# Diagnostics and Remedial Measures

Adapted from Chapter 3 of the textbook Applied Linear Regression Models, Edition: 4th Authors: Michael H. Kutner, Christopher J. Nachtsheim and John Neter

Course: Math50 Dartmouth College, Fall 2015

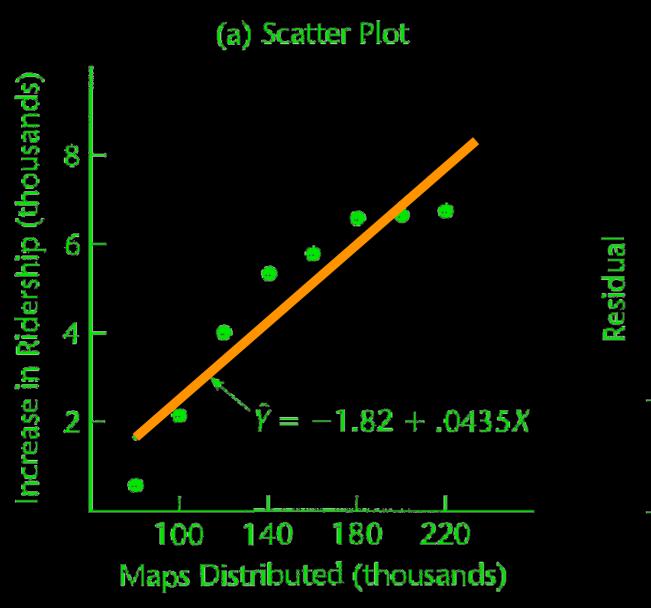
Instructor: Nishant Malik

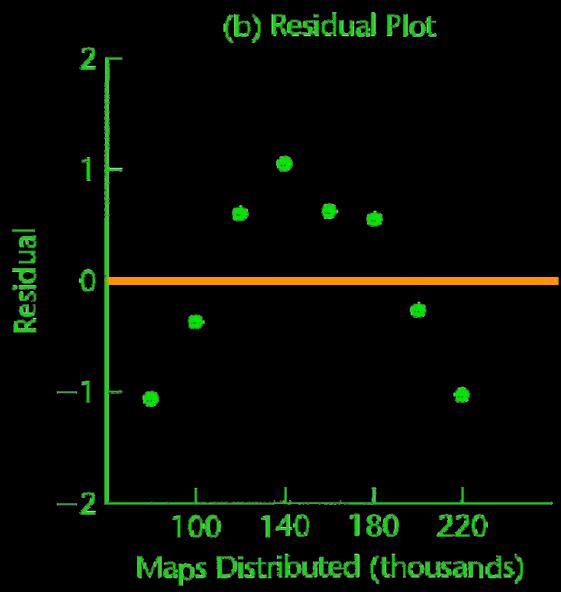
# Nonlinearity of Regression Function

Example: Number of Maps Distributed and Increase in the Ridership - Public Transit

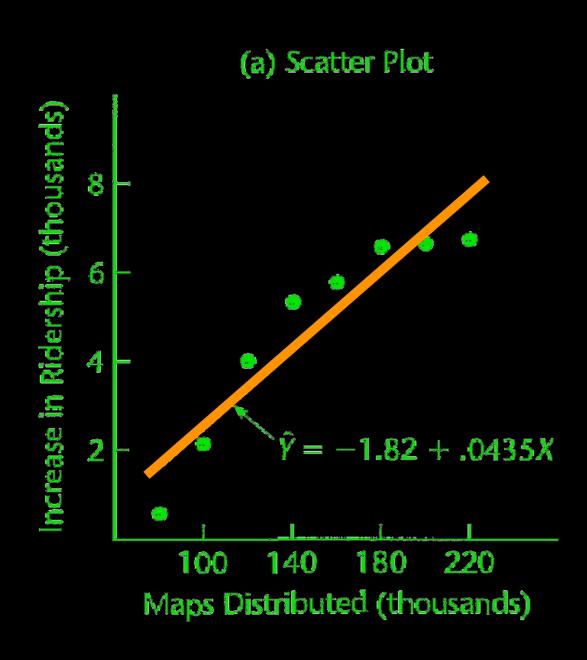
| City<br><i>i</i> | (1)<br>Increase in<br>Ridership<br>(thousands)<br>Y <sub>i</sub> | (2)<br>Maps<br>Distributed<br>(thousands)<br>X <sub>i</sub> | (3)<br>Fitted<br>Value<br>Ŷ; | (4)  Residual $Y_i - \hat{Y}_i = e_i$ |
|------------------|------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|---------------------------------------|
| 1                | .60                                                              | 80                                                          | 1.66                         | -1.06                                 |
| 2                | 6.70                                                             | 220                                                         | 7.75                         | <b>-1.05</b>                          |
| 2<br>3           | 5,30                                                             | 140                                                         | 4.27                         | 1.03                                  |
| . 4              | 4.00                                                             | 120                                                         | •                            | .60                                   |
| 5                | 6.55                                                             | 180                                                         | 3.40<br>6.01                 | .54                                   |
| 6                | 2.15                                                             | 100                                                         | 2.53                         | 38                                    |
| 7                | 6.60                                                             | 200                                                         | 6.88                         | 28                                    |
| 8                | 5.75                                                             | 160                                                         | 5.14                         | <b>.6</b> 1                           |
|                  |                                                                  | $\hat{Y} = -1.82 + .0435$                                   | X                            |                                       |

