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Abstract 

We investigate quantum chaos in chaotic billiards by modelling the square (non-chaotic) and the 

stadium (chaotic) billiards as 2D infinite square wells. We developed MATLAB code that uses 

grid points and the method of finite differences to numerically solve the Schrödinger equation for 

either case. We successfully obtained the “scar” structures in higher energy eigenfunctions for 

the stadium case, discovered by Joseph Heller in 1984. We also studied the eigenvalue spacings, 

and obtained the Poisson distribution for the square case and the GOE distribution for the 

chaotic case. Thus, we were able to demonstrate both features (scarring in eigenfunctions and 

GOE distribution in eigenvalue separation) that indicate the presence of chaos in the classical 

limit. 

 

Background 

For more than 80 years, predictions from quantum mechanics (QM) have been validated 

in laboratory experiments with infallible accuracy. QM is, to date, the most accurate description 

of nature in the limit where relativistic effects can be ignored. On the other hand, classical 

mechanics as formulated by Newton, Lagrange, Hamilton and others give accurate results for 

less than exotic, every-day length scales and energies (known as the classical limit), until we go 

much smaller and reach the molecular level where quantum effects become important. We 

expect the more general and accurate theory, QM, to reduce to the less general, classical 

mechanics, in the classical limit. This is Bohr‟s correspondence principle. 

The phenomenon of deterministic chaos was discovered by Henri Poincaré in the late 18
th

 

century when he was studying the seemingly erratic orbit of the moon in the 3-body system of 

Sun-Earth-Moon. The classical context in which chaos was discovered and also continued to 

study until late into the 20
th

 century naturally meant the definition of chaos in a dynamical 



system was cast exclusively in classical terms: chaotic systems are those that have orbits that (i) 

are not asymptotically periodic and (ii) have positive Lyapunov exponent(s). 

Note how chaos is formulated entirely in terms of orbits, i.e. the trajectory of a particle. 

But in QM, the particle does not have a definite position due to the Heisenberg Uncertainty 

Principle (in any finite potential, a particle has a finite likelihood to be anywhere at any moment 

in time due to quantum tunneling). Hence, the definition of chaos in classical mechanics does not 

carry over to QM. It is not even obvious what chaos would entail in the quantum world, if 

anything. What kind of behavior would a classically chaotic system produce if studied in the 

quantum regime? Also, from the other logical direction, would it be possible to look at quantum 

mechanical results (i.e. eigenfunctions and eigenvalues) of a system and deduce whether or not 

that system is classically chaotic?  

Intuitively, one might expect that since most orbits of a chaotic system are dense in the 

phase space, the quantum eigenfunction would also be broadly, thinly and randomly smeared out 

and show no significant localization. Surprisingly,however, in many of the eigenfunctions 

corresponding to large eigenvalues, we see pockets of high probability densities in the coordinate 

space, often forming ornate patterns with various symmetries but no discernible similarity or 

connection with other eigenfunctions. Even more curiously, for some of these eigenfunctions, we 

can identify the pockets as lying along some of the unstable periodic orbits of the corresponding 

classical system. For this last subset of eigenfunctions, the pockets around the unstable orbits are 

known as „scars.‟  

 

One-Dimensional Square Infinte Potential Well 

We began by solving the Schrodinger equation for the one-dimensional squre infinite 

potential well defined by the potential function 

V x =   
0      if 0 ≤ x ≤ 1
∞        otherwise

  

and compared our numerical results with the exact results. Doing so allowed us to develop and 

test our method of finite differences code in a case much simpler than the stadium. 

In computing solutions we began with the time-independent Schrödinger equation, 

−ℏ2

2m
∇2Ψ + VΨ = EΨ, where ∇2=

d2

dx2
. 

V = 0 everywhere inside the well, and we take 
ℏ2

2𝑚
 to be unity so the Schrodinger equation 

simplifies to the Helmholtz equation 



−∇2Ψ = EΨ 

We approximated ∇2as a matrix A that acts on a set of grid points. Using secant line 

approximations to the derivative we obtain  

 d
2f

dx2
 

xn

≈

 df
dx

 
xn +1/2

−  df
dx

 
xn−1/2

h
≈

un+1 − un

h
−

un − un−1

h
h

=
un+1 − 2un + un−1

h2
 

where h = xn – xn-1 is the lattice spacing and ui = Ψ(xi) as illustrated in Figure 1. 

