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Part I

Introduction to Dynamical Billiards

1 Review of the Di�erent Billiard Systems

In investigating dynamical billiard theory, we focus on two important exam-
ples that demonstrate a variety of behaviors and represent clear gradation in
complexity. This paper mixes analytic and computational billiard theory to
give a detailed picture of a circular billiards and billiards in a stadium�a two
semi-circular regions separated by a rectangular region. We investigate sensi-
tive dependence on initial coordinates and the structure of periodic orbits before
considering whether each exhibits chaos.

1.1 Case Examples of the Billiards

The circular billiard is one of the simplest �nite billiards to analyze because the
collision map can be described by a very simple system of equations. If θ is the
angular representation of a collision point relative to the positive x axis and ψ
is the angle of the trajectory against the tangent line to the circle, we can easily
relate an element in the phase space by the system(

1 2
0 1

)
×
(

Θn

Ψn

)
=
(

Θn+1

Ψn+1

)
Since θ ∈ [0, 2π) and ψ ∈ [0, π] we can de�ne the phase space as C1 × [0, π].

We see that the map simply �twists� the θ coordinate by how high it is on the
cylinder. By also calculating the determinant of this map, we see that the area
of a shape in the phase space is preserved under the mapping.

Computationally however, we represent the boundary as a single curve pa-
rameterized as (cos(t), sin(t)) for t ∈ [0, 2π).

The stadium billiard however, represents an even more di�cult problem to
model mathematically but proves still tractable to computational analysis. The
boundary of the stadium billiard can be thought of as a union of four curves.
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There exists an upper horizontal portion, a right semi-circular portion, a lower
horizontal portion, and a left semi-circular portion. The left and right curves
are parameterized by the vectors (−cos(t)− a,−sin(t)) and (cos(t) + a, sin(t)),
respectively, for −π/2 ≤ t < π/2. The other two horizontal curves which com-
plete the billiard vary from −a to a, a ≥ 0, at heights of y = 1 and y = −1. For
depiction below, a is equal to 1.

Part II

Numerical Calculations with

Circular and Stadium Billiards

2 Numerical Calculations

2.1 Sensitive Dependence on Initial Conditions

For both of the circular and the stadium billiards, we can demonstrate sensitive
dependence on initial conditions by simply varying any on of the parameters
of one orbit and let the others remain constant. As is the case for both the
stadium and circular billiards, we start with a known initial condition for two
given orbits of each billiards. We then create another orbit in each billiard,
which starts at a small distance from the �rst initial condition in each billiard.

We start by observing the case of the circular billiard. In this particular
example, we start with an initial point (0.5, 0), and set the initial x velocity
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to 0 and y velocity to −1. For the other initial condition in the billiard, each
initial condition is the same except the starting x-coordinate of the second initial
condition. In this case, we retain the same initial x and y velocities, but instead
start at the point (0.5 + 1× 10−3, 0). Thus, we seek to �nd the �rst collision at
which two collision points are at least 0.05 units apart. The graphs on the next
page show that this separation is reached by the twenty-fourth bounce along the
circular billiard. The right-hand plot measures the Euclidean distance between
each collision point on the vertical axis the nth collision along the boundary on
the horizontal axis.

Sensitive dependence on initial conditions for the stadium billiard follows
the same premise as the circular billiard example, but with slight modi�cations.
That is, we start with an initial point (0, 0) in the stadium billiard, and let the
initial x and y velocities equal 1 and 0.2, respectively:
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In this particular plot, the blue trajectory is the is the initial condition
starting at (0, 0), whereas the green trajectory starts at (1 × 10−10, 0). To
show sensitive dependence, we specify that the trajectories must separate by a
distance d of at least 0.25 after a certain number of collisions. The graph on
the right indicates that this separation occurs at the twentieth collision along
the billiard. As with the circular billiard, the horizontal axis speci�es the nth
collision along the stadium billiard, and the vertical axis is a measure of the
Euclidean distance between each collision point.

2.2 Periodic Orbits

Certain initial conditions in the circle and stadium billiard give rise to periodic
orbits. For the circular billiard, there are many ways to create periodic orbits,
one of which are shown below.