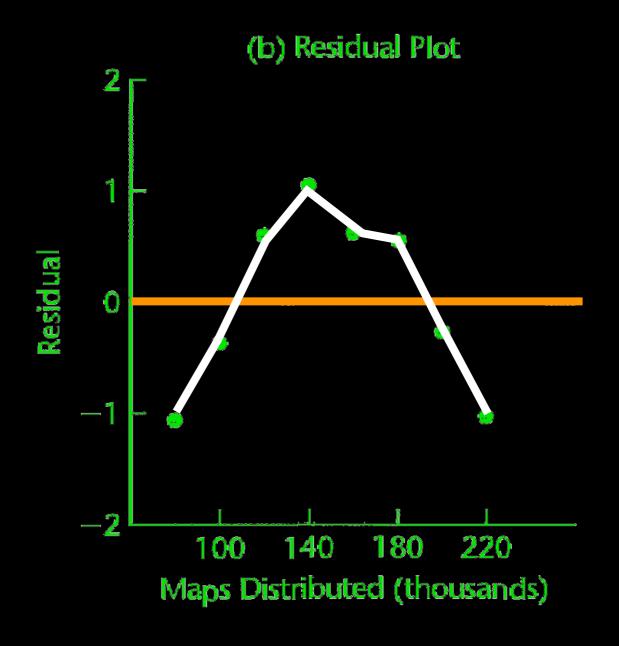
# Nonlinearity of Regression Function



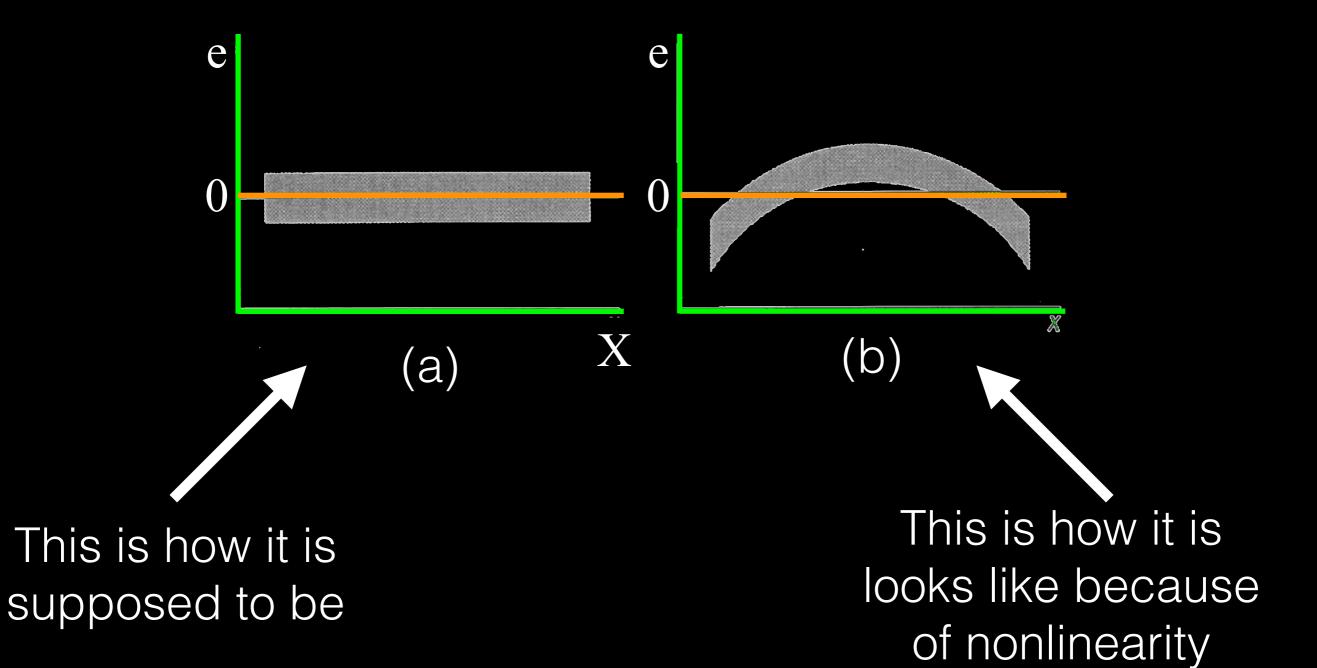


# Nonlinearity of Regression Function





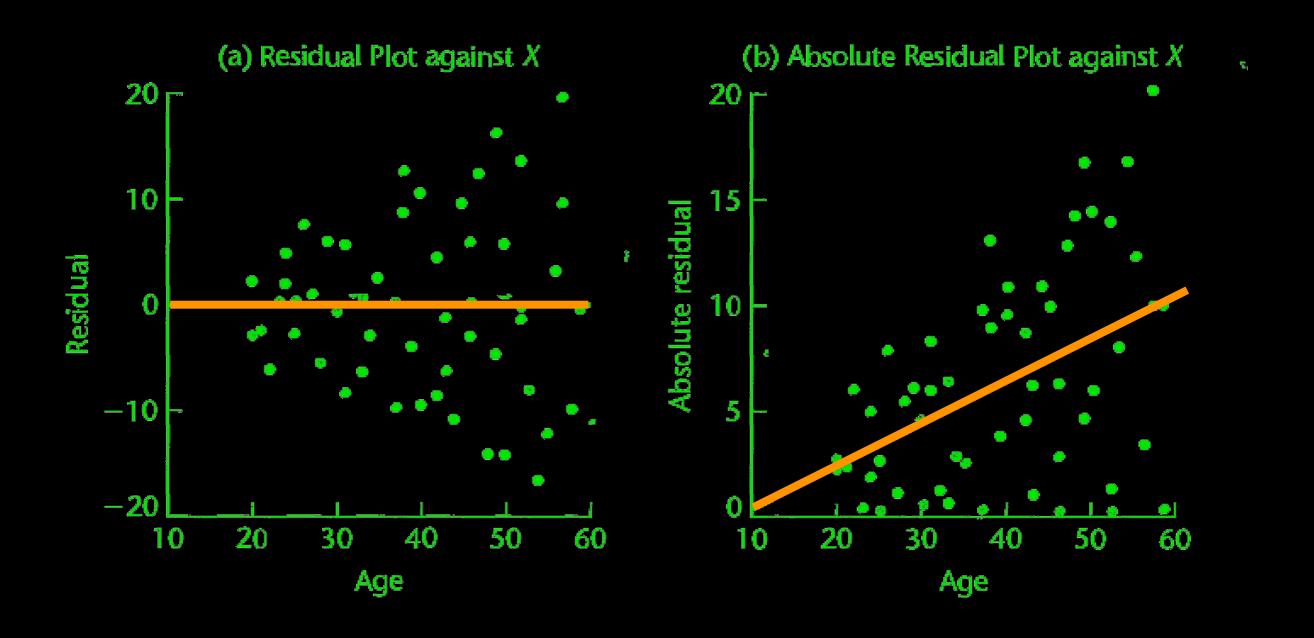
# Prototype Residual Plots



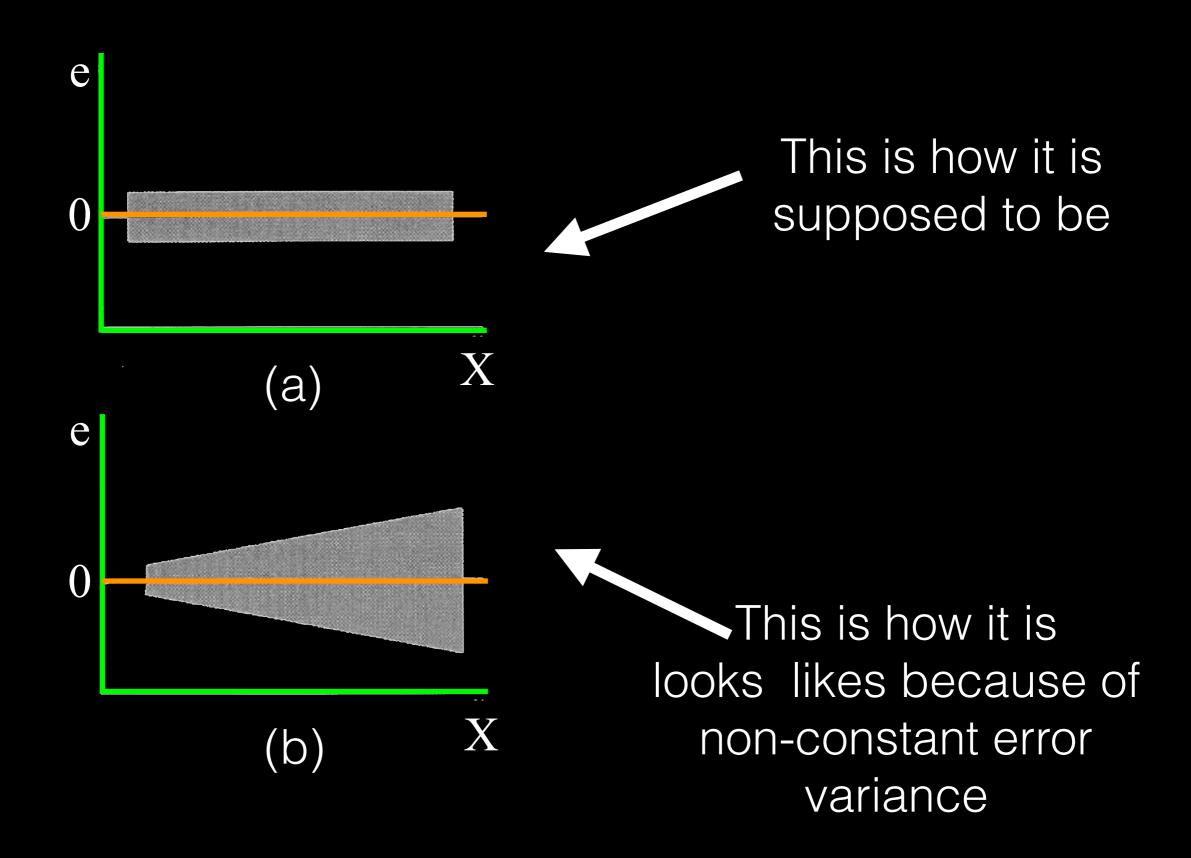
