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Abstract — Chaotic behavior of human physiology is a problem that can be investigated through
various measurements. One of the most noninvasive and easy measurement of the cardiovascular
and respiratory systems is blood oxygen saturation through a pulse oximeter. In this investigation,
the level of chaos and complexity of the system underlying the pulse ox time series are quantified
through calculation of largest Lyapunov exponent and correlation dimension. The data is also
examined qualitatively by time-delay embedding. The results show that blood oxygen saturation is a
physiological process that exhibits a low dimensional chaotic behavior. The finding is consistent with
previous research and sparks directions for future studies.

[. INTRODUCTION

The human physiological system is vastly complex. There are many descriptors
for the behavior of the system. One popular measure is the electrocardiogram (ECG),
which captures the electrical activity generated by the heart. Another measure is
blood oxygen saturation through pulse oximeter. The latter has more to do with the
respiratory cycle while the ECG is completely associated with cardiovascular
variations. However, the time series generated by both descriptors are very similar.
There has been prior research done on ECG and pulse ox data that have discovered
nonlinear dynamical behavior in the signals [3][4][7]. Practical applications of the
investigation of the chaotic behaviors of pulse ox signals include determination and
prediction of patient illness, such as detection of histologic chorioamnionitis in
infants [1][2].

The purpose of this investigation is to test prior methods used in analyzing
chaotic properties of time series on our data. In this paper, the dynamics of the set of
pulse ox data is quantified through calculation of largest Lyapunov exponent and
correlation dimension. Qualitative observation of chaos is done through time
delayed embedding. The paper is organized as follows: Section II describes prior
research and results on chaos using human physiological data; Section III describes
the data used in this study; Section IV details the method used to calculate the
parameters; Section V presents and interprets the results; Section VI concludes the
investigation and recommends directions for future studies.



II. PRIOR RESEARCH

Blood oxygen saturation and ECG involve similar human physiology. A study on
nonlinearity of ECG concludes that the time series is consistent with the behavior of
a low dimensional, nonlinear chaotic system [9]. Correlation dimensions and
entropy were calculated for three different ECG signals: normal, ventricular
tachycardia (VT) and ventricular fibrillation (VF). The two descriptors are
calculated using surrogate data, which are be generated from the original time series
using windowed Fast Fourier Transform at frequencies =0, 1/N, 2/N, ...1/2, where N is
the number of data points in the original time series [6][10]. The surrogate data retains
the same power spectra as the original data. The null hypothesis on which the surrogate
data is generated is that the ECG process is linear and thus not chaotic. By finding the
correlation dimension of the surrogate data, mean and standard deviation of the
correlation dimension for a supposedly linear ECG process are found. For 52 of the 81
data sets, at the 98% confidence level, the correlation dimension for the original time
series rejects the null, which means that there’s sufficient evidence that the ECG is a
deterministically chaotic process [9]. The author concludes normal, VT, and VF
recordings demonstrate a chaotic system underlying the ECG signal. However,
comparison in correlation dimension and entropy are inconclusive in distinguishing
the abnormal ECG from the normal ECG. Another method using the temporal
distance between R peaks of ECG as discrete data points has also been used with
similar results.

For dynamical analysis of pulse ox data, research has built on the nonlinearity
analysis of blood oxygen saturation and has computed parameters that distinguish
between healthy subjects and those with serious illnesses. A patent on the
assessment of human physiology analyzes pulse ox data in real time and computes
probability distribution, power spectrum, Lyapunov exponent, and other measures
of the fractal dimension [1]. The basis for the patent is that a healthy physiology has
complex dynamics while diseases can decrease the complexity of the system.
Therefore, parameters that measure complexity of a dynamical system, i.e.
correlation dimension, can reach a diagnosis. A similar study seeks to distinguish
pulse ox data between normal infants and infants affected by histologic
chorioamnionitis (HCA), a disease often fatal to newborns. Lempel-Ziv, largest
Lyapunov exponent, correlation dimension, and Hurst values are calculated with the
Lempel-Ziv complexity being the most prominent indicator in HCA cases [2]. One
reason for pulse ox data being favored in clinical applications is that it is an easy and
noninvasive measurement. Due to the limitation in data and subjects, this paper will
calculate two of the parameters described in the literature that provide a good
description of the dynamics of the physiological system that is measured by the
pulse ox.

II1. DATA



The data used in this investigation is collected by a finger cuff pulse oximeter as
a part of the Biopac® Student Lab equipment. The data is discrete with a sampling
frequency of 1000 Hz. The data is filtered by a band-pass filter preset on the data
collection software. It is 200 seconds long and collected from a healthy male with no
known cardiovascular or respiratory illnesses. Due to the length of the data
(200,000 points), it is re-sampled at every 50t point, resulting in a new frequency of
20 Hz. Another way for shortening the data is to use the first 40 seconds of the data.
It was tested and yielded similar computational results. However, the method of
chaos analysis used here prefers the first method [6].

IV. METHODOLOGY

A. Time-delay embedding

Time-delay plots can qualitatively characterize the dynamics of the data in 1 and
2 dimensions. The delay is chosen at the time lag when the autocorrelation function

drops to 1— 1 of its initial value [7].
e

B. Lyapunov exponent

To calculate the largest Lyapunov exponents and correlation dimensions of the
data, a low computational cost method is used as described by Rosenstein et al (1992)
[7]. If we assume that the pulse ox time series is chaotic, then two initial conditions close
to each other will diverge exponentially at the rate of the largest Lyapunov exponent.

d(t) = Ce™'

where d is the distance between nearest neighbors, C is a constant, and 4, is the
largest Lyapunov exponent.