In this case, we have a period-four orbit generated by the initial condition
(0, 1/

√
2). The stadium billiard exhibits similar properties to that of the circular

billiards, particularly with period-four orbits. In this case, we observe that
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starting at an initial condition of (0, 1/
√

2) with initial x velocity 1 and y velocity
0 result in a similar period 4 orbit:

For other periodic orbits of the circle and the stadium, they both share
similarities in the generation of period-two orbits. We can generate a period
two orbit in the circular case by starting at the point (0, 0) and choosing any
x or y velocity, so long as they are not both zero. For period-two orbits in
the stadium billiard, the only di�erence lies in the fact that there are multiple
period-two orbits that oscillate between y = 1 and y = −1, whereas the circular
billiard has only one such orbit.

2.3 Lyapunov Exponents

2.3.1 Numerical Computation of Lyapunov Exponents

Calculating the Lyapunov exponents of each billiard system in question will
help to explain the behavior of the system, and consequently whether the given
system is chaotic.

To calculate a lower bound on the largest Lyapunov exponent, we measure
the log of the growing di�erence as we apply the map thousands of times to
close by initial points. This estimation gives us a lower bound for the largest
Lyapunov exponent since the maximum log of the growing distance occurs in
the eigen-direction for the eigen-value corresponding to the leading Lyapunov
number.

Given that two points will not necessarily preserve their orientation under
the mapping, the traditional method for calculating the Lyapunov exponent re-
lies on constant orientation and normalization by the Gram-Schmidt process to
calculate a Lyapunov number. Similarly, by not adjusting the direction, we can-
not guarantee that the orientation of the points' orbits lie in the eigen�direction,

5



but we do know that they cannot separate faster than they would in the eigen-
direction. So this calculation reveals a lower bound on the Lyapunov exponent.

For the circular billiard, a lower bound on the largest Lyapunov exponent
was obtained over thousands of iterations of the map between two nearby initial
conditions. With many pairs of randomly chosen initial conditions from within
the circle, we take the maximum value of the lower bounds Lyapunov exponents
for many pairs of initial coordinates to �nd an approximation of the largest
Lyapunov exponent. We were able to calculate a lowever bound of the Lyapunov
Exponent approximately equal to zero for the circular billiard. Which does not
reveal anything in particular about the behavior of the circular billiard.

The stadium billiard presents a more interesting case than the circular bil-
liard because the horizontal side-length a is just a variable in our calculation.
That is, by letting a vary for a ≥ 0, we obtain a range of Lyapunov exponents.
Below, we plot Lyapunov exponents against values of a.

2.3.2 Alternative Calculations of the Lyapunov Exponents

Alternate Method of Calculating the Lyapunov Exponents of the Cir-

cular Billiard

Instead of chosing points close by and measuring their growing separation as
we apply the map, we can calculate the Lyapunov exponent using the matrix
relation. In terms of Θ and Ψ we have the relation(

1 2
0 1

)
×
(

Θn

Ψn

)
=
(

Θn+1

Ψn+1

)
To calculate the Lyapunov numbers of this map, we calculate the eigen-values

of Φn (Φn)τ which individually represent the squares of the nth powers of the
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Lyapunov numbers of the map. Thus, we can calculate the Lyapunov exponents

using hk = lim
n→∞

1
2n
log(rnk ) [3]. Using Matlab, this is a simple calculation,

revealing that our approximation of each the Lyapunov exponent approaches
zero, so the circular billiard is non-chaotic.

Part III

Invariant Measure of the Map

Through the investigation of the circular billiard we found that a volume element
in the phase space was preserved in the �ow, but under what conditions does
this invariance hold? To investigate whether a volume element in the phase
space is preserved under the �ow, we �rst answer the same question regarding
a time-t map for arbitrarily small time.

The evaluation of a time-t map, Φt(x, y, ẋ, ẏ), can be reduced to two cases
by making t to be arbitrarily small. In the �rst case no collision occurs during
a time interval and in the second case, exactly one collision occurs. Φt can be
reduced to these two cases since given any starting point in the phase space
since the �ow can be broken into several segments, each of which fall into one
of the two previous cases. If a particular �ow has more than one collision in a
time, t, then either we can break the time interval into many subintervals where
only one collision occurs. If we cannot break it into subintervals where only one
collision occurs, we have reached an accumulation point where the trajectory
tends towards a point as t grows large. Instead of handling these cases, we
restrict the following theorem to billiards where there are no accumulating points
and where the boundary curves are well behaved through a series of assumptions
made about the system.
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3 Theorem

The �ow Φτ preserves the volume element dx dy dω

3.1 Assumptions[1]

1. The boundary of the billiard is a �nite union of smooth compact curves
with continuous third derivatives.

If the boundary were composed of an in�nite union of curves, we could
easily violate the requirement that the third derivative be continuous by
creating an in�nitely �ne set of points connected by the �rst order taylor
series approximation of a function with a discontinuous third derivative.
The other requirements restrict the boundary to parameterizable curves�
an important step in analytically calculating the a�ect of the �ow on a
volume element.

