+ 3 du ’
=fz¢\/u3 + 3 du ~ f\/uz + 3 du

The first integral is evaluated using the substitution t = »2 + 3:
j urur+ 3 du= %jﬁdt =3-%pn = L + 3)32

For the second integral we use Formula 21 with g = V3

f\/tt2+3du=12—l u? +3 +3n(u + u?+3)

Thus
[T ET T us
+1
= 3(x? + 2x + 4)¥2 — x2 Va2 +2x+4 —3n(x + 1 +vxi+2x+4)+C

O

COMPUTER ALGEBRA SYSTEMS

We have seen that the use of tables involves matching the form of the given integrand with
the forms of the integrands in the tables. Computers are particularly good at mafching pat-
terns. And just as we used substitutions in conjunction with tables, a CAS can perform sub-
stitutions that transform a given integral into one that occurs in its stored formulas. So it
isn’t surprising that computer algebra systems excel at integration. That doesn’t mean that
integration by hand is an obsolete skill. We will see that a hand computation sometimes
produces an indefinite integral in a form that is more convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively
simple function y = 1/(3x — 2). Using the substitution u = 3x — 2, an easy calculation
by hand gives

J 1 dx=3In|3x - 2|+ C

3x—-2
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This is Equation 3.11.3.

whereas Derive, Mathematica, and Maple all return the answer
1n(3x - 2)

The first thing to notice is that computer algebra systems omit the constant of integra-
tion. In other words, they produce a particular antiderivative, not the most general one.
Therefore, when making use of a machine integration, we might have to add a constant.
Second, the absolute value signs are omitted in the machine answer. That is fine if our
problem is concerned only with values of x greater than 3. But if we are interested in other
values of x, then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 4, but this time we ask a
machine for the answer.

EXAMPLE 5 Use a computer algebra system to find I xy/x?+2x + 4 dx.

50LUTION Maple responds with the answer
2 3 . 3
T2+ 2x + 4 = 1(2x + 2)/x? + 2x F 4 — Earcsmh—\é: (1 + x)

This looks different from the answer we found in Example 4, but it is equivalent because
the third term can be rewritten using the identity

arcsinhx = ln(x + x?+ 1)

Thus

arcsinh—\/;(l +x) = lnliij- (1+x) + /30 +x)?+ 1]
=1n71—3—[] wgpd JO TP 3]
=;n_j?-un(x+1+m)

The resulting extra term — 3 ln(l/ﬁ ) can be absorbed into the constant of integration.
Mathematica gives the answer

~5_+f.+£ 1:’;52-%-2,1'+4-*Earcsinh ey
6 2 \/3T

6 3

Mathematica combined the first two terms of Example 4 (and the Maple result) into a
single term by factoring.
Derive gives the answer

%\/x2+2x+4(2x2+x+5)*%1n(1/x2+2x+4 -i-x-i-l)

The first term is like the first term in the Mathematica answer, and the second term i8
identical to the last term in Example 4.

EXAMPLE 6 Use a CAS to evaluate J x(x? + 5)%dx.

s0LUTION Maple and Mathematica give the same answer:

00625 .2
Lgi® 4 36 4 50 4 T 4 437550 + 21875x" + FEa 1562502 + *7 ¢
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IE’s clear that both systems must have expanded (x2 + 5)° by the Binomial Theorem and
then integrated each term.
If we integrate by hand instead, using the substitution 1 = x2 -+ 5, we get

« Derive and the TI-89/92 also give this answer,

[x6?+ 5Pdx =42 + 57+ €

For most purposes, this is a more convenient form of the answer.

EXAMPLE 7 Use a CAS to find J‘ sin®x cos®x dx.

SOLUTION In Example 2 in Section 7.2 we found that

i 1 2 1
1] j sin’x cos’ dx = —j cos™x + # cos’x — ! cos’x + C

Derive and Maple report the answer

1 . 4 4 . 8
—3 sin’x cos’x — 55 sin%x cos’x — 15 cos’x

whereas Mathematica produces

5 1 3 1
T €08 X — 13 €08 3x + 35 cos 5x — 3z cos Tx

We suspect that there are trigonometric identities which show these three answers are

equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their expres-

sions using trigonometric identities, they ultimately produce the same form of the answer

as in Equation 1.

7,6! EXERCISES

a

I-4 Use the indicated entry in the Table of Integrals on the
Reference Pages to evaluate the integral.

V71— 2x2 3x
I, '[—7— dx; entry 33 2, fﬁ dx; entry 55

3 J-secl(frrx) dx; entry 71 4, J‘e” sin 36 d0; entry 98

3-30 Use the Table of Integrals on Reference Pages 6-10 to evalu-
2e the integral,

5. J: 2vcos v dx é. J.a -

s AT =7
1. jlﬂna(';rx) dx 8. J‘ m(—lg/;_—l—_@dx

9, dx V2y:—13
Iorizes J 5=

b g

I1. J‘_! e~ dt

3
13, J'—“’“ W

o
I5. I e arctan(e®) dx
_|'yw/6+4y—4y2dy
.[ sin’x cos x In(sin x) dx

2. | 5 _g;h dx

23. f sec’x dx

/4 F 2
25. J‘—t}#dx

12. J.J:2 csch(x® + 1) dx

14, J‘ sin™'/x dx

16. jxsin(sz cos(3x?) dx
dx

i ijJ — 3x°?

; J- sin 26

v3 —sinf ad
22. _[;x%/ztxz —x* dx

20,

24, J‘ sin® 2x dx

J‘Ol e dx
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@J-\/;z—zxfl_dx

28. I e'sin(at — 3) dt

30, J- sec? tan*d

xtdx
I =2 9 — tan?0 8

31. Find the volume of the solid obtained when the region under
the carve y = x4/4 — 37, 0=sx = 2, is rotated about the
y-axis.

32. The region under the curve y = tan’x from O to /4 is
rotated about the x-axis. Find the volume of the resulting
solid.

33, Verify Formula 53 in the Table of Integrals (a) by differentia-
tion and (b) by using the substitution t = a + bit.
34, Verify Formula 31 (a) by differentiation and (b) by substi-

tuting 1 = a sin 6.

[(A5]35-42 Use a computer algebra system to evaluate the integral.
Compare the answer with the result of using tables. If the answers
are not the same, show that they are equivalent.

36. J- csc’x dx

38 j————d‘t
© ) e*(Ber + 2)

35. I sec’x dx
37. J-xz,/xz T4 dx
39. jx\/I + 2x dx

40. .[ sin®x dx

41. I tan’x dx

1
42. I W dx

[(A5) 43. (a) Use the table of integrals to evaluate F (x) = _[ Fx) dx,

where

1
f® ==
What is the domain of f and #7?

(b) Use a CAS to evaluate F(x). What is the domain of the
function F that the CAS produces? Is there 2 discrepancy
between this domain and the domain of the function F
that you found in part (a)?

44, Computer algebra systems sometimes need a helping hand

from human beings. Try to evaluate

j(l +Inx) /1 + (xInx)? dx

with a computer algebra system. If it doesn’t return an
answer, make a substitution that changes the integral into one )
that the CAS can evaluate.

45-48 Use a CAS to find an antiderivative F of f such

that 7{0) = 0. Graph f and F and locate approximately the

x-coordinates of the extreme points and inflection points of F.

2=1

45. f(x) = x* ‘-%- 41

46. f(x) =xe~siny, —3=x= 5

47. f(x) = sin‘x cos’x, O=x=m

X —x

48. flx)=—F"7

41

PATTERNS IN INTEGRALS

S

| piscovery
PROJECT

In this project a computer algebra system is used to investigate indefinite integrals of families of

functions. By observing the patterns that occur in the integrals of several members of the family,
you will first guess, and then prove, a general formula for the integral of any member of the

family.

1. (a) Use a computer algebra system (o evaluate the following integrals.

: 1
OB ot

1
@) [ G e-9 %

(b) Based on the pattern of your responses in part (a), guess the value of the integral

ifa = b. Whatif a = b?
(¢) Check your guess by asking your CAS to evaluate the integral in part (b). Then prove it
using partial fractions.

. 1 _
ON ey i

iy s
(iv) .[ G+ 2r dx

1
e o Tk
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2. (a) Use a computer algebra system to evaluate the following integrals.
(i) J sinx cos 2x dx (ii) J sin 3x cos 7x dx (iii) f sin 8x cos 3x dx

(b) Based on the pattern of your responses in part (a), guess the value of the integral

f sin ax cos bx dx

(c) Check your guess with a CAS. Then prove it using the techniques of Section 7.2. For
what values of @ and b is it valid?

3. (a) Use a computer algebra system to evaluate the following integrals.
() [ Inxdx i) [ *Inxdx (i) [ +*Inxdx

(iv) [+ Inxde ) j ¥ Inxdx

(b) Based on the pattern of your responses in part (a), guess the value of
J- x"Inxdx
(c) Use integration by parts to prove the conjecture that you made in part (b). For what
values of n is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals,
(@) [ xetdx (i) [ x%dx (i) [ e dx
(@v) [xe*dx ) [x%erdx

(b) Based on the pattern of your responses in part (a), guess the value of [ x%*dx. Then
use your CAS to check your guess.

(c) Based on the patterns in parts (a) and (b), make a conjecture as to the value of the
integral

[ x"e' dx

when # is a positive integer,
(d) Use mathematical induction to prove the conjecture you made in part (c).

