Diagnostics and Remedial Measures

Adapted from Chapter 3 of the textbook Applied Linear Regression Models, Edition: 4th Authors: Michael H. Kutner, Christopher J. Nachtsheim and John Neter

Course: Math50 Dartmouth College, Fall 2015

Instructor: Nishant Malik

Nonlinearity of Regression Function

Example: Number of Maps Distributed and Increase in the Ridership - Public Transit

City <i>i</i>	(1) Increase in Ridership (thousands) Y _i	(2) Maps Distributed (thousands) X _i	(3) Fitted Value Ŷ;	(4) Residual $Y_i - \hat{Y}_i = e_i$
1	.60	80	1.66	-1.06
2	6.70	220	7.75	-1.05
2 3	5,30	140	4.27	1.03
. 4	4.00	120	•	.60
5	6.55	180	3.40 6.01	.54
6	2.15	100	2.53	38
7	6.60	200	6.88	28
8	5.75	160	5.14	.6 1
		$\hat{Y} = -1.82 + .0435$	X	

Nonlinearity of Regression Function

Nonlinearity of Regression Function

Prototype Residual Plots

Nonconstancy of Error Variance

Example: Diastolic Blood pressure of healthy adult woman and age

Nonconstancy of Error Variance

Prototype Residual Plots

Presence of Outliers

Presence of Outliers

Nonindependence of Error Terms

Example: Diameter of weld and the shear strength of the weld

Nonindependence of Error Terms

Prototype Residual Plots

Trend in residuals
i.e., they are not
independent

e

Not desired property

(a)

Time

Nonindependence of Error Terms

Prototype Residual Plots

Prototype Residual Plots

Nonnormality of Error Terms

Normal Probability Plot

Nonnormality of Error Terms

Undesirable Normal Probability Plot

Omission of Important Predictor variable

Example: Piece rate worker in an assembling operation, the relation between output and age of the worker

Omission of Important Predictor variable

Age of Worker

X

General ANOVA table

Source of Variation	SS	df	MS
Regression	$SSR = \sum_{i} \sum_{j} (\hat{Y}_{ij} - \bar{Y}_{i})^{2}$	1	$MSR = \frac{SSR}{1}$
Error	$SSE = \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$	n-2	$MSE = \frac{SSE}{n-2}$
Lack of fit	$SSLF = \sum \sum (\bar{Y}_j - \hat{Y}_{ij})^2$	c – 2	$MSLF = \frac{SSLF}{c-2}$
Pure error	$SSPE = \sum \sum (Y_{ij} - \bar{Y}_j)^2$	n – c	$MSPE = \frac{SSPE}{n-c}$
Total	$SSTO = \sum \sum (Y_{ij} - \vec{Y})^2$	n-1	

General ANOVA table

Source of Variation

Regression

Error

Lack of fit

Pure error

Total

SS

$$SSR = \sum \sum (\hat{Y}_{ij} - \bar{Y})^2$$

$$SSE = \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$$

$$SSLF = \sum \sum (\bar{Y}_j - \hat{Y}_{ij})^2$$

$$SSPE = \sum \sum (Y_{ij} - \bar{Y}_j)^2$$

$$SSTO = \sum \sum (Y_{ij} - \vec{Y})^2$$

df

1

$$n-2$$

$$c-2$$

$$n-c$$

$$n-1$$

MS

$$MSR = \frac{SSR}{1}$$

$$MSE = \frac{SSE}{n-2}$$

$$MSLF = \frac{SSLF}{c-2}$$

$$MSPE = \frac{SSPE}{n-c}$$

If normal/simple error linear regression model is not appropriate then you have two choices

- 1. Abandon regression model
- 2. Employ some transformation on the data so that regression model is appropriate for the transformed data.

FIXES:

Nonlinearity of regression function

Either transform the data or use a different regression function altogether for example

Quadratic: $E\{Y\} = \beta_0 + \beta_1 X + \beta_2 X^2$

Exponential: $E\{Y\} = \beta_0 \beta_1^X$

FIXES:

Nonconstancy of error variance

Transformations or weighted least squares (when variance varies in systematic fashion)

FIXES:

Nonindependence of error terms

New model that assumes correlated error terms

Non-normality of error terms

Transformation of the data

[Sometimes the transformation that stabilizes the variance also fixes the normality]

FIXES:

Outlying observations

Either discard the outliers or use robust estimation/regression