
Math 50 Stat Inf: Homework 6

due Wed Feb 15

I have created some better problems than ones in the book to teach you this week’s stuff: properties of
estimators and introduction to Bayesian parameter fitting (estimation). Note you can do question C, the
only ’matlab’ one, using material up to section 5.7 only.

5.4 : 18 (due to symmetry you do not even need any integrals)

A. Look back to question B.3 from HW2. You used the estimator p̂ = X =
∑

N

i=1
Xi for the Poisson

parameter, with N = 1000 data. Compute the standard deviation
√

Varp̂) using the theory you’ve
learned since then. What were the z-values of your sample(s) of p̂?

B. Recall σ̂2 = 1

n−1

∑n

i=1
(Yi − Y )2 was an unbiased estimator for the variance of data given n samples

from a normal model pdf, when the µ was not known. Assume instead µ is known; then is the estimator
σ̂2 = 1

n−1

∑

n

i=1
(Yi − µ)2 biased? (Use the method of lecture to find the bias). If so, fix it.

5.5 : 2 (key),

3,

4,

5.

5.7 : 1 (review),

2 (using things you already know about combining normal variables).

C. So far you’re getting the impression that the sample mean Y is a ‘good’ (unbiased, minimum-variance,
consistent) estimator of the mean of a distribution (e.g. uniform, poisson, normal pdfs). Let’s shake
that up a bit with the ‘lighthouse problem’. A lighthouse sits at location (−1, µ) in the plane and sends
out pulses of light, at random angles uniformly distributed over [−π/2, π/2], which travel in straight
lines then are detected where they hit the y-axis (the ‘shoreline’) at locations yi. (the ‘shoreline’).
Your job is to estimate the location µ using n samples {yi}, i = 1 · · ·n.

i) With µ = 0 generate a list of n = 104 samples of yi (you’ll need to use elementary trigonometry).
Histogram them with bins of width 0.1 over a suitable y range. They should have a Cauchy pdf
fY (y; µ) = 1/[π(1 + (y − µ)2)].

ii) Plot the sample mean ȳ vs sample size n for a sequence of sizes n = 10, 102, . . . , 107. [Hint use a
log scale for n, via semilogx in matlab].

iii) Is the estimate converging to the true µ = 0? Comment. Why do you think Chebychev’s law of
large numbers breaks down?

iv) Given n = 102 samples, plot the likelihood function L(µ) over the domain −2 ≤ µ ≤ 2. Comment
on the constistency of the ML estimate vs the sample mean.

D. A coin (Bernoulli pdf) of unknown bias α gives the independent samples {Xi} = {0, 0, 1, 1, 1, 1, 0, 1, 1, 1}.
Find the likelihood function L(α|X).

i) Assuming a uniform prior p(α) in [0, 1], find the posterior p(α|X) = const.L(α|X)p(α). [Hint:
normalizing the posterior is a simple way to get the const].
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ii) Assume instead you already believe the coin has a low α so you use a beta pdf with r = 2, s = 4
(see Ex. 5.8.2). Now find the posterior.

5.8 : 1 (assume a single sample k is the measured data, so your posterior will depend on that k. You may
want to consider only the θ and (1 − θ) factors, then normalize at the end),