APPROXIMATE INTEGRATION

There are two situations in which it is impossible to find the exact value of a definite
integral,

The first situation arises from the fact that in order to evaluate :’ f(x) dx using the
Fundamental Theorem of Calculus we need to know an antiderivative of f. Sometimes,
however, it is difficult, or even impossible, to find an antiderivative (see Section 7.5). For
example, it is impossible to evaluate the following integrals exactly:

L‘ e dx _[_11 mdx
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1
0 xp x X X3 X x

(2) Left endpoint approximation

I ¥y 1

0 x, © X X3 N x

| (b) Right endpoint appraximation

1
1
I

|

I

|

|

l

1
0 %
(c) Midpoint approximation

FIGURE |

The second situation arises when the function is determined from a scientific experi-
ment through instrument readings or collected data. There may be no formula for the func-

tion (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know
one such method. Recall that the definite integral is defined as a limit of Riemann sums,
so any Riemann sum could be used as an approximation to the integral: If we divide [a, b]
into n subintervals of equal length Ax = (b — a@)/n, then we have

j” F(x) dx =~ E FxF) Ax

where x* is any point in the ith subinterval [xi-1, x:]. If xF is chosen to be the left endpoint
of the interval, then xi = x;-1 and we have

M [ o) e = Ly = 3 i) A

If f(x) = 0, then the integral represents an area and (1) represents an approximation of this
area by the rectangles shown in Figure 1(a). If we choose x¥ to be the right endpoint, then
x¥ = x; and we have

i b £ dx =~ R, = ; Fx) Ax

[See Figure 1(b).] The approximations L, and R, defined by Equations 1 and 2 are called
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where x* is chosen to be the midpeint x; of
the subinterval [x;_1, x;]. Figure 1(c) shows the midpoint approximation M;, which appears
to be better than either L, or R..

MIDPOINT RULE

j“ ) ds = My = Ax[f(E) + f&) + -+ + ()]

b—a
n

where Ax =

and % = L(x-1 + x;) = midpoint of [xe=1, %]

Another approximation, called the Trapezoidal Rule, results from averaging the approx-
imations in Equations 1 and 2:

[ £ dx =5 [g'lf(x.--l) Ax+ 3 () Ax] = [E (fx) + f(x,-))]

i=1

(o) + G0} + (F) + FG)) + oo (fCxams) s




(-

0 X XX ox ox

FIGURE 2
Trapezoidal approximation

|—

N

]
1
-

1 2
FIGURE 3

(]
Lf{.r) dx = approximation + error

X
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TRAPEZOIDAL RULE

Ji 7 e = T, = SEL7) + 27060 + 275) + -+ 2051) + 7(6)]

where Ax = (b — ag)/nand x, = a + i Ax.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates
the case f(x) = 0. The area of the trapezoid that lies above the ith subinterval is

Ax (M;L(r‘).) = %ﬁ[f(xi-l) + f(x)]

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal
Rule.

EXAMPLE 1 Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with 1 = 5 to
approximate the integral |7 (1/x) dx.

SOLUTION

(a) Withn=5,a=1,and b = 2, we have Ax = (2 = 1)/5=10.2, and so the Trape-
zoidal Rule gives

jf%dx =Ty = %[f(l) + 2/(1.2) + 2£(1.4) + 2£(1.6) + 2/(1.8) + f(2)]

= (.695633

This approximation is illustrated in Figure 3.
(b) The midpoints of the five subintervals are [.1, 1.3, 1.5, 1.7, and 1.9, so the Midpoint
Rule gives

Lzédx = Ax[f(L1) + £(1.3) + £(1.5) + £(1.7) + f(1.9)]

L 1 1 1 1
st et SRl o L
SALL 13 15 1.7 19

= (0.691908

This approximation is illustrated in Figure 4. 0

In Example 1 we deliberately chose an integral whose value can be computed explicitly

so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Funda-
mental Theorem of Calculus,

1
flz-;dx=1nx]f=an2 = 0.693147 ...

The error in using an approximation is defined to be the amount that needs to be added to
the approximation to make it exact. From the values in Example 1 we see that the errors
in the Trapezoidal and Midpoint Rule approximations for n = 35 are

By = —0.002488 and Ey = 0.001239
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Module 5.2/7.7 allows you to
compare approximation methods.

)
|

B 1
Approximations to j - dx

Corresponding errors

= It furns out that these observations are true
in mast cases.

FIGURE 5

In general, we have

Er= Lb fx)dx — T, and

EM = J.“bf(x) dx — Mu

The following tables show the results of calculations similar to those in Example 1, but
for n = 5, 10, and 20 and for the left and right endpoint approximations as well as the

Trapezoidal and Midpoint Rules.

n L, R, T, M,

3 0.745635 0.645635 0.695635 0.691908
10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069

n Er Ex Er Ey

5 —0.052488 0.047512 —0.002488 0.001239
0 —0.025624 0.024376 —0.000624 0.000312
20 —0.012656 0.012344 —0.000156 0.000078

We can make several observations from these tables:

I. In all of the methods we get more accurate approximations when we increase the
value of n. (But very large values of 7 result in so many arithmetic operations that
we have to beware of accumulated round-off error.)

2. The errors in the left and right endpoint approximations are opposite in sign and
appear to decrease by a factor of about 2 when we double the value of n.

3. The Trapezoidal and Midpoint Rules are much more accurate than the endpoint
approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear
to decrease by a factor of about 4 when we double the value of n.

5. The size of the error in the Midpoint Rule is about half the size of the error in the
Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midp
the Trapezoidal Rule. The area of a typical rectangle in
the area of the trapezoid ABCD whose upper side is tan
this trapezoid is closer to the area under the graph than is th

oint Rule to be more accurate than
the Midpoint Rule is the same 23
gent to the graph at P. The area of
e area of the trapezoid AQRD

used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trape-
zoidal error (shaded blue).]
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K

can be any number larger than all the

values of | £"(x) |, but smaller values of K

give

LR

better error bounds.

U quite possible that a lower value for

h,"ld suffice, but 41 is the smallest value for
¥ich the error Bound farmuta can guarantee us

acy

U3ty to within 0.0001,
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These observations are corroborated in the following error estimates, which are proved
in books on numerical analysis. Notice that Observation 4 corresponds to the #? in each
denominator because (2n)* = 452 The fact that the estimates depend on the size of the
second derivative is not surprising if you look at Figure 5, because £(x) measures how
much the graph is curved. [Recall that £"(x) measures how fast the slope of y = f(x)
changes.]

[3] ERROR BOUNDS Suppose | f"(x)| < K fora < x < b. If Er and E,, are the
errors in the Trapezoidal and Midpoint Rules, then

- Kb — a)’

Kb — ay
Erl = il i
| Er] 1257

d Eyl =
an | Eu 245?

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. If
S(x) = 1/x, then f'(x) = —1/x?and £"(x) = 2/x° Since 1 < x < 2, we have I/x<1,s0

2
ia

2 =2
x|

| f"(x)| =

Therefore, taking K = 2, a = l,b =2, and n = 5 in the error estimate (3), we see that

L22-1p

| £r| 1207 0 0.006667

Comparing this error estimate of 0.006667 with the actual error of about 0.002488, we see
that it can happen that the actual error is substantially less than the upper bound for the
error given by (3),

i EXAMPLE 2 How large should we take 7 in order to guarantee that the Trapezoidal
and Midpoint Rule approximations for J1 (1/x) dx are accurate to within 0.00017

SOLUTION We saw in the preceding calculation that |F"(x)| < 2for 1 < x <2, sowecan
take K=2,a=1,and b =2 1in (3). Accuracy to within 0.0001 means that the size of
the error should be less than 0.0001. Therefore we choose #n so that

2(1)°
12n*

< 0.0001

Solving the inequality for n, we get

2
12(0.0001)

1
> = 40,
o * > onoog 408

Thus n = 41 will ensure the desired accuracy.
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y
y=e"
0 "
FIGURE 6

- Error estimates give upper bounds for

the error, They are thearetical, worst-case
scenarios. The actual error in this case turns
out to be about 0.0023.

For the same accuracy with the Midpoint Rule we choose n so that

2(1)°

2

< (.0001
24n 0

1
which gives n> ——OO—OE

i1 EXAMPLE 3 .
(a) Use the Midpoint Rule with 17 = 10 to approximate the integral j(; e* dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Sincea = 0,b = 1, and n = 10, the Midpoint Rule gives

jo' o dx = Ax[£(0.05) + f(0.15) + - -+ + f(0.85) + f(0.95)]

— 0.1[60'0025 + 80.0225 o 20.0625 +4- eU.ITJj + eO.E[}ZS + 90.3025
+ 80‘4225 A 80.567_5 + 20‘7225 + 80.9015]

= 1.460393

Figure 6 illustrates this approximation.
(b) Since f(x) = e, we have f'(x) = 2xe” and f(x) = (2 + 4x2)e’:. Also, since
0 =< x = 1, we have x> < | and s0

0= f"(x) = 2 + dx?)e" < e

Taking K = 6e,a = 0,b=1,andn =10 in the error estimate (3), we see that an upper
bound for the error is

6e(1)? e
= —— = 0.007 O
24(10) 400

SIMPSON'S RULE

Another rule for approximate integration results from using parabolas instead of straight
line segments to approximate a curve. As before, we divide [a, b] into n subintervals of
equal length h = Ax = (b — a)/n, but this time we assume that n is an ever number. Then
on each consecutive pair of intervals we approximate the curve y = f(x) = O by a parabola
as shown in Figure 7. If y; = f(x;), then Pi(x:, y;) is the point on the curve lying above -
A typical parabola passes through three consecutive points Pi, Pis1, and Pisa.