We reconstruct the time series into M time state vectors, each representing the
state of the system at discrete time i. Starting with data set {x,, x,, ... x,,}, construct a
matrix X of size M x m such that:

X=[XX,..X,1
X; =[x X e Xy ey ]

J is the reconstruction lag chosen to be the time-delay found through the
autocorrelation function in time-delay embedding; m is the embedding dimension,
which should be in accordance with Takens’ theorem such that m >2n where n is
the dimension of the underlying attractor of the time series (m is chosen to be 6
from literature [3]). This results in a M xm matrix X where each row vector
denotes a discrete time state.

(1)

(2)

(3)



The nearest neighbors are then found by:

C;=d,(0)=minlIX; - X; I

where |l..Il represent the Euclidean norm and the neighbors conform to the
temporal constraint

j—j>mean period (4)

where the mean period is estimated by the reciprocal of the mean frequency of the
power spectrum calculated using Welch’s method with no windowing. Thus d;(i) is

the separation between the j™ nearest pair of neighbors after i time steps. From
(1), the largest Lyapunov A exponent can be represented as:

In(d, (i) ~In(C,) + A (i - Ar) (5)

It represents M parallel lines, with j=1,2,3,...M. The least square fit to the
“average” of these lines results in the curve

N .
¥(@) = (In(d, @) (6)

where <ln(dj(i))> is the average for all j. The curve is plotted with i- Af on the x-axis

and <ln(dj(i))> on the y-axis, and the slope of the linear regression to the curve is the

largest Lyapunov exponent for the time series.

C. Correlation dimension

In calculating the correlation dimension, the results from the Lyapunov
exponent calculations are used. The correlation sum for embedding dimension m is
computed as:

C,(r) ¥ Olr-1X, - X, i (7)

i=k

T MM -1)

where r is the distance between time states; 0 is the Heavy side function, which
equals to 1 if - 11X, -X, II>0 and 0 if r-IX, - X, II<0. By choosing a few values of
r, the linear fit to In(C, (7)) plot against In(r) has a slope that is equal to the
correlation dimension.

V. RESULTS



Figure 1 shows the time delayed plots of the time series. There seems to be an
unclear attractor in the plots, but it is difficult to tell qualitatively. This is consistent
with ECG time-delay plots by Mehta and Miller [5]. Previous experiments have
shown that human physiological data tend to have a low dimensional attractor.
Another set of plots is done for a different lag (7 seconds) [8] with similar results.

Time Delayed plot2.127 seconds

(a) (b)

Figure 1: (a) is time-delay plot with lag J=2.127 seconds in 1-D; (b) is time-delay plot with
same lag in 2-D

For calculating the Lyapunov exponent, 40 discrete times are used for the
divergence plot (Figure 2a). The result shows a slightly positive exponent (0.001).
However, the results of this experiment are similar to the plots of a noisy signal in
Rosenstein et al (1992) [7] (Figure 2b). The actual Lyapunov exponent is the slope
of the portion of the divergence graph with small values of i-Ar. A plot of the
divergence using a filtered version of the original time series shows a stronger
initial linear trend (Figure 2d). The filtered data consists of a segment of data that
shows prominent peaks and troughs. Under the assumption that the pulse ox time
series is also noisy, the Lyapunov exponent is recalculated as 0.012. The positive
exponent is evident that the process underlying the pulse ox signal is chaotic.
However, the small value is indicative that the initial conditions diverge slowly.

The correlation dimension is calculated with 5 values of r (Figure 3). The best-fit
line estimates the correlation dimension as 2.7 (literature for ECG recordings show
correlation dimension of 2.3+0.36 [9]). This shows that the dimension of the chaotic
attractor in blood oxygen saturation variation over time is fairly low. This is
consistent with previous research on ECG signals that have discovered a low
dimensional dynamic system. This also validates our selection of the embedding
dimension m=6. Repeated calculations with m=7 and m=38, the range of
discovered embedding dimension in ECG time series [3], result in correlation
dimensions of 2.3 and 1.9, respectively. The consistency is acceptable given that the
data is likely to be noisy.
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Figure 2: (a) shows the divergence of nearest time states over time; (b) is a similar
plot produced by Rosenstein et al (1992), the solid line is the divergence of a noisy
timeseries and the dotted line has a slope equal to the largest Lyapunov exponent of
the underlying attractor; (c) shows the lines of best fit: red line is the overall fit,
magenta line assumes noisy data; (d) shows the divergence of nearest neighbors for
time series after removal of some noise.
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Figure 3: natural log of the correlation sum plotted against the natural log of r. The red
line is the linear regression with a slope approximately equal to the correlation
dimension. The linear characteristic of the curve is strong




VI. CONCLUSION

Using the methods described by Rosenstein et al (1993), blood oxygen
saturation data collected from a pulse oximeter is analyzed and its chaotic
properties qualitatively and quantitatively observed. The two parameters, Lyapunov
exponent and correlation dimension, show that the pulse ox measures a process
that is chaotic but not very complex. This is in opposition to the patent that claims to
uncover serious illness in patients based on the decreased complexity in their
physiology based on pulse ox data. Based on our study, any difference would be too
small to discern or attribute to the sensitivity of the device.

However, keep in mind that it is possible that the data used for this investigation
is too noisy, which will bias the findings presented here. Therefore, there are more
questions raised by this investigation than answered. Is the pulse ox a reliable
measurement tool? Are there statistically significant differences between the
parameters measured from healthy and ill subjects? What about other measures of
chaos, i.e. Lempel-Ziv complexity? The limitations on the current project do not
allow for adequate exploration of these questions, which should uncover interesting
findings.
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