# Nonconstancy of Error Variance

Example: Diastolic Blood pressure of healthy adult woman and age

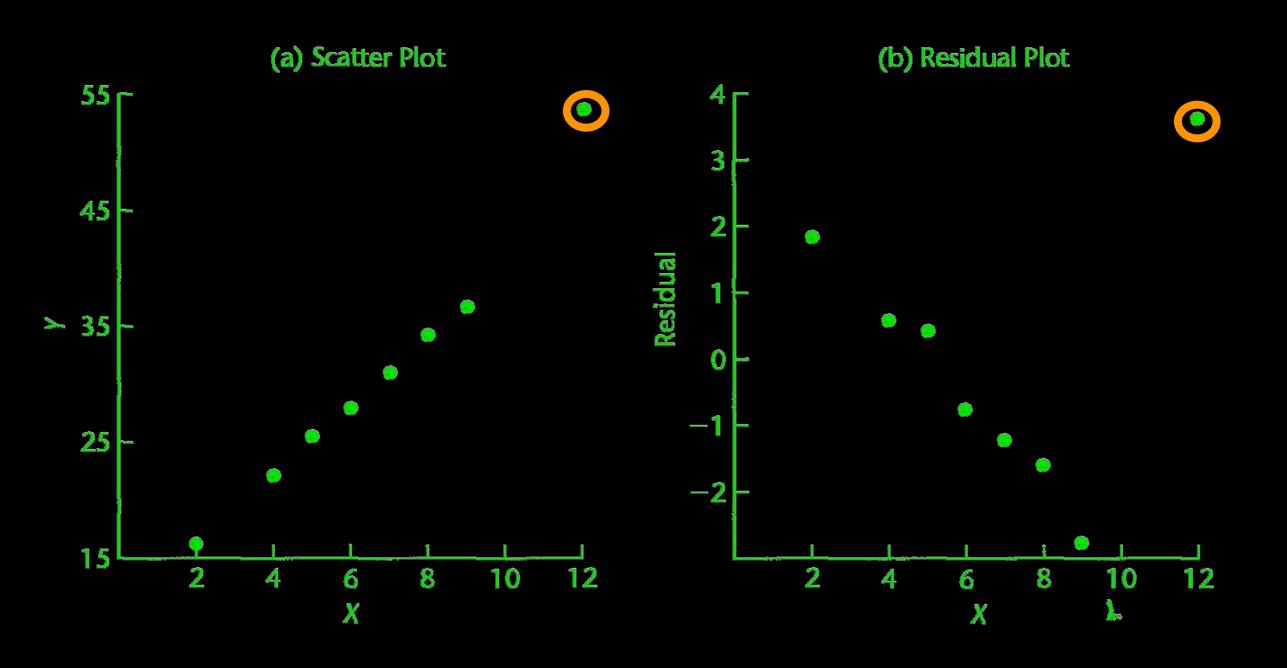
## Nonconstancy of Error Variance



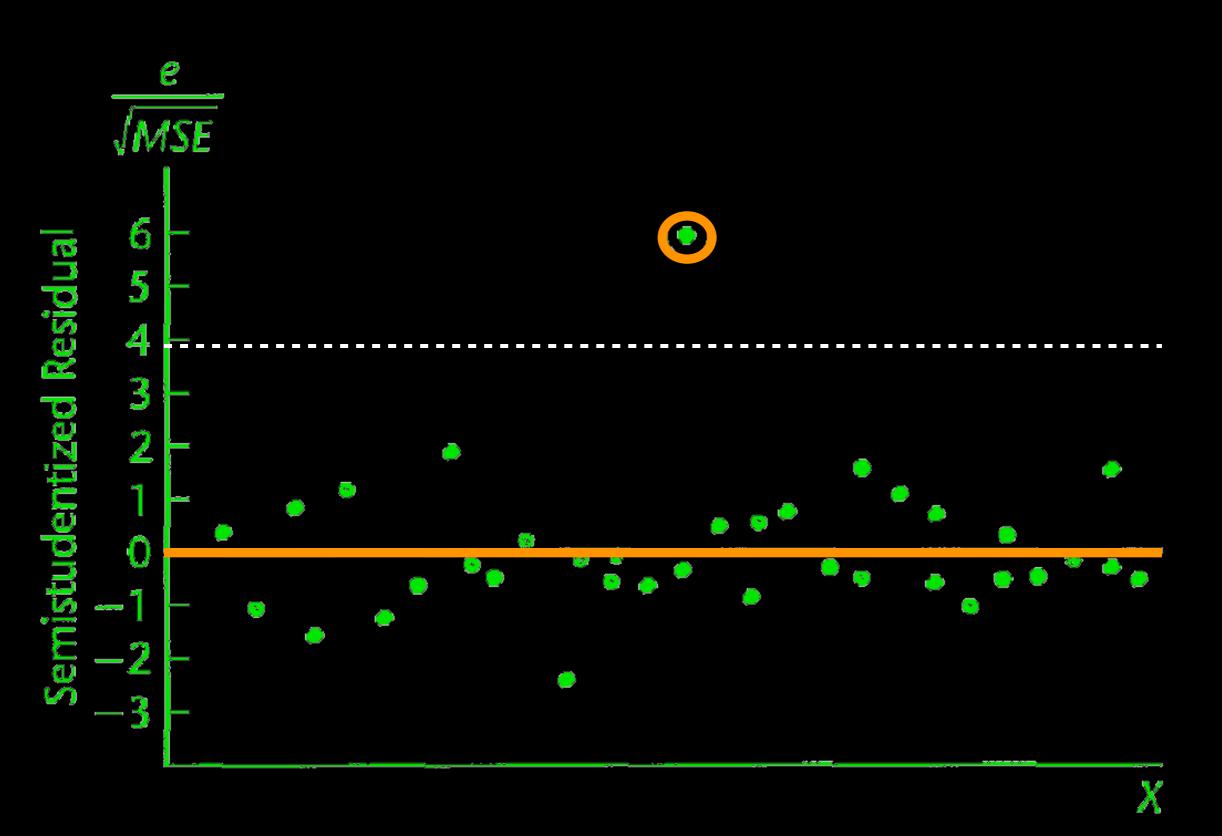
# Prototype Residual Plots



# Presence of Outliers



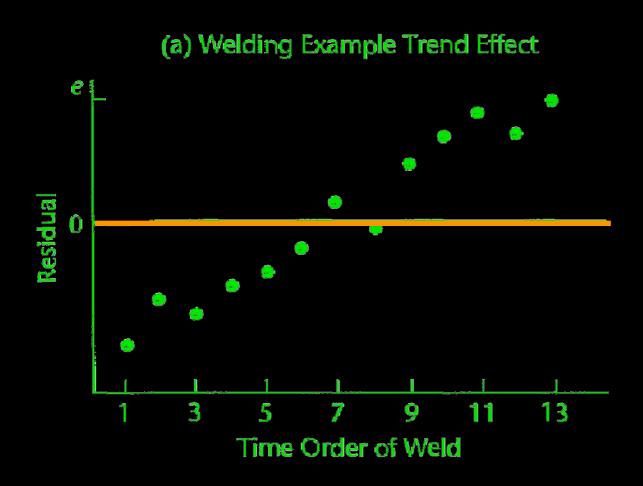