2. The individual curves that compose the boundary only intersect eachother
at their end points.

Restricting this helps us to classify the intersection and corners.

3. The second derivative of each curve in the boundary is either identically
zero or is never zero.

Which helps to classify the boundaries as either focusing, diverging, or
�at.

4. A billiard contains no cusps made by a focusing wall and a dispersing wall.

According to Halpern's Theorem, Assumption 4 removes the remaining
cases where a trajectory can accumulate. Such a trajectory has a limit as
we allow the particle to travel and theoretically approaches the corner.

3.1.1 Proving the Theorem

To describe the two cases rigorously, we introduce variables to represent the
state of a particle before and after the map is applied.

x± refers to the x coordinates of a point before and after the map is
applied

y± refers to the y coordinates of a point before and after the map is
applied

ω± refers to the angles of the velocity against the x axis before and after
the map is applied. Since the speed can be set to one, we can treat
it similarly to the velocity of the particle.
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Case: No Collisions In the case where there are no collisions, the map
can be expressed as the simple system of equations relating the input coordinates
and velocity and the output coordinates and velocity.

x+ = x− + cos(ω)

y+ = y− + sin(ω)

ω+ = ω−(= ω)

Di�erentiating reveals

dx+ = dx− − sin(ω)tdω

dy+ = dy− + cos(ω)tdω

dω+ = dω−

To compute the change in volume of an element dx−dy−dω− as it is passed
through the map Φt, we relate the volumes by the equation dx+dy+dω+ =
det(J )dx−dy−dω− where J is the Jacobian matrix of the mapping. dx+

dy+

dω+

 =

 1 0 −sin(ω)
0 1 cos(ω)
0 0 1

×
 dx−

dy−

dω−



J =

 1 0 −sin(ω)
0 1 cos(ω)
0 0 1



dx+dy+dω+ = det(J )dx−dy−dω− = dx−dy−dω−

Thus, when there are no collisions, the time-t map preserves the volume of
an element in the phase space.

Case: Single Collision In the case where there is a single collision, we
introduce `intermediate' variables to simplify the analysis.

Let

Γi be the segment of the boundary on which the collision occurs

(x̄, ȳ) be the location of the collision
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γ be the angle of the line tangent to Γi at (x̄, ȳ) o� of the x axis

ψ be the angle of the velocity o� of the line tangent to Γi at (x̄, ȳ)

r parametrize the arc length of Γi

s− + s+ = t represent the time interval before the collision and the time interval
afterward.

Using the system that these variables describe, we will �rst model the map
Φ−t : (r, s−, ψ) 7−→ (x−, y−, ω−) and compare the volume elements drds−dψ
and dx−dy−dω− using the Jacobian of Φ−t , J−Secondly, we will model the map
Φ+
t : (r, s+, ψ) 7−→ (x+, y+, ω+) and compare the volume elements drds+dψ and

dx+dy+dω+using the Jacobian of Φ+
t , J +.

Backwards Map Φ−t : (r, s−, ψ) 7−→ (x−, y−, ω−)

x− = x̄− s−cos(ω−) Since s−cos(ω−) is the projection of the precollisional ve-
locity on the x axis scaled to equal the distance traveled precollision

y− = ȳ − s−sin(ω−) Since s−sin(ω−) is the projection of the precollisional ve-
locity on the y axis scaled to equal the distance traveled precollision

ω− = γ − ψ

Di�erentiating reveals

dx− = cos(γ)dr − cos(ω−)ds− + s−sin(ω−)dω−

dy− = sin(γ)dr − sin(ω−)ds− − s−sin(ω−)dω−

dω− = −Kdr − dψ

dx = cos(γ)dr

dy = sin(γ)dr

dγ = −Kdr

Substituting the de�nition of dω− in resolves the system to

dx− = [cos(γ)−Ks−sin(γ − ψ)]dr + [−cos(γ − ψ)]ds− + [−s−sin(γ − ψ)]dψ

dy− = [sin(γ)−Ks−cos(γ − ψ)]dr + [sin(γ − ψ)]ds− + [s−cos(γ − ψ)]dψ

dω− = −Kdr − dψ
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The di�erential equation that follows is thus dx−

dy−

dω−

 =

 cos(γ)−Ks−sin(γ − ψ) −cos(γ − ψ) −s−sin(γ − ψ)
sin(γ)−Ks−cos(γ − ψ) sin(γ − ψ) s−cos(γ − ψ)