yaA

Pnl_h/%)/—\ Pi{0, )

Paii, y3)

|
|
|
|
]

0 a=x, x X

FIGURE 7

X4

+ =
Xy x5 Xg = . —h 0 h &

FIGURE 8

= 29 O
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ola
X

= Here we have used Theorem 5.5.7.
Motice that Ax? -+ Cis even and Bx is odd.
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To simplify our calculations, we first consider the case where xp = —/, x; = 0, and
x2 = h. (See Figure 8.) We know that the equation of the parabola through Py, P, and P,

is of the form y = Ax? + Bx + C and so the area under the parabola from x = — 4 to
x=his

f_"h (Ax* + Bx + C)dx =2 L’ (Ax? + C) dx

x? .
= Z[A e Cx}
3 0

A3 i
= Q(A —fj— + Ch) - —;-(zAhz + 6C)

But, since the parabola passes through Py(—#, yo), Pi(0, y1), and Py(h, y,), we have
Yo=A(=h)+B(—h) + C=Ah* — Bh + C
n==C
ym=Aht+ Bh + C

and therefore Yo + 4y, + y2 = 24h°% + 6C

Thus we can rewrite the area under the parabola as

h

3 (Yo + 4y + )

Now, by shifting this parabola horizontally we do not change the area under it. This means
that the area under the parabola through Py, P, and P; from x = Xp to x = x; in Figure 7
is still

h
g(}’o + dy; + y2)
Similarly, the area under the parabola through P,, P;, and Py from x = x, to x = x, is

h
g (y2 + dys + y)
If we compute the areas under all the parabolas in this manner and add the results, we get

b h h i
Lf(x) dx == -,Jr(yn + 4y, + y) + ?()’2 +dys +oyy) + e+ 3 R o

W=

(yﬁ + 4y| = 2.)’2 T+ 4}’3 + 2y4 +oeee + 2)’11—2 + 4_)’:1—] + yn)

Although we have derived this approximation for the case in which S(x) = 0, it is a rea-
sonable approximation for any continuous function S and is called Simpson’s Rule after
the English mathematician Thomas Simpson (1710-1761). Note the pattern of coeffi-
cients: 1,4,2,4,2,4,2,...,4,2, 4, 1.
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[sIMPsSON |
Thomas Simpson was a weaver who taught
himself mathematics and went on to become one
of the best English mathematicians of the 18th
century. What we call Simpson’s Rule was
actually known to Cavalieri and Gregory in the
17th century, but Simpson popularized it in his
best-selling calculus textbook, A New Treatise

of Fluxians.

FIGURE ¢

SIMPSON’S RULE

[[f@dr=s,= % [f(uo) + 4f(x1) + 2f(xa) + 4f(xs) + -

+ Zf(x,,—z) + 4f(xn—I) + f(x,. )]

where # is even and Ax = (b — a)/n.

EXAMPLE 4 Use Simpson’s Rule with n = 10 to approximate [} (1/x) dx.
SOLUTION Putting f(x) = 1/x, n = 10, and Ax = 0.1 in Simpson’s Rule, we obtain

= 0.693150 (I

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation
(S1o = 0.693150) to the true value of the integral (In2 = 0.693147.. .) than does the
Trapezoidal Rule (70 = 0.693771) or the Midpoint Rule (M = 0.692835). It turns out
(see Exercise 48) that the approximations in Simpson’s Rule are weighted averages of
those in the Trapezoidal and Midpoint Rules:

SZn = %Tﬂ + %Mn

(Recall that Ey and Ey usually have opposite signs and | Ey | is about half the size of | Ex |)

In many applications of calculus we need to evaluate an integral even if no explicit for-
mula is known for y as a function of x. A function may be given graphically or as a table
of values of collected data. If there is evidence that the values are not changing rapidly,
then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approximate value
for [* y dx, the integral of y with respect to x.

EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to SWITCH,
the Swiss academic and research network, on February 10, 1998. D(s) is the data through-
put, measured in megabits per second (Mb/s). Use Simpson’s Rule to estimate the total
amount of data transmitted on the link up to noon on that day.

D
8+

6_..

00 3 6 9 12 15 18 21 24 f(hours)
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SOLUTION Because we want the units to be consistent and D(r) is measured in megabits
per second, we convert the units for ¢ from hours to seconds. If we let A(7) be the

amount of data (in megabits) transmitted by time
. So, by the Net Change Theorem (see Section 5.4), the total amount of data

A'(r) = D)

transmitted by noon (when ¢ = [2 X 60°

t, where ¢ is measured in seconds, then

= 43,200) is

A(43,200) = L S ol

We estimate the values of D(r) at hourly intervals from the graph and compile them in
the table.
7 (hours) 1 (seconds) l D(1) t (hours) 7 (seconds) D(r)
0 0 3.2 7 25,200 13
1 3,600 27 8 28,800 2.8
2 7,200 1.9 9 32,400 5.7
3 10,800 1.7 10 36,000 i »
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

Then we use Simpson’s Rule with n = 12 and At

A(r) dt

J‘43,2(10
0

= 3600 to estimate the integral;

~ % [D(0) + 4D(3600) + 2D(7200) + - - - + 4D(39,600) + D3 200)]

= i63E)-[3.2 +42.7) + 2(1.9) + 4(1.7) + 2(1.3) + 4(1.0)
+2(1.1) + 4(1.3) + 2(2.8) + HIET} + H1L) #4077 + 7.9]

= 143,880

Thus the total amount of data transmitted up to noon is about 144,000 megabits, or

144 gigabits,

0.69121989
0.69266055
0.69302521]

0.69315453
0.69314765
0.69314721

The table in the margin shows how
for the integral [7 (1/x) dx, whose true
how the error E, in Simpson’s Rule decreases by a factor of about 16 when 7 is doubled.
(In Exercises 27 and 28 you are asked
consistent with the appearance of n* in
Simpson’s Rule. It is similar to the esti

O

Simpson’s Rule compares with the Midpoint Rule
value is about 0.69314718. The second table shows

to verify this for two additional integrals.) That is
the denominator of the following error estimate for
mates given in (3) for the Trapezoidal and Midpoint

Rules, but it uses the fourth derivative of f,
4 Ey Es
41 0.00192729 —0.00000735 [4] ERROR BOUND FOR SIMPSON’S RULE Suppose that | f*(x) | < K for
8 | 0.00048663 —0.00000047 a = x =< b. If Esis the error involved in using Simpson’s Rule, then
16| 000012197 —0.00000003

Kb ~ a)
o e N . M
180x*

s <
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Many calculators and computer algebra sys-
tams have a built-in algorithm that computes an
approximation of a definite integral. Some of
these machines use Simpson’s Rule; others use
more sophisticated techniques such as adaptive
numerical integration. This means that if a func-
tion fluctuates much more on a certain part of
the interval than it doss elsewhere, then that
part gets divided into more subintervals. This
strategy reduces the number of calculations
required to achieve a prescribed accuracy.

« Figure 10 illustrates the calculation in
Example 7. Notice that the parabolic arcs are
<0 close to the graph of y = e that they are
practically indistinguishable from it.

4

0 1 X

FIGURE 10

EXAMPLE 6 How large should we take n in order to guarantee that the Simpson's Rule

CHAPTER 7 TECHNIQUES OF INTEGRATION

approximation for J‘f (1/x) dx is accurate o within 0.0001?

SOLUTION If f(x) = 1/x, then F¥(x

Therefore we can take K
choose n so that

This gives

or

Therefore n = 8 (n must be even) gi

24
= 24
X

3

|f{4)(x)| —

= 24 in (4). Thus, for an error les

24(1)°

T < 0.0001

nt > __L
180(0.0001)

1

i st e 5
"~ 40.00075 0

ves the desired accuracy. (Compare this with

Example 2, where we obtained n = 41 for the Trapezoidal
Midpoint Rule.)

EXAMPLE 7

(b) Estimate the error involved in this approximation.

SOLUTION
(a) If n = 10, then Ax = 0.1 and Simpson’s Rule gives
: A
jﬂ' e’ dx = —Bi[ FO) + 4£(0.) + 27(02) + -+ + 2f(0.8) + 4 £(0.9) + £(1)]
0.1

) = 24/x%. Since x = 1, we have I/x < 1 and so

s than 0.0001, we should

Rule and n = 29 for the

(a) Use Simpson’s Rule with 72 = 10 to approximate the integral [ e dx.

=—'_[EO + 42(}.0[ 4 28().04 + 4ell.09 + 26(}.16 + 480'25 + 260.36

us 480.49 + 2(30'54 4 480.81 -+ el]

=~ 1.462681

(b) The fourth derivative of f(x) = e is
FO) = (12 + 4827 + 16x%)e”

and so, since 0 < x = 1, we have

0=<fx)=(12+48 + 16)e' = 76e

Therefore, putting K = 76e,a = 0,b=1,andn = 10in (4), we see that the error isat

most

(Compare this with Example 3.

76e(1)’

W == ().000115

L‘ e dx = 1.463

} Thus, correct to three decimal places, we have

O
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[I.] Let F = [} f(x) dx, where f is the function whose graph is

(Round your answers to six decimal places.) Compare your
results to the actual value to determine the error in each

shown. o th
(a) Use the graph to find Ls, R, and M. approximation.

(b) Are these underestimates or overestimates of /7 - -

(c) Use the graph to find 7. How does it compare with /7 3. L x'sinxdr, n=38 6. L e Vdy, n=26

(d) For any value of n, list the numbers L., R,, M,, T,, and [

in increasing order.

