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FIGURE 3.3 
Scatter Plot 
and Residual 
Plot 
U1ustrating 
Nonlinear 
Regression 
Function-
Transit 
Example. 

TABLE 3.1 
Number of 
Maps 
Distributed 
and Increase in 
Ridership-
Transit 
Example. 
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(b) Residual Plot 
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Fitted 
City (thousands) (thousands) Value Residual 

Y; X; if; Y,- if;=e; 

1 .60 80 1.66 -1.06 
2 6.70 220 7.75 -1.05 
3 5.30 140 4.27 1.03 
4 4.00 120 3.40 .6(); 
5 6.55 180 6.01 .54 
6 2.15 100 2.53 -.38 
7 6.60 6.88 .,-.28 
8 5.75 160 5.14- .61 

f = + .043;SX 

contains a scatter plot of the data and the fitted regression line for a study of the relation 
between maps distributed and bus ridership in eight test cities. Here, X is the number of 
bus transit maps distributed free to residents of the city at the beginning of the test period 
and Y is the increase during the test period in average daily bus ridership during nonpeak 
hours. The original data and fitted values are given in Table 3.1, columns 1,2, and 3. 'The 
plot suggests strongly that a linear regrFssion function is not appropriate. 

Figure 3.3b presents a plot_of the residuals, shown in Table 3.1, column 4, against the 
predictor variable X. The lack of fit of the linear regression function is even more strongly 
suggested by the residual plot against X in Figure 3.3b than by the scatter plot. Note that 
the residuals depart from 0 in a systf;.lllatic fashion; they are.negative for smaller X values, 
positive for medium-size X values, and negative again for large X values. 

In this case, both Figures 3.3a and '3.3b point out the lack of linearity of the regression 
function. In general, however, the residual plot is to be preferred, because it has some 
important advantages over the scatter plot. First, the residual plot can easily be used for 
examining other facets of the aptness of the model. Second, there are occasions when the 

Nonlinearity of Regression Function 

Example:  Number of Maps Distributed and Increase in the Ridership - Public Transit  
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Prototype Residual Plots
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Nonconstancy of Error Variance

Example: Diastolic Blood pressure of healthy adult woman and age   



Nonconstancy of Error Variance
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Presence of Outliers 



Presence of Outliers 



Nonindependence of Error Terms   

Example: Diameter of weld and the shear strength of the weld



Nonindependence of Error Terms   



Prototype Residual Plots
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Nonindependence of Error Terms   

Trend Cyclic
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Nonnormality of Error Terms   
Normal Probability Plot



Nonnormality of Error Terms   

Undesirable Normal Probability Plot



 Omission of Important Predictor variable    

Example: Piece rate worker in an assembling operation, the relation between output and age 
of the worker  



 Omission of Important Predictor variable    



Decomposition of error deviation  



Decomposition of error deviation  



Decomposition of error deviation  



Decomposition of error deviation  



Decomposition of error deviation  



Decomposition of error deviation  

(Error 
Deviation) 



Decomposition of error deviation  

(Error 
Deviation) 



Decomposition of error deviation  

(Error 
Deviation) 

(Lack of fit 
deviation) 

(Pure error 
deviation) 
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TABLE 3.6 
General 
ANOVA Table 
for Testing 
Lack of Fit of 
Simple Linear 
Regression 
Function and 
ANOVA 
Table-Bank 
Example. 

Simple Linear Regression 

Source of 
Variation 55 df M5 

Regression SSR= EE(Yij - y)2 1 MSR= 
1 

Error SSE = E E(Yij - Yij)2 n-2 MSE= SSE 
. n-2 

Lack of fit SSLF = EE(Y j - Yij? c-2 NfSL _ SStF F- .. c-2 

Pure errOr SSPE = EE(Yij - Y j)2 n-c MSPE= SSPE .. / 
n-c 

Tqtaf ssf6= E E(Yij - Y)2 n-l 

.(b) Bank Example 

Source of 
Variation 55 df M5 
Regression 1 
Error 14,741.6 9 j·l,638.0 
Lack Qffit 13,593.6 4 3,398.4 
Pure error 1,148.0 5 229.6 
Total 19,'882.9 10 

Comments 
1. As shown by the bank example, not all levels of X need have repeat observations for the F test 

for lack of fit to be applicable. Repeat observations at only one or some levels of X are sufficient. 
2. It can be shown that the mean squares MSPE and MSLFhave the following expectations when 

testing whether the regression function is linear: 

E{MSPE) = u 2 

E{MSLF) = u 2 + Enj[JLj - (130 + ,8I X j))2 
c-2 

(3.31) 

(3.32) 

The reason for the term "pure error" is that MSPE is always an unbiased estimator of the error term 
variance u 2 , no matter what is the true regression function. The expected value of MSLF also is u 2 if 
the regression function is linear, because JLj = 130 +,81 Xj then and the second term in (3.32) becomes 
zero. On the other hand, if the regression function is not linear, JL j of. 130 + ,81 X j and E {MSLF) will 
be greater than u 2 • Hence, a value of F* near 1 accords with a linear regression function; large values 
of F* indicate that the regression function is not linear. 

3. The terminology "error sum of squares" and "error mean square" is not precise when the 
regression function under test in Ho is not the true function since the error sum of squares and error 
mean square then reflect the effects of both the lack of fit and the variability of the error terms. We 
continue to use the terminology for consistency and now use the term "pure error" to identifY the 
variability associated with the error term only. 

General ANOVA table 
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 Overview of the Remedial Measures    

If normal/simple error linear regression model is not 
appropriate then you have two choices 

1. Abandon regression model 

2. Employ some transformation on the data so that regression 
model  is appropriate for the transformed data.



 Overview of the Remedial Measures    

FIXES:
          Nonlinearity of regression function 

             Either transform the data or use a different  
             regression function altogether for example  

Quadratic:  
Exponential:  

 



 Overview of the Remedial Measures    

FIXES:

          Nonconstancy  of error variance  
Transformations or weighted least squares (when 

variance varies in systematic fashion)           



 Overview of the Remedial Measures    

FIXES:

          Nonindependence   of error terms 
New model that assumes correlated error terms          

 Non-normality  of error terms 
Transformation of the data   

[Sometimes the transformation that stabilizes the 
variance also fixes the normality]         



 Overview of the Remedial Measures    

FIXES:

Outlying observations           

Either discard the outliers or use robust estimation/
regression         