−K 0 −1

×
 dr

ds−

dψ


And the determinant dx−dy−dω− = det(J−)dr ds−dψ = −sin(ψ)dr ds−dψ

Forwards Map Φ+
t : (r, s+, ψ) 7−→ (x+, y+, ω+)

x+ = x̄+ s+cos(ω+) Since s+cos(ω+) is the projection of the precollisional ve-
locity on the x axis scaled to equal the distance traveled postcollision

y+ = ȳ + s+sin(ω+)Since s+sin(ω+) is the projection of the precollisional ve-
locity on the y axis scaled to equal the distance traveled postcollision

ω+ = γ + ψ

Di�erentiating reveals

dx+ = cos(γ)dr + cos(ω+)ds+ − s+sin(ω+)dω+

dy+ = sin(γ)dr + sin(ω+)ds+ + s+sin(ω+)dω+

dω+ = −Kdr + dψ

dx = cos(γ)dr

dy = sin(γ)dr

dγ = −Kdr

Substituting the de�nition of dω+ in resolves the system to

dx+ = [cos(γ) +Ks+sin(γ + ψ)]dr + [cos(γ + ψ)]ds+ + [−s+sin(γ + ψ)]dψ

dy+ = [sin(γ)−Ks+cos(γ + ψ)]dr + [sin(γ + ψ)]ds+ + [s+cos(γ + ψ)]dψ

dω+ = −Kdr + dψ

The di�erential equation that follows is thus dx+

dy+

dω+

 =

 cos(γ) +Ks+sin(γ + ψ) cos(γ + ψ) −s+sin(γ + ψ)
sin(γ)−Ks+cos(γ + ψ) sin(γ + ψ) s+cos(γ + ψ)

−K 0 1

×
 dr

ds+

dψ


And the determinant dx+dy+dω+ = det(J +)dr ds+dψ = sin(ψ)dr ds+dψ
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Now we can relate the volumes by the original de�nition s−+s+ = t, leading
to ds+ = −ds−. Thus

dx−dy−dω− = −sin(ψ)dr ds−dψ = sin(ψ)dr ds+dψ = dx+dy+dω+

So for any billiard that satis�es our assumptions, we can take a volume element
in the phase space and trace its �ow as a series of time-t maps each of which
preserves the volume. Following from this, we see that the volume is preserved
over the general �ow.

Part IV

The E�ect of Changing a Billiard

on the Flow

In this investigation, we limitted analysis to only considering the possible e�ects
of changing size of the circular billiard durring a �ow to change the behavior.
First we consider whether it is possible to change the size of the a billiard to
change a non-periodic �ow to a periodic �ow.

Consider a quasi-periodic orbit of a particle in the circular billiard. Where
ψ represents the angle between the trajectory and the tangent to the circle and
θ represents the angle of a collision point measured from the positive x axis, we
�nd the relations

θn = θn−1 + 2ψ (mod 2π)

ψn = ψn−1

So we can draw a triangle with vertices at θn, θn−1, and the origin and use

the law of sines, to �nd sinπ2 = sin(π/2−ψ)
x where x is length of the perpendicular

to the chord connecting θn and θn−1. Thus, we �nd x = sin(π2 − ψ) = cos(ψ).
So the inner �caustic� circle that each chord lies tangent to is distance cos(ψ)
from the origin.

To create a familiar periodic orbit, we extend the circle to have some radius r
at which ψ′, the angle between the tragectory and the tangent to the new circle
will be π/3 to create an equilateral triangle. Thus, using the same relations in
the new circle, we construct a similar right triangle with hypotenuse of length
r and vertices at the origin, a point on the �caustic� circle, and a point on
the circumference of the new circle. Thus, using the law of sines, we have
sin( π

2−ψ
′)

cos(ψ) = 1/r which shows r = cos(ψ)/cos(ψ′) = 2cos(ψ). We are allowed

to change the size of the billiard since for at least one point in its trajectory,
the particle is cos(ψ) distance from the origin (and cos(ψ) 6= 0 since the only
quasi-periodic orbits have ψirrational with respect to π).
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To convert from a periodic orbit to a quasi-periodic orbit, we need only
preform these operations in reverse, allowing a period-3 orbit in a billiard of
radius 2cos(ψ) to devolve into a non-periodic orbit as we change the radius
back to 1 while it passes through a point distance cos(ψ) from the origin.
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