7-18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and

y [ (c) Simpson’s Rule to approximate the given integral with the
3 il & specified value of n. (Round your answers to six decimal places.)
2 7 j: T+a7dr, n=8 8 [Tsinx)yds, n=14
1 Inx . _ 3 dt _

9. i dx, n=10 I0.01+t2+14, n==6
0 1 2 3 4 x "

2. The left, right, Trapezoidal, and Midpoint Rule approxi-

mations were used to estimate [ f(x) dx, where f is the 13.

function whose graph is shown. The estimates were 0.7811,

J.um sin(e”)dr, n=238 12 J: VI+x dx, n=38

re‘ﬁsinrdt, n=2_8 14. J‘I ‘/z_e‘:dz, n=10

o o

[[=Edr, n=38 16 [*in(x* + 2)dx, n=10
! x 4

31 4

Ny dy, n=26 18. Lcos\/,\_dx, n=10

0.8675, 0.8632, and 0.9540, and the same number of sub-
intervals were used in each case. I5.
(a) Which rule produced which estimate?
(b) Between which two approximations does the true value of 17
Jo f(x) dx lie?
y
19

1

A (3] Estimate fo cos(x?) dx using (a) the Trapezoidal Rule and
(b) the Midpoint Rule, ecach with n = 4. From a graph of the
integrand, decide whether your answers are underestimates or

overestimates. What can you conclude about the true value of 21.

the integral?

Draw the graph of f(x) = sin($x?) in the viewing rectangle
[0, 1] by [0, 0.5 and let 7 = [} £(x) dx.
(2) Use the graph to decide whether L, Rz, Ma, and T: under-
estimate or overestimate /.
(b) For any value of #, list the numbers Ly, R,, M., T,, and

1 in increasing order. 22,

{c) Compute Ls, Rs, Ms, and 7s. From the graph, which do
you think gives the best estimate of /7

-6 Use (a) the Midpoint Rule and (b) Simpson’s Rule to
Approximate the given integral with the specified value of n.

CAS]23.

. (a) Find the approximations 73 and My for the integral

Jy cos(x?) dx.

(b) Estimate the errors in the approximations of part (a).

(c) How large do we have to choose # so that the approxima-
tions T, and M, to the integral in part (a) are accurate to
within 0.0001?

. () Find the approximations Tyo and My, for [ e'/“dx.

(b) Estimate the errors in the approximations of part (a).

(¢) How large do we have to choose n so that the approxima-
tions T, and M, to the integral in part (a) are accurate to
within 0.00017?

(a) Find the approximations Tio, My, and Sig for _|;;' sin x dx
and the corresponding errors Er, Ey, and Es.

(b) Compare the actual errors in part (a) with the error esti-
mates given by (3) and (4).

(c) How large do we have to choose n so that the approxima-
tions T,, M,, and S, to the integral in part (a) are accurate
to within 0.000017

How large should » be to guarantee that the Simpson’s Rule
approximation to Ju e*'dx is accurate to within 0.000017

The trouble with the error estimates is that it is often very
difficult to compute four derivatives and obtain a good upper
bound K for | f*(x) | by hand. But computer algebra systems
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have no problem computing f and graphing it, so we can

easily find a value for K from a machine graph. This exercise

deals with approximations to the integral / = Bl dx,

where f(x) = ¢***.

(a) Use a graph to get a good upper bound for | £"(x) |.

(b} Use Mo to approximate /.

(c) Use part (a) to estimate the error in part (b).

(d) Use the built-in numerical integration capability of your
CAS to approximate /.

(e) How does the actual error compare with the error esti-
mate in part (c)?

(f) Use a graph to get a good upper bound for | £ |-

(g) Use Sio to approximate [.

(h) Use part (f) lo estimate the error in part (g).

(i) How does the actual error compare with the error esti-
mate in part (h)?

(j) How large should » be to guarantee that the size of the
error in using S, is less than 0.0001?

24. Repeat Exercise 23 for the integral J-_li V4 — 23 dx.

25-26 Find the approximations Ly, Ru, T, and M, forn = 5, 10,
and 20. Then compute the corresponding errors E, Eg, Er, and
Ey. (Round your answers to six decimal places. You may wish to
use the sum command on a computer algebra system.) What
observations can you make? In particular, what happens to the
errors when n is doubled?

25, J: xe*dx 26. J.f }-l-;dx

27-28 Find the approximations T, M, and S, forn = 6 and 12.
Then compute the corresponding errors Ep, Ey, and Es. (Round
your answers to six decimal places. You may wish to use the sum
command on a computer algebra system.) What observations can
you make? In particular, what happens to the errors when n is
doubled?

Bkl e
27. L;\ dx

8 [(——a
A L «'/; X

29. Estimate the area under the graph in the figure by using
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule, each with n = 6.

y

B
4 N

30. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the

31. (a) Use the Midpoint Rule and the given data to estimate the
value of the integral [* f(x) dx.

x flx x fx)

0.0 6.8 2.0 7.6
0.4 6.5 24 8.4
0.8 6.3 2.8 8.8
1.2 6.4 3.2 9.0
1.6 6.9

(b) If it is known that —4 < f "(x) = 1 for all x, estimate the
error involved in the approximation in part (a).

32. A radar gun was used to record the speed of 4 runner during
the first 5 seconds of a race (see the table). Use Simpson’s
Rule to estimate the distance the runner covered during those

3 seconds.

t(s) v {m/s) 1(s) v (m/s)
0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
20 9.73 5.0 10.81
2.5 10,22

Bﬂ The graph of the acceleration a(t) of a car measured in fi/s?
is shown. Use Simpson's Rule to estimate the increase in the
velocity of the car during the 6-second time interval,

13 ‘\\
N \
7
0 2 4 6 ! (seconds)

34, Water leaked from a tank at a rate of r(¢) liters per hour, where
the graph of r is as shown. Use Simpson’s Rule to estimate the
total amount of water that leaked out during the first 6 hours.

r

b
2 ==
—
0 2 4 6 t (seconds)




[35] The table (supplied by San Diego Gas and Electric) gives the
power consumption £ in megawatts in San Diego County
from midnight to 6:00 AM on December 8, 1999, Use Simp-
son’s Rule to estimate the energy used during that time
period. (Use the fact that power is the derivative of energy.)

t P t P
0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604 J

36. Shown is the graph of traffic on an Internet service pro-
vider’s T1 data line from midnight to 8:00 aM. D is the data
throughput, measured in megabits per second, Use Simpson’s
Rule to estimate the total amount of data transmitted during
that time period.

D
08—
/
5
/N~
F
0.4
’\U/
0 2 4 6 8  (hours)

37. If the region shown in the figure is rotated about the y-axis to
form a solid, use Simpson’s Rule with n = 8 to estimate the
volume of the solid.

¥y

k TN

2 ] \
&l \

0 2 4 6 8 10 x

38. The table shows values of a force function f(x), where ¥ is
measured in meters and f(x) in newtons, Use Simpson's Rule
1o estimate the work done by the force in moving an object a
distance of 18 m.

3|6[9|12 15 | 18

9.1 ' 85 ’ 8.0 ' 77 | 75 | 74
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39. The region bounded by the curvesy = eVt y=0 y =1,
and x = 5 is rotated about the x-axis, Use Simpson’s Rule
with n = 8 to estimate the volume of the resulting solid.

(45]40. The figure shows a pendulum with length L that makes a
maximum angle #, with the vertical, Using Newton'’s
Second Law, it can be shown that the period T (the time

for one complete swing) is given by

X

L /2 d.
T=4,/2
\/g—-[o V1 — k?sin’

where k = sin(% 60) and g is the acceleration due to gravity.
If L =1mand 6 = 42° use Simpson’s Rule with n = 10 to
find the period,

Z(U/'///////I////////////

6y

*»
™

g -~

|
|
|
| =4
- R R
41, The intensity of light with wavelength A traveling through
a diffraction grating with & slits at an angle 6 is given by
1(8) = N?sin*/k? where k = (7Nd sin 8)/A and 4 is the
distance between adjacent slits. A helium-neon laser with
wavelength A = 632.8 X 10" m is emitting a narrow band
of light, given by —107° < @ < 107, through a grating with
10,000 slits spaced 10™* m apart. Use the Midpoint Rule
with 2 = 10 to estimate the total light intensity _[1':;4 1(8) do
emerging from the grating.

42. Use the Trapezoidal Rule with 7 = 10 to approximate
Jo" cos(arx) dx. Compare your result to the actual value.
Can you explain the discrepancy?

43. Sketch the graph of a continuous function on [0, 2] for which
the Trapezoidal Rule with n = 2 is more accurate than the
Midpoint Rule,

44. Sketch the graph of a continuous function on [0, 2] for which
the right endpoint approximation with n = 2 is more accurate
than Simpson’s Rule.

If f is a positive function and f"(x) < 0 fora < x < b, show
that

< ') dx < m,

46. Show that if £ is a polynomial of degree 3 or lower, then
Simpson’s Rule gives the exact value of J? f(x) dx.

47, Show that 3(T, + M,) = Tu,.

48. Show that 17, + M, = 5,,.
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\ area =

[} 0 1 2 ;

FIGURE 2

7.8 | IMPROPER INTEGRALS

In defining a definite integral [? f(x) dx we dealt with a function f defined on a finite inter-
val [a, b] and we assumed that f does not have an infinite discontinuity (see Section 5.2).
In this section we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, &]. In either case
the integral is called an improper integral. One of the most important applications of this
idea, probability distributions, will be studied in Section 8.5.