 

Figure 1: Illustration of quantities used in the method of finite differences. 

 

Hence, the matrix A takes the form 

∇2 ≈ A =

 
 
 
 
 
−2 ⋯ 0

⋮
⋱
1 −2 1

⋱

⋮

0 ⋯ −2 
 
 
 
 

 

Computed solutions match theoretical solutions 

Ψn = sin nπx , En = n2, n ∈  ℤ+ 

very well, with errors scaling as k
2
, the scale factor depending on resolution. Deeper analysis of 

error scaling is reserved for the two-dimensional case.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Two-Dimensional Square Infinite Potential Well 

Having successfully computed eigenfunctions and eigenvalues of the one-dimensional 

square infinite potential well we move on to the two-dimensional case with potential given by 

V x =   
0      if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
∞                                    otherwise

  

 

The two-dimensional Laplacian 

 ∇2 =  
∂2

∂x2  +  
∂2

∂y2 

is simply the sum of two one dimensional Laplacians. The matrix approximation A is therefore 

the sum of two matrices, one identical to the one-dimensional matrix and one with off diagonal 

elements a distance M+2 (rather than one) from the diagonal. 

∇2 ≈ A =  

 
 
 
 
 

M + 1
⋱

⋯ 0 1 ⋯ 0 1 −4 1 0 ⋯ 1 0 ⋯
⋱

M + 1  
 
 
 
 

 

Using this matrix to find eigenfunctions requires us to represent two-dimensional 

wavefunctions as vectors. To accomplish this we discretize the two-dimensional square in the 

same fashion as the one-dimensional case but transform the two-dimensional grid into a vector 

Figure 2: Calculated (green) and theoretical (red) 

wavefunctions of one-dimensional square infinite potential 

well for N=2000 degrees of freedom. 

Figure 3: Eigenvalue errors for one-dimensional square infinte 

potential well for N=2000 degrees of freedom. 



by stacking columns of the grid. This is the reason for the M+2 spacing (M+2 for M degrees of 

freedom plus boundary points on either side) of off-diagonal entries from the 
∂2

∂y2 term. 

Wavefuntions of the two-dimensional square infinite potential well can be found using 

separation of variables and are therefore products of wavefunctions of the one-dimensional 

square infinite potential well. 

Ψnx ,ny
= sin nxπx sin nyπy ,  nx , ny ∈  ℤ+ 

Probability distributions of these wavefunctions are periodic and symmetric, hence relatively 

simple and show little localization – a feature common to all integrable systems. 

 

 

Figure 2: Probability distributions of two-dimensional square infinte potential well. 

 

Energy levels of the two-dimensional square infinite potential well are sums of the one-

dimensional values. 

E = nx
2 + ny

2 

Knowing these exact values we can see how the computed solutions compare. A plot of 

energy level errors is shown in Figure 3. 



 

Figure 3: Energy level errors for two-dimensional square infinite potential well with 90,000 degrees of freedom. 

 

Discarding the spike at the end (which is due to inaccuracies in the Matlab function eigs) 

we see that error scales linearly with energy, with the specific scale factor depending on 

resolution. This makes sense because in an area with zero potential the energy operator is equal 

to the kinetic energy operator which is proportional to the second derivative of the wave function 

i.e., the curvature. High curvature means the wavefunction is changing sharply over space and 

the discretization will fail to accurately capture these fine variations. 

 We might expect the error scaling factor to scale linearly with degrees of freedom i.e., as 

N
2
 where N is the degrees of freedom in either the x- or y-direction. Running a numerical 

analysis (using the Matlab function polyfit) we see we actually do slightly better: errors scales 

approximately as N
1.9

. Based on these results we can expect highly accurate results for the 

stadium billiard for several hundred energy levels using NM ≳ 100,000 degrees of freedom. 

 

Indexing Stadium Lattice Nodes 

The key numerical difference between the two-dimensional square infinite potential well 

and the stadium billiard is in the entires of the matrix A, which effectively encodes boundary 



conditions constraining solutions of the Helmholtz equation. To encode the boundary condition 

we begin by traversing lattice points of the circumscribed rectangle of the stadium giving each 

point that falls within the stadium an index number which is stored in a map. We also create an 

inverse map from index numbers to points. 