## Presence of Outliers



# Nonindependence of Error Terms

Example: Diameter of weld and the shear strength of the weld

# Nonindependence of Error Terms



# Prototype Residual Plots

Trend in residuals
i.e., they are not
independent

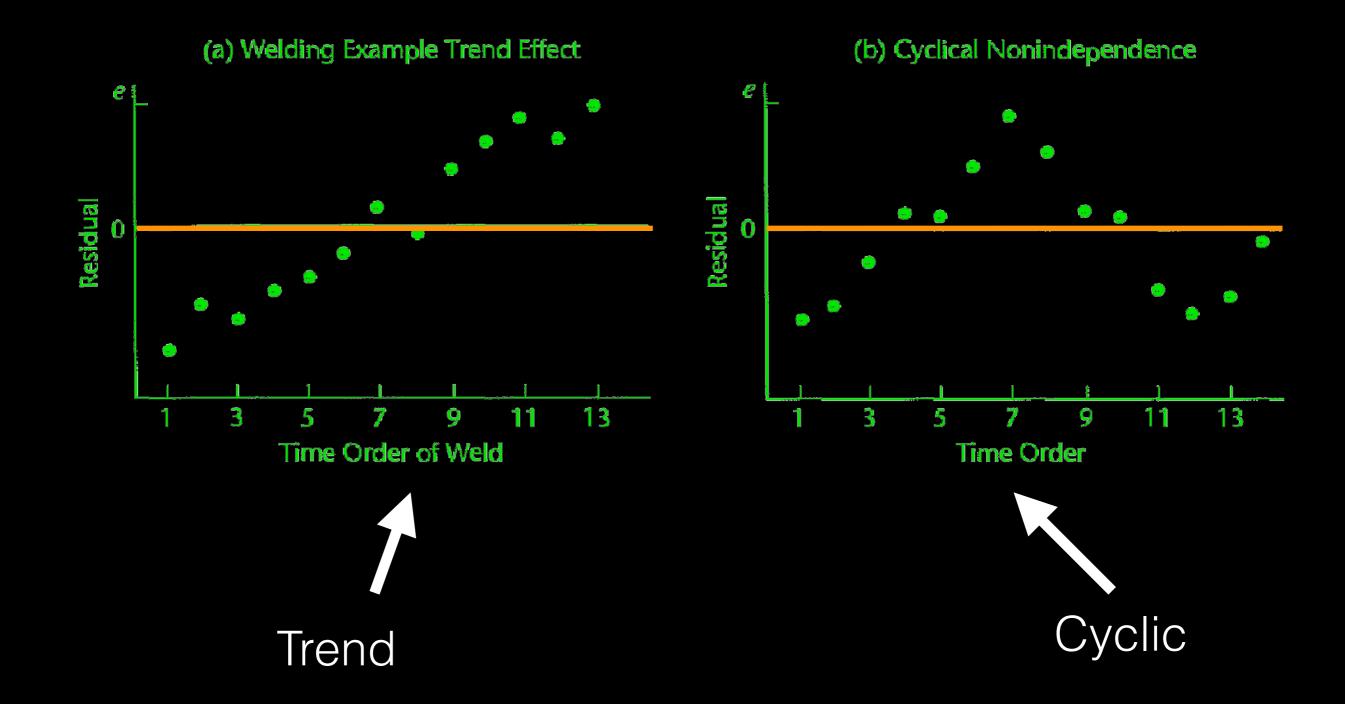
e

Not desired property

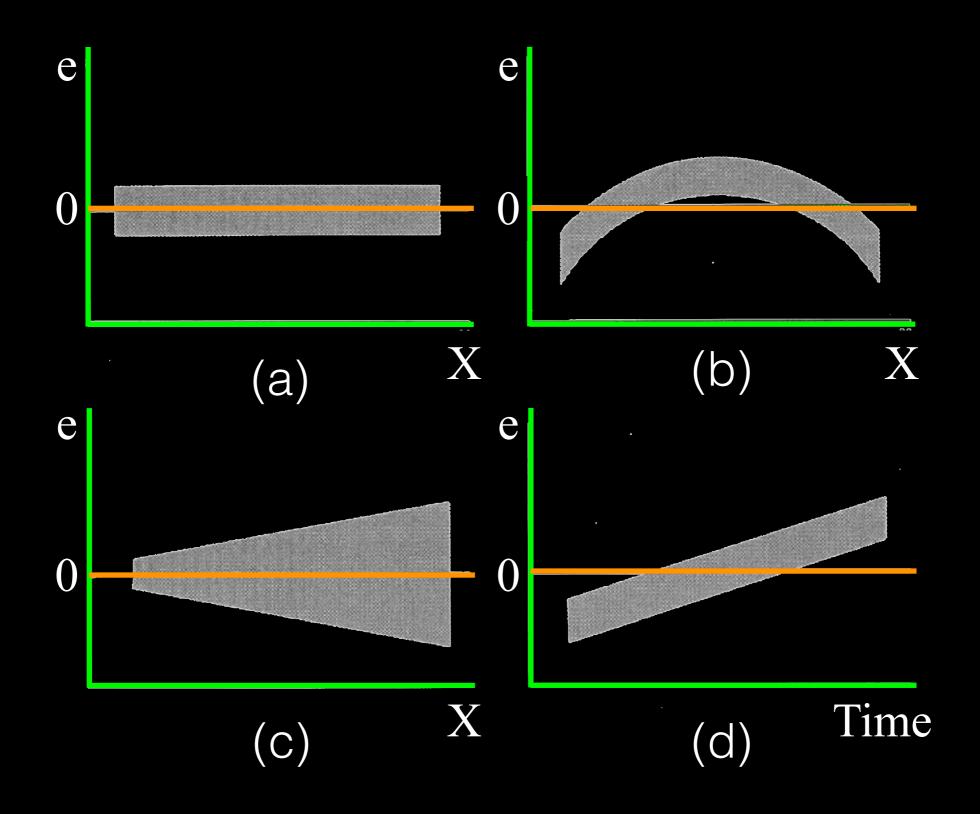
(a)