TYPE I: INFINITE INTERVALS

Consider the infinite region S that lies under the curve y = 1/x*, above the x-axis, and to
the right of the line x = 1. You might think that, since S is infinite in extent, its area must
be infinite, but let’s take a closer look. The area of the part of § that lies to the left of the
line x = t (shaded in Figure 1) is

i 1| 1
A(t)=j:?dx= —-—] =1-—

YA

FIGURE |
We also observe that
) . 1
limA() =lim|1—-—) =1
[ —rez s
The area of the shaded region approaches 1 as # — @ (see Figure 2), so we say that the area
of the infinite region S is equal to 1 and we write
< 1 ) 1
J. ml—dx=hm r—zdx=]
i X t—oJl X
y ¥ YA
area=% area=% area =1
0 1 é x 0 | i 5i X 0 ' 1 X

Using this example as a guide, we define the integral of f (not necessarily a po
function) over an infinite interval as the limit of integrals over finite intervals.

sitive




FIGURE 3
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m DEFINITION OF AN IMPROPER INTEGRAL OF TYPE |
(a) If [! f(x) dx exists for every number ¢ = a, then

[ dx=tim [ f(x) ax

provided this limit exists (as a finite number).
(b) If [* () dx exists for every number ¢ < b, then

f_bm f() dx = lim J:bf (x) dx

provided this limit exists (as a finite number).

The improper integrals [ f(x) dx and [*, f(x) dx are called convergent if the
corresponding limit exists and divergent if the limit does not exist.

(c) If both |7 f(x) dx and [*_ f(x) dx are convergent, then we define .

o rear=[" fds+ [0 ax

In part (c) any real number @ can be used (see Exercise 74).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that
f is a positive function. For instance, in case (a) if f(x) = 0 and the integral 7 f(x) dx
is convergent, then we define the area of the region § = {(x, y) [x=a0<sy<f)}in
Figure 3 to be

A(S) = [ f(x) dx

This is appropriate because [ f(x) dx is the limit as 1 — o of the area under the graph of
ffromator

Y

EXAMPLE | Determine whether the integral [ (1/x) dx is convergent or divergent,
SOLUTION According to part (a) of Definition 1, we have
o 1 i )
L —dx =lim ['=dx = lim In|x|]!
X

X == J] ==

=lim(lnr—Inl)=Ilimlnt=

1= r—sw

The limit does not exist as a finite number and so the improper integral |7 (1/x) dx is
divergent. O
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FIGURE 5

In Module 7.8 you can investigate
visually and numerically whether several
improper integrals are convergent ar
divergent.
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Let’s compare the result of Example 1 with the example given at the beginning of this

section:

w 1 = 1
f —5 dx converges j- — dx diverges
1 X 1 X

Geometrically, this says that although the curves y = 1/x* and y = 1/x look very similar
for x > 0, the region under y = 1/x? to the right of x = 1 (the shaded region in Figure 4)
has finite area whereas the corresponding region under y = 1/x (in Figure 5) has infinite
area. Note that both 1/x? and 1/x approach 0 as x — oo but 1/x? approaches 0 faster than
1/x. The values of 1 /x don’t decrease fast enough for its integral to have a finite value.

EXAMPLE 2 Evaluate .[f xe*dx.

SOLUTION Using part (b) of Definition 1, we have

Em xetdx = rlim [U xe*dx

— -tz Js

We integrate by parts with u = dp = ¢*dx so that du = dx, v = ¢

0] 0 0
j xe*dx = xe"], = j e*dx
! 1
=—te'—1+¢

We know that e’ — 0 as { — —, and by "Hospital’s Rule we have

] : t . 1
lim e’ = lim — = lim =
[—s—@ t——0 £ (- —¢

= lim (—e'}) =0
[—r—t0

Therefore

ﬁ re*dx = lim (—te' — 1 + &'}

f——=

=—0-1+0=-1

)

EXAMPLE 3 Evaluatej dx.

= 1+ x?

SOLUTION 1t's convenient to choose a = 0 in Definition 1{c):

1

Jj;l-ixzdx=ﬁ=l-ixzdx-*‘-[:l-i-xzdx.

We must now evaluate the integrals on the right side separately:

= 1 . 1 dx e T
j 1+x2dx‘rll§laj.ul+x2_ lim tan ,1]0

0 —r0

= lim (tan™'t — tan~' 0) = lim lan~'t =
t—

|—x

3

2




FIGURE 6
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0

0 1 "
= 1li = i -1
f_,, 1 4o g8 dx rEIPm 1+ 52 Jim_ tan .1],

= lim (tan™'0 — tan™'y)
e

~o-(-5)-%

Since both of these integrals are convergent, the given integral is convergent and

o 1 v w
J‘-m 1 +x2d)~_?+?—ﬂ'
Since 1/(1 + x*) > 0, the given improper integral can be interpreted as the area of

the infinite region that lies under the curve y = 1/(1 + x2) and above the r-axis (see
Figure 6). |

EXAMPLE 4 For what values of p is the integral

= 1
L 1‘; dx
convergent?
SOLUTION We know from Example 1 that if p = 1, then the integral is divergent, so let's
assume that p # 1. Then

|

|7 dx = tim ['x ax
1 x”

= J]

= tim ——| L
rl»ﬂ;lxl—P P!

Iftp>1,thenp —1>0,50as t— o, 1”1 5 20 gnd 1/t7~' — Q. Therefore

= | | :
l;fT't_pj if p>1

and so the integral converges. But if p < 1, then p—1<0andso
1

— =" 5, as 1 —>
[pl

and the integral diverges. O

We summarize the result of Example 4 for future reference:

= ] .
—, dx isconvergentif p > 1 and divergent ifp=<1.
1 x? g

TYPE 2: DISCONTINUOQUS INTEGRANDS

Suppose that f is a positive continuous function defined on a finite interval [a, b) but has
a vertical asymptote at b. Let S be the unbounded region under the graph of f and above
the x-axis between a and b. (For Type 1 integrals, the regions extended indefinitely in a
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¥ horizontal direction. Here the region is infinite in a vertical direction.) The area of the part
of § between a and ¢ (the shaded region in Figure 7) is
Al) = j ' F(x) dx
I it happens that A(r) approaches a definite number A as  — b, then we say that the
O a tb ¥ grea of the region S is A and we write
1
FIGURE 7 rf(x) dx = lim _[ f(x)dx
a [—sb= va

We use this equation to define an improper integral of Type 2 even when f is not a posi-
tive function, no matter what type of discontinuity f has at b.

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2
(a) If f is continuous on [a, b) and is discontinuous at b, then
» Parts (b and (c) of Definition 3 are illustrated \
in Figures 8 and 9 far the case where flx)=0 jbf(l) dx = lim j f(;) dx
and f has vertical asymptoies ata and c, a t—b Ja »
respectively. . oL . .
if this limit exists (as a finite number).
y (b) If f is continuous on {(a, b] and is discontinuous at a, then
b
f” £(x) dx = lim j £(x) dx
a —at Jr
if this limit exists (as a finite number).
The improper integral f: f(x) dx is called convergent if the corresponding limit
0 7 £ p X exists and divergent if the limit does not exist.
(c) If f has a discontinuity at ¢, where a < ¢ < b, and both [© f(x) dx and
FIGURE 8 i Ja
[! f(x) dx are convergent, then we define
¥ b 4 b
j flx)dx = J. Flx) dx + j f(x) dx
EXAMPLE 5 Find | L4
ind | ———=dx.
2 NJx—2
0] a ¢ b x SOLUTION We note first that the given integral is improper because f(x) = 1/x—12
has the vertical asymptote x = 2. Since the infinite discontinuity occurs at the left end-
FIGURE 9 point of [2, 5], we use part (b) of Definition 3: }
.[5 dx i J‘s dx j
L P W LN
by 2 afx —2 -2t x—2 \
= lim 2/x = 2]
= lim 23 —Vi-2) ]
—2t |
. =2+/3 i
= ! i
1 o ; ; . . ; s i
Thus the given improper integral is convergent and, since the integrand is positive, W€ !
FIGURE 10 can interpret the value of the integral as the area of the shaded region in Figure 10. d #
a
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. =/2 A
i1 EXAMPLE 6 Determine whether J; sec x dx converges or diverges.

SOLUTION Note that the given integral is improper because lim,_,(»/3- sec x = o, Using

part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

/2 4 i . '
jr secxdx= lim | secxdy= lim In|secx + tanx]|];
0 r—{w/2)~ Jo t—(m/2)~

I

li 1 t+tant) —Inl] =
M(lﬂrr%)_[n(sec antf) —Inl] =

because sec 1 — o and tan t — © as t — (7/2)". Thus the given improper integral is
divergent. O

d;
EXAMPLE 7 Evaluate J.; -LI it possible.
x—

SOLUTION Observe that the line x = 1 is a vertical asymptote of the integrand. Since it
occurs in the middle of the interval [0, 3], we must use part (c) of Definition 3 with

c=1:
dx 4
ﬁlezﬂle+fx?1

1 dx . ¢ dx
where el ey

= limIn|x—1]];

ummh—ILJMHW

Il

1i1;n In{l —¢) = -
L

because 1 — t— 0" as¢— 1" Thus Jc: dx/(x — 1) is divergent. This implies that
{2 dx/(x — 1) is divergent. [We do not need to evaluate [dx/(x — 1).] O

B WARNING If we had not noticed the asymptote x = 1 in Example 7 and had instead
confused the integral with an ordinary integral, then we might have made the following
erroneous calculation:

3 dx 3
Lx_l—mh~1m—m2—m1—m2
This is wrong because the integral is improper and must be calculated in terms of limits,

From now on, whenever you meet the symbol f : f(x) dx you must decide, by looking
at the function f on [a, b], whether it is an ordinary definite integral or an improper
integral.