Now we can create A by traversing points in the index map and setting diagonals to -4 

and entries corresponding to neighboring points within the stadium to 1. The neighboring points 

we test for the point (xk, yj) are: east, (xk+1, yj); west, (xk-1, yj); north, (xk, yj+1); and south, (xk, yj-

1)  again using our map to find the appropriate index for these points in rows of A. 

 

Stadium Enery Levels 

Transitioning from an integrable to nonintegrable system, we expect to see distinct 

changes in energy level distribution. Stadium energy levels should not follow a neat distribution 

but rather should reflect the classical chaos present in the nonintegrable system by following a 

pseudorandom distribution. 

Literature on the subject has established that energy level spacings follow the Wigner 

distribution, the same distribution that is obeyed by spacings between eigenvalues of matrices in 

the Gaussian Orthogonal Ensemble (GOE) [3]. A GOE matrix consists of Gaussian elements 

with standard deviation 1 off the diagonal and  2 on the diagonal and mean 0 in both cases. A 

GOE matrix can be formed by taking an n-by-n matrix R with all elements Gaussians of mean 0 

and standard deviation 1 and forming W given by 

W = (R + RT)/ 2n    [4] 

As n approaches infinity the distriubtion of spacings between eigenvalues of W approach the 

Wigner-Dyson distribution 

W s =  
π

2
se−

π
4

s2

 

which falls to 0 at s = 0. In the context of energy levels of the stadium billiard this means that 

there are very few energy levels with close to the same energy. This contrasts with the integrable 

case where many energy levels are close together and spacings follow a Poisson distribution. [3] 



Our results showed a clear Poisson distribution for the eigenvalues spacings of the two-

dimensional square infinite potential well. To achieve an accurate Wigner-Dyson distrubtion for 

stadium eigenvalue spacings we plot only eigenvalues of wavefuntions that have odd-odd parity 

(i.e., antisymmetric through both axes), a technique known as desymmetrization originally 

utilized by McDonald and Kaufman [5]. To circumvent memory and time contraints, rather than 

finding many eigenvalues of a single billiard we parameterize the billiard by length in the x-

direction and sum eigenvalue spacing distributions over many values of this parameter. 

 

Stadium Wave Functions 

Wavefunctions of the stadium billiard exhibit a surprising amount of localization. 

Looking at trajectories of the classical case, one might expect wavefunctions to be relatively 

unlocalized, as classical trajectories appear to fill the stadium relatively uniformly with no 

discernable patterns. There are of course certain classical trajectories in the stadium that stand 

out, namely low-period periodic orbits. These orbits are of course unstable as the stadium is a 

chaotic billiard, so in general they appear very infrequently for arbitrary starting conditions. 

Nonetheless these unstable periodic orbits are manifest in the quantum wavefunctions of 

the stadium billiard as “scars,” a term coined by Eric Heller who has shown the presence of these 

scars to follow from basic principles.[6] It should be made clear that scars corresponding to 

unstable period orbits are not visible in all wavefunctions  but do appear fairly regularly (Heller 

claims “about half the states have one or more recognizable scars,” though we saw a proportion 

closer to a quarter) in high energy solutions. Furthermore, even in those wavefunctions that do 

not display scars corresponding to unstable period orbits, there is almost always a relatively high 

degree of localization. Typical scar patterns are shown in Figure 5. 

Figure 4: Eigenvalue spacings for two-dimensional square infinite potential well (left) and stadium (right). 



 

Figure 5: Scars in the stadium billiard corresponding to classical period orbits of period 6 (top) and period 3 

(bottom). 

 

Conclusion 

We have obtained results in strong agreement with previous research in the field, 

demonstrating the connection between classical and quantum chaos. Primary manifestations of 

this connection are seen in energy level spacing distributions and scarring in wave functions. In 

contrasting integrable and nonintegrable billiards, we have demonstrated the specific routes by 

which chaos is manifest is quantum systems. 

In a future project, we could explore how the eigenfunctions and eigenvalues change as 

we slowly vary the stadium parameter, changing the shape from disk to elongated stadium. 

Furthermore, it would be interesting to explore other chaotic (e.g. Sinai billiards) and non-

chaotic (e.g. disk) billiard shapes in order to establish the generality of the features of the 

representative systems that have been analyzed here.  
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