Time

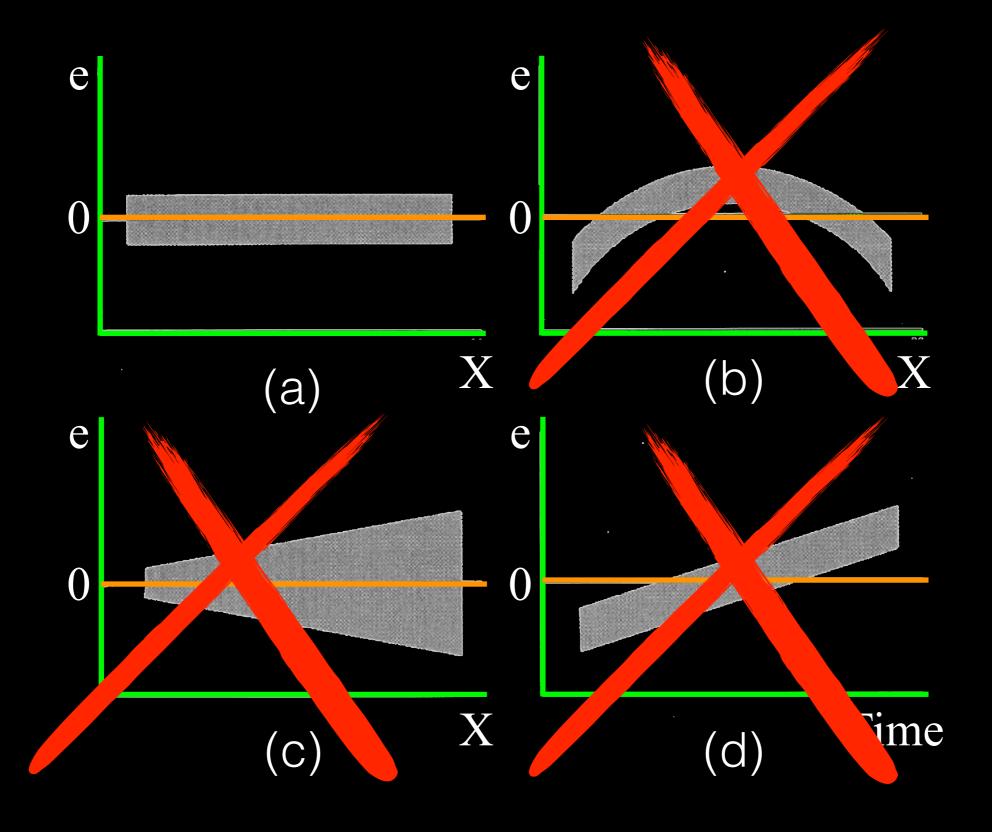
# Nonindependence of Error Terms



# Prototype Residual Plots

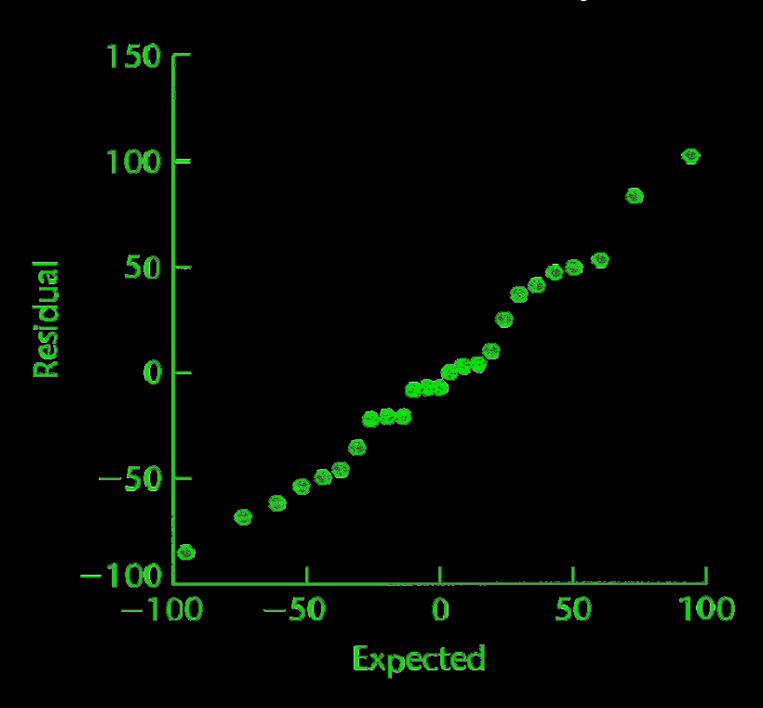


# Prototype Residual Plots

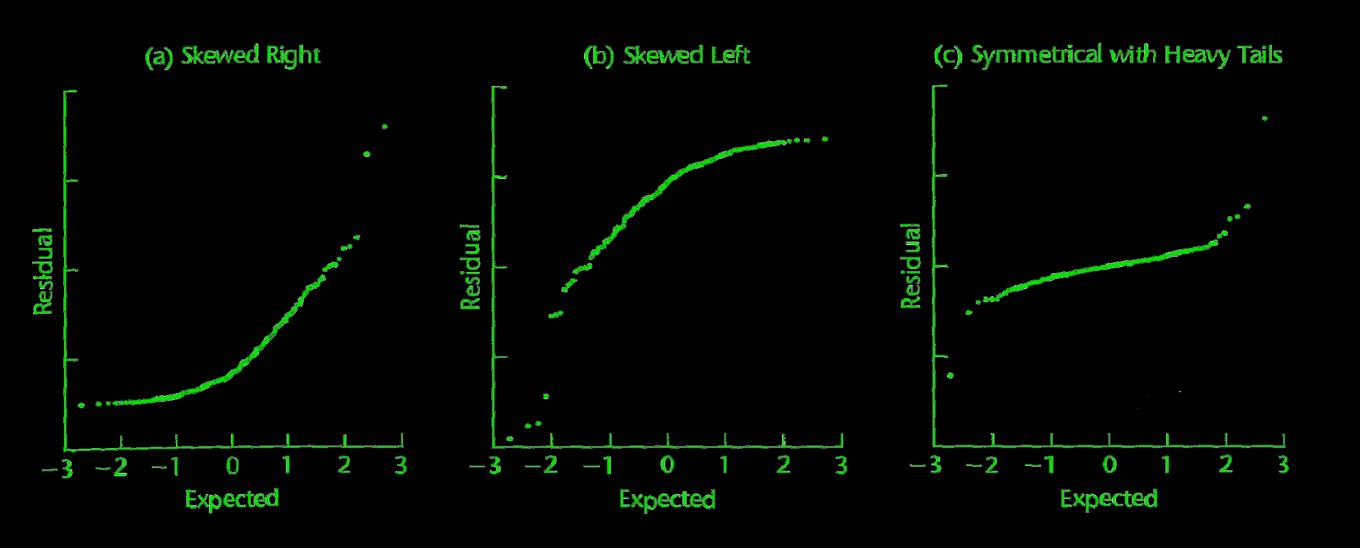


# Nonnormality of Error Terms

Normal Probability Plot



# Nonnormality of Error Terms



Undesirable Normal Probability Plot

## Omission of Important Predictor variable

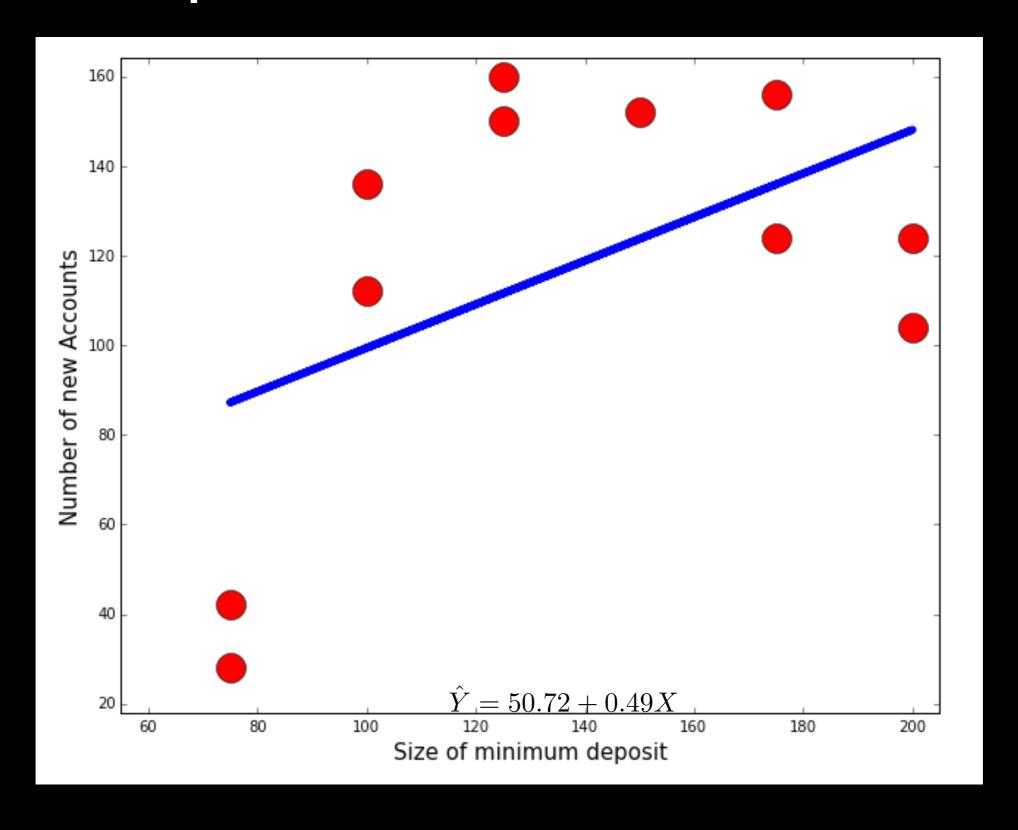
Example: Piece rate worker in an assembling operation, the relation between output and age of the worker