EXAMPLE 8 Evaluate J: In x dx.

SOLUTION We know that the function f(x) = In x has a vertical asymptote at 0 since
lim;—.o+ In x = —oo, Thus the given integral is improper and we have

J;: In xdx = lim lInxd}:

=0 Jt
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Now we integrate by parts with u = In x, dv = dx, du = dx/x, and v = x:

Ll In xdx

xIn x]: - J;l dx

llnl—tIlnt—(1—1)

—tlntr—1+1

To find the limit of the first term we use 1'Hospital’s Rule:

lim ¢tIlnt = lim ll{--—‘ lim
I/t

—0* —0*

1/t

=0 =117 =0t

Therefore L‘lnxdx= fim (~¢Int = 1+0)==0~1 $0=~1
1=+0%

Figure 11 shows the geometric interpretation of this result. The area of
above y = In x and below the x-axis is 1.

A COMPARISON TEST FOR IMPROPER INTEGRALS

Type 2 integrals.

| Sometimes it is impossible to find the exact v
i is important to know whether it is convergent or di
FIGURE 11 orem is useful. Although we state it for Type 1 integrals, a similar theorem is true for

flx) = g(x) =0forx = a.

..

COMPARISON THEOREM Suppose that f and g are continuous functions with

(a) If [7 f(x) dx is convergent, then [ g(x) dx is convergent.

(b) If {7 g(x) dx is divergent, then [ f(x) dx is divergent.

divergent.]

If the area under the top curve y = f(x)
y = g(x). And if the area under y = g
[Note that the reverse is not necessaril

y1 We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plausible.
is finite, then so is the area under the bottom curve
(x) is infinite, then so is the area under y = f(x).
y true: If | g(x) dx is convergent, [ f(x) dx may

g
\ or may not be convergent, and if [ f(x) dx is divergent, { g(x) dx may or may not be

0l & x
i FIGURE 12 EXAMPLE 9 Show that J: ¢~ *dx is convergent.
|.
! ; ¢ N, =
| SOLUTION We can’t evaluate the integral directly because the antiderivative of e~
94 elementary function (as explained in Section 7.5). We write

‘ 0 1 x

= e*dx=1lim [ e*dy=1lim(e' —e7)=¢

{ Bt FIGURE 13 L st

= 1 1 =
J- e dx = _[ e dx + J. e dx
i 1] 1

and observe that the first integral on the right-hand side is just an ordinary definite inte-
gral. In the second integral we use the fact that for x =
and therefore e™ < e, (See Figure 13.) The integral of e * is easy to evaluate:

-

——=1lim (- =0

the shaded region

alue of an improper integral and yet it
vergent. In such cases the following the-

] we have x2 = x,50 —x° < ~
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Thus, taking f (x) = e and g(x) = e™* ‘in Lhe Comparison Theorem, we see that
[Fedxis convergent It follows that [~ e dxis convergent. O
TABLE | ,
; e dx In Example 9 we showed that f” €™ dx is convergent without computing its value. In
il - Exercise 70 we indicate how to show that its value is approximately 0.8862. In probabil-
1 0.7468241328 ity theory it is important to know the exact value of this i improper integral, as we will see
2 0.8820813908 in Section 8.5; using the methods of multivariable calculus it can be shown that the exact
3 0.8862073483 value is /7r/2. Table 1 illustrates the deﬁmtlon of an improper integral by showing how
‘_L 08862269118 the (computer-generated) values of [ e “dx approach /2 as t becomes large. In fact,
= 0'88622692:-_’5 these values converge quite quickly because e™ — 0 very rapidly as x —> oo,
6 0.8862269255
TABLE 2 EXAMPLE 10 The integral J‘ ——dx is divergent by the Comparison Theorem
; [T+ eyx] d because
I +e™ 1
2 0.8636306042 — >
5 1.8276735512 * % .
10 2.5219648704 5 S0 v
100 4.8245541204 and fl (1/x) dx is divergent by Example 1 [or by (2) with p = 1]. O
1000 7.1271392134 . . ) :
10000 9.4297243064 Table 2 illustrates the divergence of the integral in Example 10. It appears that the
values are not approaching any fixed number.

7.8 | EXERCISES

[L] Explain why each of the following integrals is improper.

-1 1 = x
= i %l & — _ AT A S
(a)J‘I xle ™ dx (b) L : sec x dx f_z V2 —w dw 8 ,[o (x? + 2)° dx
2 X (V] 1 = -y/2 -1 2
—_dx ——dx / 2 d i t
©f =t @[ Tt 9. [[edy 0. [ear
2. Which of the following integrals are improper? Why? i. J': T dx 12. r 2 — o9 dv
2 1 i =oAL =
® [ gy o ® ;3 .
[13] xe “dx 14, dx
sin x 2 —o J_
()LH @ [ mn(x~1)dr
I5. L_sinGdB 16. f_ cos 71 dt

3. Find the area under the curve y = 1/x* fromx = ltox = ¢

and evaluate it for 7 = 10, 100, and 1000. Then find the total r s WP 8. f
area under this curve for x = 1. txt+2x + 32 + 2
i 4, (a) Graph the functions f(x) = 1/x" and g(x) = 1/x"° in the 19, J: se”¥ ds 20. f re’* dr
viewing rectangles [0, 10] by [0, 1] and [0, 100] by [0, 1].
(b) Find the areas under the graphs of f and g from x = 1 1] r In * i 22, f = g
to x = 7 and evaluate for r = 10, 100, 10%, 105, 10'°,
and 10%, = x? _
(c) Find the total area under each curve for x = 1, if it exists. 23, _L, 9 + 6 dx 24. f Pt 3 3
5-4p - 1 = ) taj
By Determine whether each integral is convergent or divergent. 25, J’ —dx 26. X arc ilxz i
aluate those that are convergent. ¢ x(In x) o (1 +x%)

5, fmd—* 6 [P S do 2. j—«dx o [ \/;Td
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v 0. [l g
B sz%dx 32. L‘%
33, L‘” (x — 1)7¥5 dx 34, L‘ 4y1_ - dy
35. :ﬁ_ﬂ%ﬁ 36. j: ese x dx
7. [ &5 de 8. [ S5 d

39. [[zinzdz 0. | 13% dx

41-46 Sketch the region and find its area (if the area is finite).
al. S={xy |x=1, 0=sy=<e’}
4. s={xy) | x=-2 0=sy=e}

FEEE] S =1{(xy | 0=y=2/6"+ 9}

Fl44. S={xy |x=0,0=y < x/(x? + 9)}

M 45 s ={xy|0=x< 7/2, 0 <y < sec’x}

46 5= (x| =0, 0=sy=sl/yx+2)

47. (a) If glx) = (sin®x)/x, use your calculator or computer to

make a table of approximate values of [] g(x) dx for
£ =2, 35, 10, 100, 1000, and 10,000. Does it appear that
|7 glx) dxis convergent?

(b) Use the Comparison Theorem with f{x) = 1/x* to show
that |, g(x) dx is convergent.

(c) Nustrate part (b) by graphing f and g on the same screen
for 1 =< x = 10. Use your graph to explain intuitively
why [7" g(x) dx is convergent.

48. () Ifg(x) = 1/ (\/; — 1), use your calculator or computer {0

make a table of approximate values of [, gx} dx fort = 3,
10, 100, 1000, and 10,000. Does it appear that [ g(x) dx
is convergent or divergent?

(b) Use the Comparison Theorem with f(x) =1/ \/l_ to show
that f; g(x) dx is divergent.

(c) Mustrate part (b) by graphing f and g on the same screen
for 2 < x =< 20. Use your graph to explain intuitively
why [ g(x) dx is divergent.

49-54 Use the Comparison Theorem to determine whether the
integral is convergent or divergent.

x 50. J-l:: 24+e"

- dx dx
1 X

ki

x* 4

51 J‘: x+ 1 d 5 J‘: arctan x "
—— | ———dx
ff ol X5 * o 2+ et

1 sec’x - SINK

53. L e dx 54, J'O i

55. The integral
= 1
—_— d -
J.o Jx(l+2x) l

is improper for two reasons: The interval [0, 20) is infinite and
the integrand has an infinite discontinuity at 0. Evaluate it by
expressing it as a sum of improper integrals of Type 2 and
Type | as follows:

= 1 1 ] = 1
dx = dx + | ———d
L =T jﬂﬁ(1+x) ~ L VT
56. Evaluate
r__l__ dx
2 xfx2—4
by the same method as in Exercise 53.

57-59 Find the values of p for which the integral converges and
evaluate the integral for those values of p.

11 = 1
57.) | —d 8. | ———
L xP ! > L x(In x)? b

59. L: x1n xdx

60. (1) Evaluate the integral j’; e *dx forn =10,1,2,and 3.
(b) Guess the value of j‘u: x"e~*dx when 7 is an arbitrary posi-
tive integer.
(c) Prove your guess using mathematical induction.

(a) Show that |~ x dx is divergent.
(b) Show that

lin [ xdx =0

This shows that we can’t define

r f(x) dx = lim r flx) dx
-te t—re= J—=r
62. The average speed of molecules in an ideal gas is

oA MNP e
- - Mv*/(2RT)
v = ( ZRT) JD v'e dv

where M is the molecular weight of the gas, R is the gas com-
stant, T is the gas temperature, and » is the molecular speed.

Show that
_ f 8RT
o i
aM




63,

64.