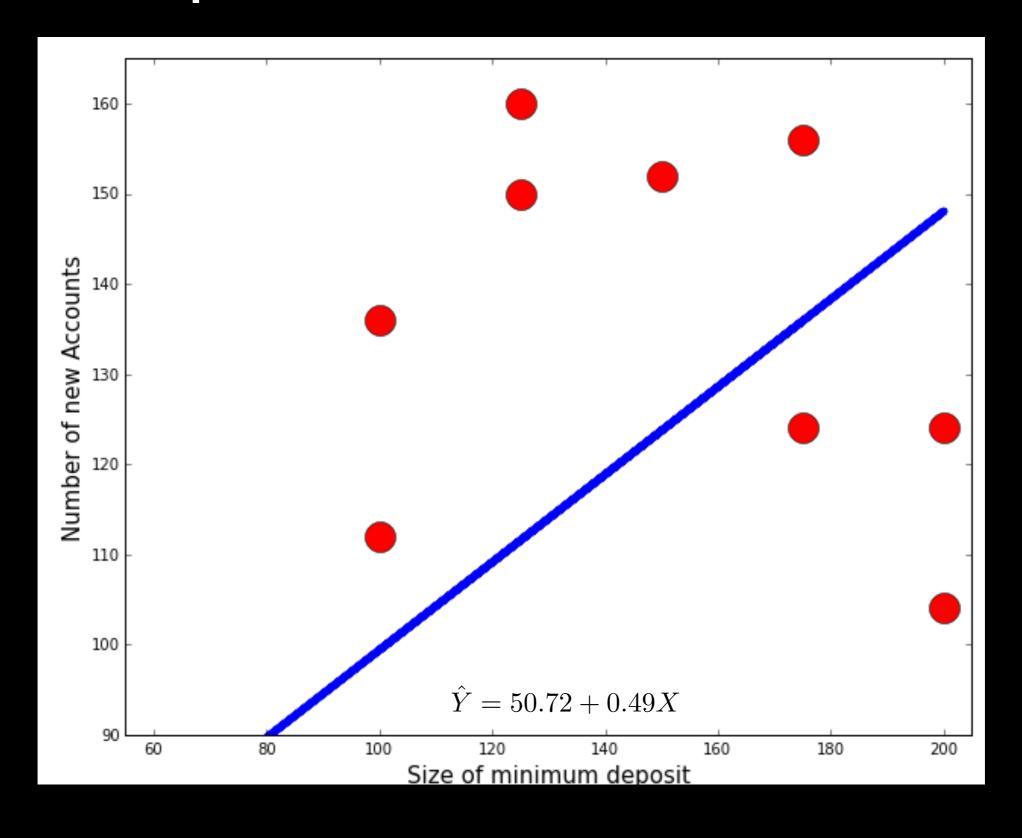
### Omission of Important Predictor variable

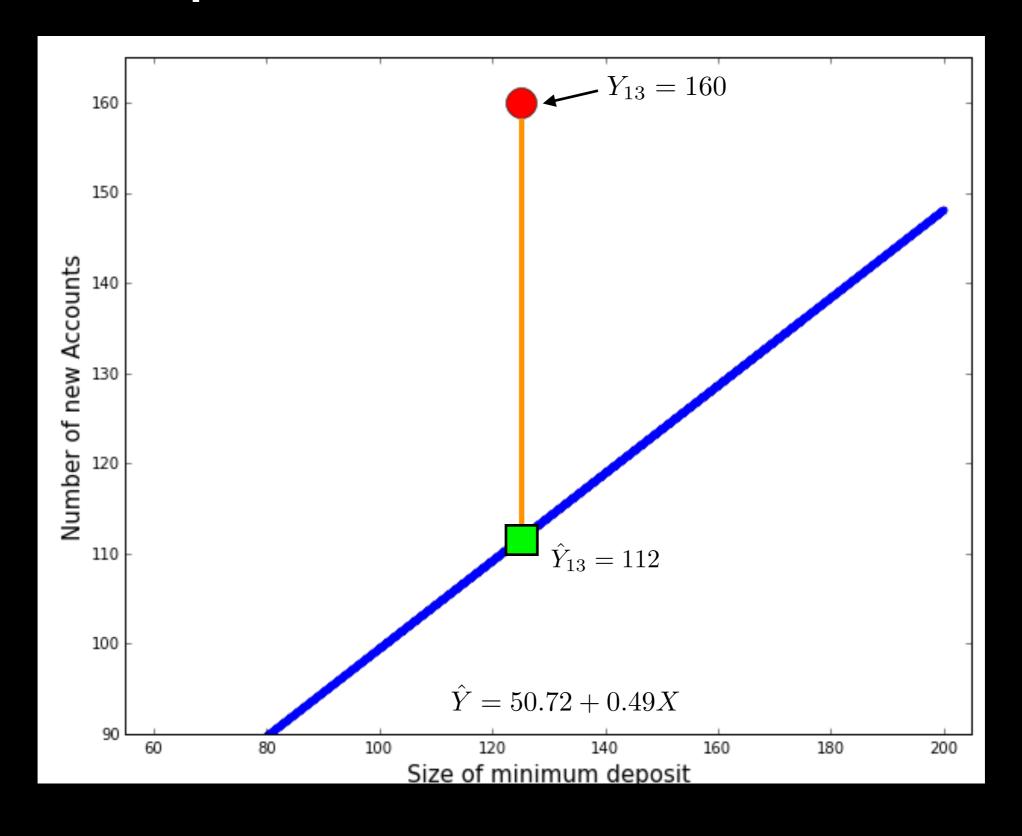


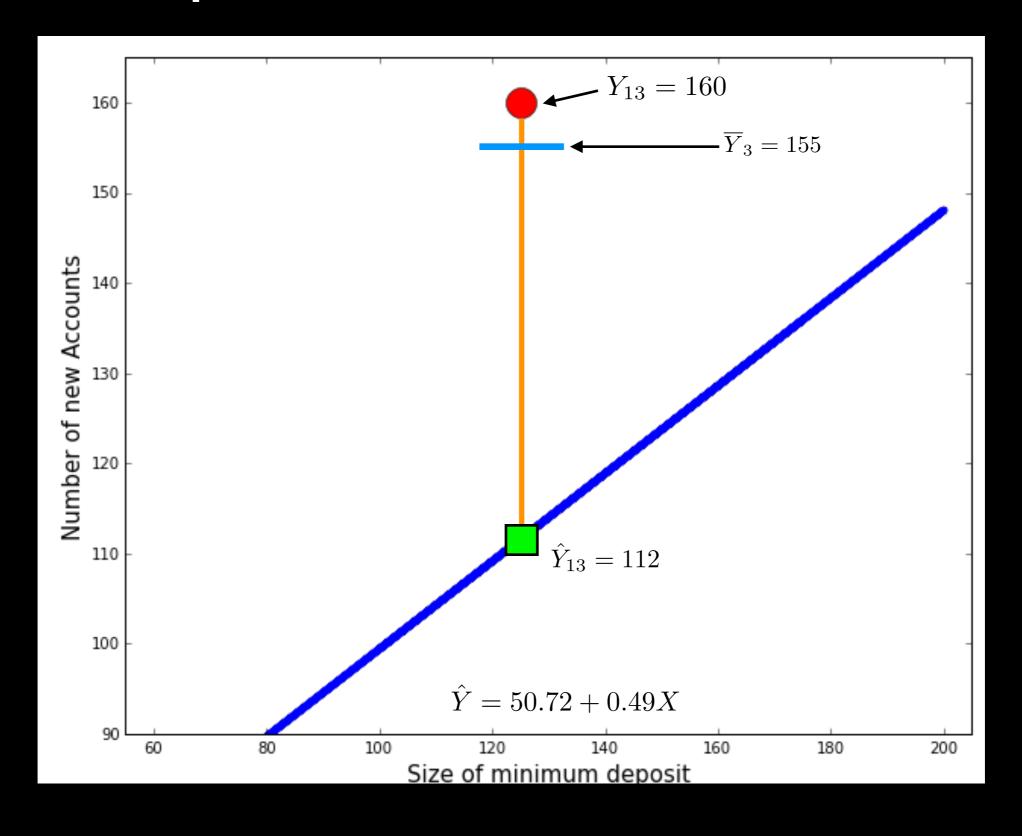
Age of Worker

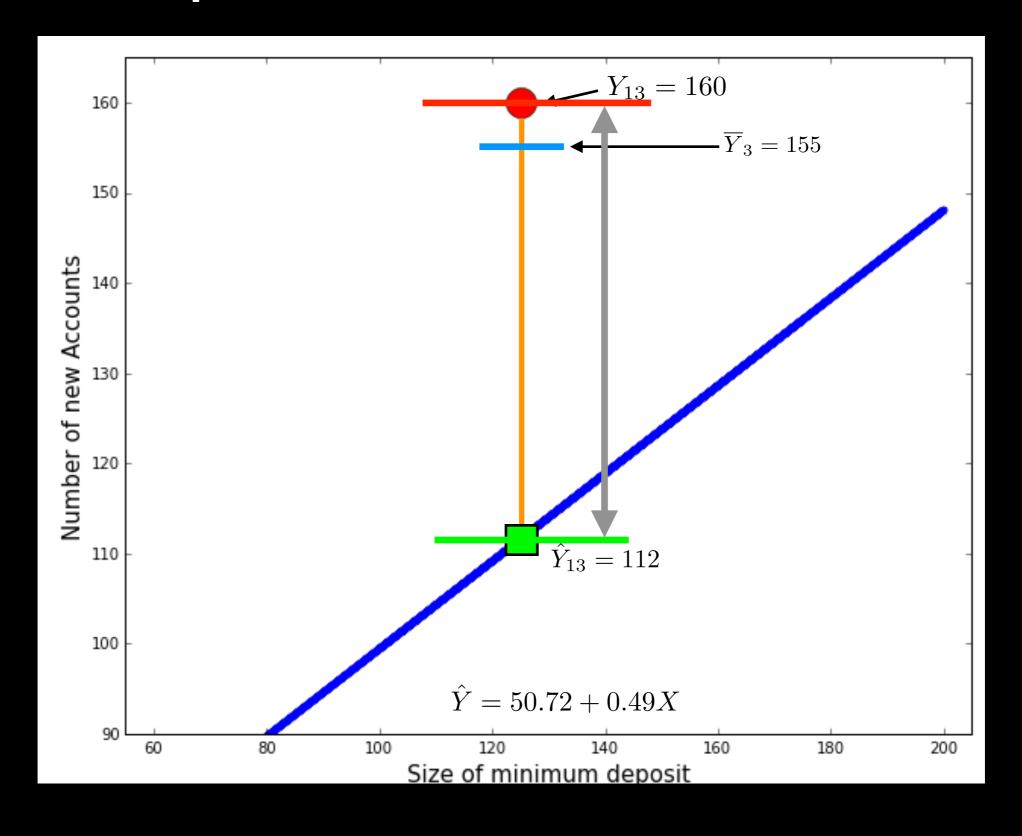
X

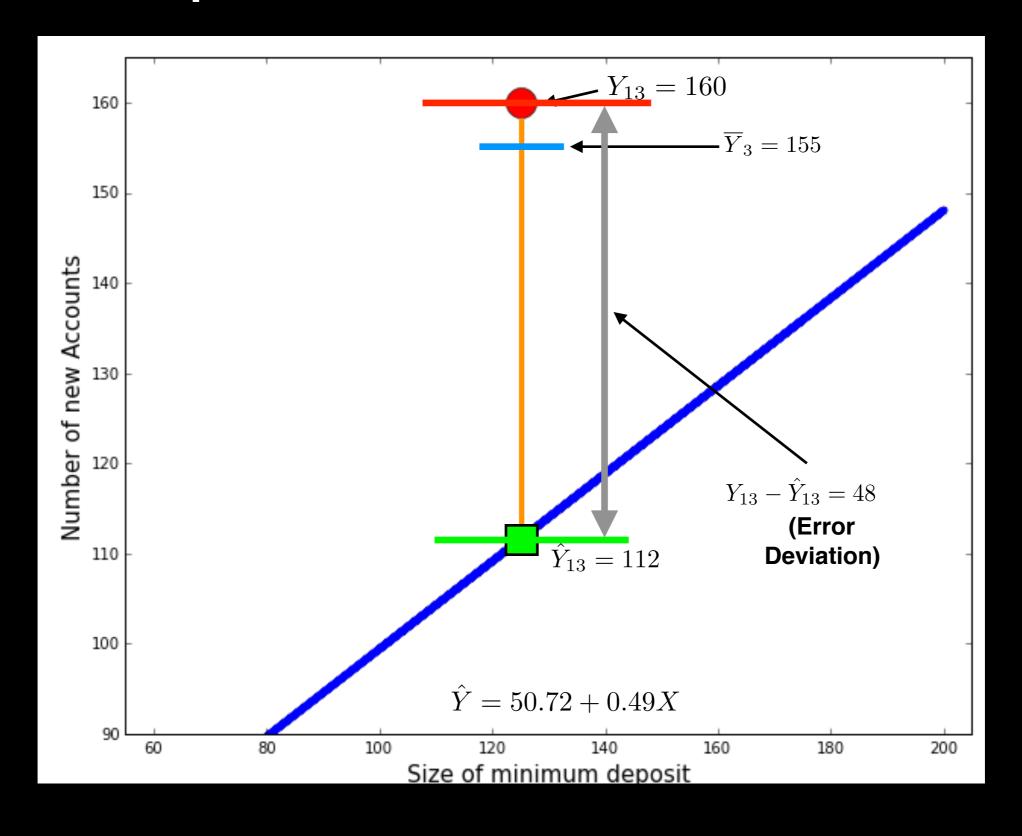


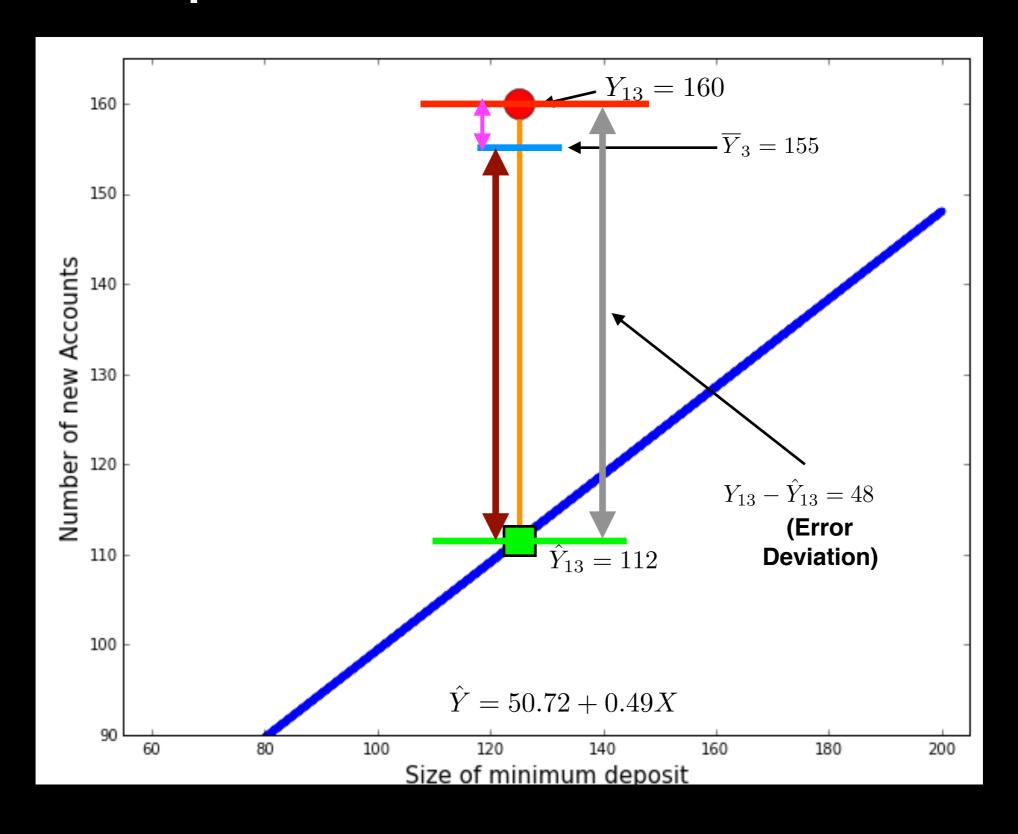


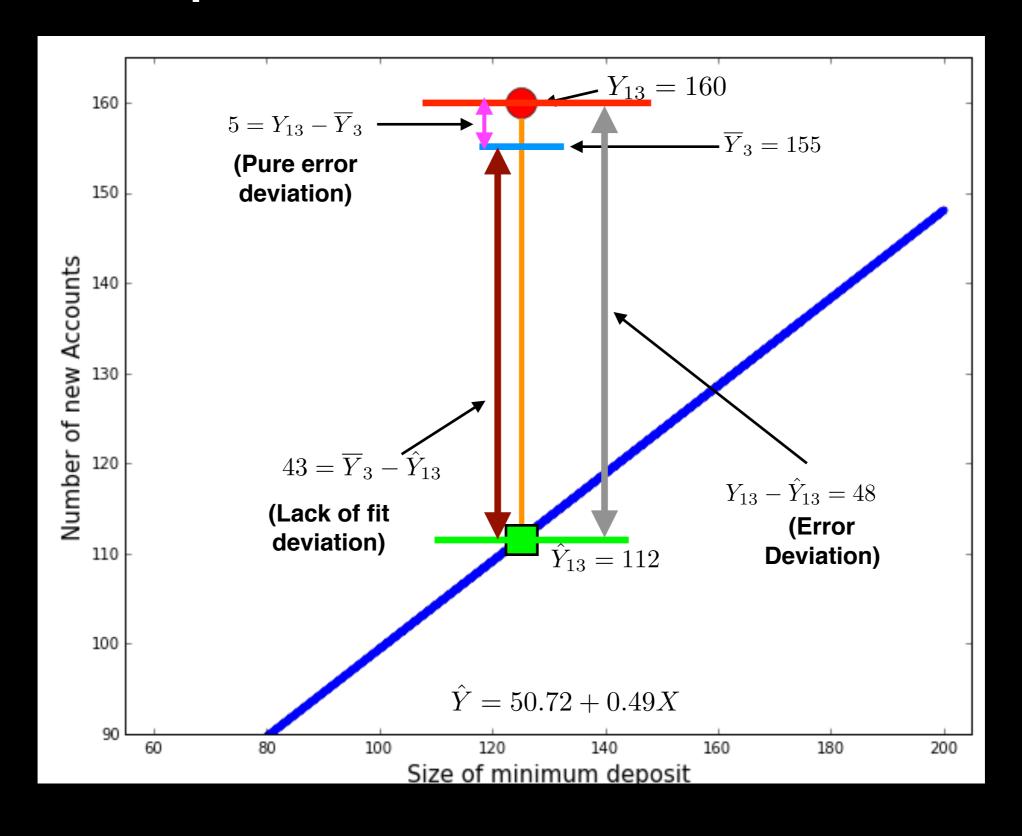












## General ANOVA table

| Source of Variation | SS                                                         | df    | MS                        |
|---------------------|------------------------------------------------------------|-------|---------------------------|
| Regression          | $SSR = \sum_{i} \sum_{j} (\hat{Y}_{ij} - \bar{Y}_{i})^{2}$ | 1     | $MSR = \frac{SSR}{1}$     |
| Error               | $SSE = \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$                | n-2   | $MSE = \frac{SSE}{n-2}$   |
| Lack of fit         | $SSLF = \sum \sum (\bar{Y}_j - \hat{Y}_{ij})^2$            | c – 2 | $MSLF = \frac{SSLF}{c-2}$ |
| Pure error          | $SSPE = \sum \sum (Y_{ij} - \bar{Y}_j)^2$                  | n – c | $MSPE = \frac{SSPE}{n-c}$ |
| Total               | $SSTO = \sum \sum (Y_{ij} - \vec{Y})^2$                    | n-1   |                           |

#### General ANOVA table

Source of Variation

Regression

Error

Lack of fit

Pure error

Total

SS

$$SSR = \sum \sum (\hat{Y}_{ij} - \bar{Y})^2$$