65,

66.

67.

68.

We know from Example | that the region

R ={(x,y)|x=1, 0 =y = 1/x) has infinite area. Show
that by rotating %t about the x-axis we obtain a solid with
finite volume.

Use the information and data in Exercises 29 and 30 of Sec-
tion 6.4 to find the work required to propel a 1000-kg satellite
out of the earth’s gravitational field.

Find the escape velocity vo that is needed 1o propel a rocket
of mass m out of the gravitational field of a planet with mass
M and radius R. Use Newton’s Law of Gravitation (see Exer-
cise 29 in Section 6.4) and the fact that the initial kinetic
energy of $mud supplies the needed work.

Astronomers use a technique called stellar stereography to
determine the density of stars in a star cluster from the
observed (two-dimensional) density that can be analyzed
from a photograph. Suppose that in a spherical cluster of
radius K the density of stars depends only on the distance r
from the center of the cluster. If the perceived star density is
given by y(s), where s is the observed planar distance from
the center of the cluster, and x(r) is the actual density, it can
be shown that

2
y(5) = J;R JT_iTl(r) dr

If the actual density of stars in a cluster is x(r) = 1(R — )2
find the perceived density y(s).

A manufacturer of lightbulbs wants to produce bulbs that last

about 700 hours but, of course, some bulbs burn out faster

than others. Let /(1) be the fraction of the company’s bulbs

that burn out before r hours, so F(#) always lies between 0

and 1.

(a) Make a rough sketch of what you think the graph of F¥
might look like.

(b) What is the meaning of the derivative r(r) = F'(1)?

(c) What is the value of f"r() dr? Why?

As we saw in Section 3.8, a radioactive substance decays
exponentially: The mass at time r is m(f) = m(0)e", where
m(0) is the initial mass and k is a negative constant. The mean
life M of an atom in the substance is

M= —kJ; te*dy
For the radioactive carbon isotope, “C, used in radiocarbon

dating, the value of & is —0.000121. Find the mean life of a
“C atom.

Determine how large the number a has to be so that

dx < 0.001

A
Ry

70.

71.

72.

73,

74,

75.

76.

71.

78

79.

80.
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Estimate the numerical value of |~ e dx by writing it as

the sum of |[: e dx and I e dx. Approximate the first inte-
gral by using Simpson’s Rule with # = 8 and show that the
second integral is smaller than ["e™**dx, which is less than
0.0000001.

If f(z) is continuous for ¢ = 0, the Laplace transform of f is
the function F defined by

F(s) = f:f(:)e'"dr

and the domain of F is the set consisting of all aumbers s for
which the integral converges. Find the Laplace transforms of
the following functions.

(a) f(5) = 1 (b) f(1)=¢' (c) fly =1

Show that if 0 < f(z) =< Me™ forz = 0, where M and a are
constants, then the Laplace transform F(s) exists for s > a.

Suppose that 0 <t f(r) < Me™ and 0 < f(r) < Ke" fort = 0,
where f* is continuous. If the Laplace transform of f{r) is
F(s} and the Laplace transform of f'(r) is G{s), show that

G(s) = sF(s) — f(0) s> a

If =, f(x) dx is convergent and a and b are real numbers,
show that

j_"m F(x) dx + [” F(x) dx = f” fx) dx + fb " F(x) dx

Show that [*x% ™ dy =L (= e~ dv.
o 0

Show that [~ e dx = Js v/=Iny dy by interpreting the
integrals as arcas.

Find the value of the constant € for which the integral

r L _c ),
1] \/.Y2+4 x+2 *

converges. Evaluate the integral for this value of C.

Find the value of the constant C for which the integral

= X C
_[U (x3+1 _3x+1)d't

converges. Evaluate the integral for this value of C.

Suppose f is continuous on [0, ©) and lim,-.= f(x) = 1. Is it
possible that [ f(x) dx is convergent?

Show thatifa > —1 and b > a + 1, then the following inte-
gral is convergent.

J:Iixbdx
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s18 Il

7 | REVIEW

CONCEPT CHECK

l. State the rule far integration by parts. In practice, how do you
use it?

2. How do you evaluate [ sin™x cos"x dx if m is 0dd? What if n is
odd? What if s and n are both even?

3. If the expression v/a? — x* occurs in an integral, what sub-
stitution might you try? What if /a? + x? occurs? What if

Jx? — a? occurs?

4. What is the form of the partial fraction expansion of a rational
function P(x)/Q(x) if the degree of P is less than the degree of
0 and Q(x) has only distinct linear factors? What if a linear
factor is repeated? What if Q(x) has an irreducible quadratic
factor (not repeated)? What if the quadratic factor is repeated?

5. State the rules for approximating the definite integral §2 f(x) dx
with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s
Rule. Which would you expect to give the best estimate? How
do you approximate the error for each rule?

6. Define the following improper integrals,

@ [fRd ® [ rwdas @ [" s ax
7. Define the improper integral jf: f(x) dx for each of the follow-
ing cases.
(a) f has an infinite discontinuity at a.
(b) f has an infinite discontinuity at b.
(c) f has an infinite discontinuity at c, wherea < ¢ < b.

8. State the Comparison Theorem for improper integrals.

TRUE-FALSE QUIZ

Determine whether the stacement is true or false. If it is true, explain why.
If It is false, explain why or give an example that disproves the statement.

x(x* + 4) A B

o canbeputinthcformx+2 + —
' .ﬁ:z—i%canbeputinﬂlefmm%+xi2+xE‘2.
‘! 3.%canbeputinthefonn%+xf4.
}' 4. ﬁcambeputinthefom%-’r Faa

4 X 1
.L Sodr=ilnls

w1 .
6. L ? dx is convergent.

7. If f is continuous, then [~ f(x) dx = lim;—.= [0, f(x) dx.

8. The Midpoint Rule is always more accurate than the
Trapezoidal Rule.

9. (a) Every elementary function has an elementary derivative.
(b) Every elementary function has an elementary anti-
derivative.

10. If f is continuous on [0, ) and [7 £(x) dx is convergent, then
|7 £(x) dx is convergent.

11. If f is a continuous, decreasing function on [1, ) and
lim;—.= f(x) = 0, then [ f{x} dx is convergent.

12. If [* f(x) dx and [ g(x) dx are both convergent, then
[FLfa + g(x)] dx is convergent.

13. If [7 f(x) dx and J7 g(x) dx are both divergent, then
Jelfw) + g(x)] dx is divergent.

14. If f(x) =< g(x) and J; g(x) dx diverges, then | f(x) dx also
diverges.

EXERCISES

Note: Additional practice in techniques of integration is provided
in Exercises 7.5.

1-40 Evaluate the integral.

50X
. L x+ 10 i

S ey
2. [ yeto dy

J-z,fz cos
“Jo 1+ sind

4 dt
% L (2e + 1)°

22 . 4 2 1

5. L sin’# cos’ 0 d6 .jy2_4y_12dy
sin(In 1) dx

7 | i B. .[—h——r—_-e“ —

IO J‘l 4/ arctan x dx

9. J‘A ¥ Inxdx e
1 o 1+ x°




(. f—~—”’t_1dl

13. Je‘ﬁ dx

x-—1
. | 5——dx
13 J.x3+2:c *

17. fx secx tan x dx

9 x+1 o
“Joyirex+s

dx
o [
e fo;iT

55 3x3—x1+6_\'—4dx
E DR+ 2)

27. J‘:”' cos’y sin 2x dx
L5
29. ‘[  ¥osecx dx

mio e*y/et — 1
3|.J; —Wf]x

X
33. j—(4 —E

1
35, | ———
. J.\fx + x¥2 dx

37. J (cos x + sin x)* cos 2x dx

2x

1/2 Xe
i
jo T+ &

bln.’.
1. J‘
11 +x

242
14, f —

f sectd

16.
tan’@

i [x2+8x—3

b ¥
J 3

20. J. tan’d sec’0 dé
22. J' te¥' dt
24, j e*cos x dx

26. fx sin x cos x dx

28, fgj:

dx
by

1. J':,n: xsinx

3 X
0 Ccos x

34, f (arcsin x)*dx

36. 1 —tan @
1 +tané
38

ey
a0, [P Y0 4

=/4 sin 20
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= dx = tan"lx
49, I B — 0. B x
j—= 4x  +4x + 3 # J-l X" o
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/A 51-52 Evaluate the indefinite integral. [llustrate and check that

your answer is reasonable by graphing both the function and its

antiderivative (take C = Q).

51, Jln(xz + 25+ 2) dx

x?
2. R RN
3 -I. WAL dx

guess the value of the integral [ f
integral to confirm your guess.

54. (a) How would you evaluate [ x%~* dx by hand? (Don’t
Y

actually carry out the integration.)

(b) How would you evaluate [ x*e™*" dx using tables?
{Don’t actually do it.)

(¢) Use a CAS to evaluate [ x’e™>dx.

(d) Graph the integrand and the indefinite integral on the
same screen.

55-58 . Use the Table of Integrals on the Reference Pages to
evaluate the integral.

55, J',/4x= —dx— 3 dx

56. f csc’r dt

57. J cos X /4 + sinx dx

5g. j cot x

——d
1+ 2sinx *

53, Graph the function f(x) = cos®x sin x and use the graph to
x) dx. Then evaluate the

41-50 Evaluate the integral or show that it is divergent.

3 Gt 1 2
= dx

2 xlnx

45, J' ln\

4.