$$SSE = \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$$

$$SSLF = \sum \sum (\bar{Y}_j - \hat{Y}_{ij})^2$$

$$SSPE = \sum \sum (Y_{ij} - \bar{Y}_j)^2$$

$$SSTO = \sum \sum (Y_{ij} - \vec{Y})^2$$

df

1

$$n-2$$

$$c-2$$

$$n-c$$

$$n-1$$

MS

$$MSR = \frac{SSR}{1}$$

$$MSE = \frac{SSE}{n-2}$$

$$MSLF = \frac{SSLF}{c-2}$$

$$MSPE = \frac{SSPE}{n-c}$$

If normal/simple error linear regression model is not appropriate then you have two choices

- 1. Abandon regression model
- 2. Employ some transformation on the data so that regression model is appropriate for the transformed data.

#### FIXES:

#### Nonlinearity of regression function

Either transform the data or use a different regression function altogether for example

Quadratic:  $E\{Y\} = \beta_0 + \beta_1 X + \beta_2 X^2$ 

Exponential:  $E\{Y\} = \beta_0 \beta_1^X$ 

FIXES:

#### Nonconstancy of error variance

Transformations or weighted least squares (when variance varies in systematic fashion)

FIXES:

Nonindependence of error terms

New model that assumes correlated error terms

Non-normality of error terms

Transformation of the data

[Sometimes the transformation that stabilizes the variance also fixes the normality]

FIXES:

#### **Outlying observations**

Either discard the outliers or use robust estimation/regression