2. rln—xd\

44 jﬁ——,Ldy
Sy

1 1
46.L2_3xdx

1 dx
48, —
Jll x°—2x

59. Verify Formula 33 in the Table of Integrals (a) by differentia-

tion and (b) by using a trigonometric substitution.
60. Verify Formula 62 in the Table of Integrals.

61. Is it possible to find a number # such that Jy x"dxis
convergent?

62. For what values of a is [~ €% cos x dx convergent? Evaluate
0 g

the integral for those values of a.

63-64 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,

and (c) Simpson's Rule with n = 10 to approximate the given

integral. Round your answers to six decimal places.

64. J.: \/).7 cos x dx

63, J-mdx

65. Estimate the errors involved in Exercise 63, parts (a) and (b).
How large should n be in each case to guarantee an error of

less than 0.000017

66. Use Simpson’s Rule with n = 6 to estimate the area under
thecurve y = eYx fromx = 1 to x = 4.
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67. The speedometer reading {v) on a car was observed at
1-minute intervals and recorded in the chart. Use Simpson’s
Rule to estimate the distance traveled by the car.

t (min) v (mi/h) t (min) v (mi/tﬂ
0 40 6 56
| 42 7 57
2 45 8 57
3 49 9 55
4 52 10 56
5 54
‘_ el

68. A population of honeybees increased at a rate of r{r) bees per
week, where the graph of r is as shown. Use Simpson’s Rule
with six subintervals to estimate the increase in the bee popu-
lation during the first 24 weeks.

r ]

12000

doos N\

A
A

4000 1 /

o 4 s 12 16 20 24 !
(weeks)

69. () If f(x) = sin(sin x), use a graph to find an upper bound
for | ()|
(b) Use Simpson’s Rule with n = 10 to approximate
J f(x) dx and usc part (a) to estimate the error.
(c) How large should 7 be to guarantee that the size of the
error in using S, is less than 0.000017

70

Suppose you are asked to estimate the volume of a football.
You measure and find that a football is 28 c¢m long. You use a
piece of string and measure the circumference at its widest
point to be 53 cm. The circumference 7 cm from each end is
45 cm. Use Simpson’s Rule to make your estimate,

28 cm

|«

71.

71.

73.

74.

75.

76.

77.

78.

79.

80.

Use the Comparison Theorem to determine whether the

integral ;

J-.: .\'5A+ 2 HE

is convergent or divergent.

Find the area of the region bounded by the hyperbola
y? — x* = 1 and the line y = 3.

Find the area bounded by the curves y = 05 X and y = cos’x
between x = O and x = 7.

Find the area of the region bounded by the curves

y=1/2+x)y= 1/(2 — Jx),and x = 1.

The region under the curve y = costx, 0= x= 72,18
rotated about the x-axis. Find the volume of the resulting solid.

The region in Exercise 75 is rotated about the y-axis. Find the
volume of the resulting solid.

If f is continuous on [0, =) and lim—=f(x) = 0, show that »
{7 dx = =)

We can extend our definition of average value of a continuous
function to an infinite interval by defining the average value
of f on the interval [a, ) to be
lim b, r f(x) dx
t—= | — @ Ja
(a) Find the average value of y = tan~'x on the interval [0, =),
(b) If f(x) = 0 and [ f(x) dx is divergent, show that the
average value of f on the interval [a, ) is limy—sf(x), if
this limit exists.
(c) If [7 f(x) dx is convergent, what is the average value of f
on the interval [a, ©0)?
(d) Find the average value of y = sin x on the interval [0, =).

Use the substitution i = 1/x 1o show that

= Inx
J. | —dx =10
o |+ x°

The magnitude of the repulsive force between two point

charges with the same sign, one of size 1 and the other of size

q, 18
q

4meor?

L =

where r is the distance between the charges and gy is a con-
stant. The potential V at a point P due to the charge g is
defined to be the work expended in bringing a unit charge 10
P from infinity along the straight line that joins ¢ and P. Find
a formula for V.




Cover up the solution to the example and try it
yourself first,

& The principles of problem solving are
discussed on page 76.

* The computer graphs in Figure 1 make it

Seem plausible that all of the integrals in the
example have the same valus. The graph of each
inlegrand is labeled with the corresponding

7
7

FIGURE I

(ST

EXAMPLE |
(a) Prove that if £ is a continuous function, then

J:f(x) dx = fo"f(a — x)dx

(b) Use part (a) to show that

w2 sin"x T
J‘ L) n dx =%
0 sin”x + cos"x 4

for all positive numbers 7.

SOLUTION
(a) At first sight, the given equation may appear somewhat baffling. How is it possible
to connect the left side to the right side? Connections can often be made through one of
the principles of problem solving: introduce something extra, Here the extra ingredient is
4 new variable, We often think of introducing a new variable when we use the Substitu-
tion Rule to integrate a specific function. But that technique is still useful in the present
circumstance in which we have a general function f.

Once we think of making a substitution, the form of the right side suggests that it
should be # = a — x. Then du = —dx, When v = 0,u=a;whenx=a,u=0,So

f:f (a —x)dx= —Lo Flu) du = L “Fu) du

But this integral on the right side is Just another way of writing o/ (x) dx. So the given
equation is proved. '
(b) If we let the given integral be 7 and apply part (a) with @ = 7/2, we get

/2 sin"x /2 sin"(#7/2 — x)
1= "= [ = dx
o sin"x + cos*x 0 sin“(m/2 - x) + cos"(w/2 — x)

A well-known trigonometric identity tells us that sin(#7/2 — X) = cos x and
cos(m/2 ~ x) = sin x, s0 we get

J r/z cos"x
0 cos"x + sin’x

Notice that the two expressions for [ are very similar. In fact, the integrands have the
same denominator. This suggests that we should add the two expressions. If we do so,
we get

=2 8in"x + cos"x w2 T
2= T &= [ 1ar=T
0 sin"x + cos"x 0 2

Therefore, I = 7/4. O

EMS PLUSL
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FIGURE FOR PROBLEM |
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FIGURE FOR PROBLEM 6

1
. Evaluate_[ T dx.

. Three mathematics students have ordered a 14-inch pizza. Instead of slicing it in the tradi-

tional way, they decide (o slice it by parallel cuts, as shown in the figure. Being mathematics
majors, they are able to determine where to slice so that each gets the same amount of pizza.
Where are the cuts made?

The straightforward approach would be to start with partial fractions, but that would be brutal.

Try a substitution,

. Evaluate jul (JT=x = YT —x%)dx.

. The centers of two disks with radius | are one unit apart. Find the area of the union of the two

disks.

. An ellipse is cut out of a circle with radius a. The major axis of the ellipse coincides with a

diameter of the circle and the minor axis has length 2b. Prove that the area of the remaining
part of the circle is the same as the area of an ellipse with semiaxes a and a — b.

. A man initially standing at the point O walks along a pier pulling a rowboat by a rope of

length L. The man keeps the rope straight and taut. The path followed by the boat is a curve
called a tractrix and it has the property that the rope is always tangent to the curve (see the
figure). '

(a) Show that if the path followed by the boat is the graph of the function y = f (x), then

Y

s s B
filx) = = =

(b) Determine the function y = f(x).

. A function f is defined by

flx)= J‘: cos ¢ cos(x — 1) dt 0<sx=<27w

Find the minimum value of f.

. If n is a positive integer, prove that

J: (ln x)"dx = (—1)"n!

. Show that

2ln(n!)2

1 e 2Mnl)*
J-o (1 - =) de= (2n + 1)!

Hint: Start by showing that if /, denotes the integral, then

2k + 2

= ks3h

k1

e T N TN
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10. Suppose that f is a positive function such that f'is continuous.
(a) How is the graph of y = f(x) sin nx related to the graph of y = f(x)? What happens
as n — w?
(b) Make a guess as to the value of the limit

lim u]f(x) sin nx dx

based on graphs of the integrand.
(c) Using integration by parts, confirm the guess that you made in part (b). [Use the fact that,
since f" is continuous, there is a constant A such that [f(x)] =Mfor0< xr< 1.]

1/t
1. 110 < a < b, find lim {L‘ [bx + a(l —x)]'dx} )

/3 12. Graph f(x) = sin(e*) and use the graph to estimate the value of r such that fH f(x) dreisa
maximum. Then find the exact value of ¢ that maximizes this integral.

13. The circle with radius 1 shown in the figure touches the curve y = | 2x| twice. Find the area
of the region that lies between the two curves,

14. A rocket is fired straight up, burning fuel at the constant rate of b kilograms per second. Let
v = v(r) be the velocity of the rocket at time ¢ and suppose that the velocity u of the exhaust
gas is constant. Let M = M(s) be the mass of the rocket at time r and note that M decreases as
the fuel burns. If we neglect air resistance, it follows from Newton’s Second Law that

d
F= M-ﬁ —ub
where the force F = —My. Thus
di
[1] ME —yp= —Mg

Let M, be the mass of the rocket without fuel, M, the initial mass of the fuel, and

My = M, + M,. Then, until the fuel runs out at time 1 = Mab, the mass is M = M, — b,

(a) Substitute M = M, — bt into Equation 1 and solve the resulting equation for ». Use the
initial condition #(0) = 0 to evaluate the constant.

{b) Determine the velocity of the rocket at time ¢ = M, /b. This is called the burnout velocity,

(c) Determine the height of the rocket ¥y = y(z) at the burnout time.

(d) Find the height of the rocket at any time f.

I5. Use integration by parts to show that, for all x > 0,

. J-m sin ¢ G 2
o In{l +x+ 1) In{l + x)

16. Suppose f(1) = f'(1} = 0, f" is continuous on [0, 1]and | f(x)| = 3 for all x. Show that




