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A planar double pendulum is a simple mechanical
system that has two simple pendula attached end
to end that exhibits chaotic behavior. The aim of
this project will be to numerically analyze the
dynamics of the double pendulum system. First, the
physical system is introduced and a system of
coordinates is fixed, and then the Lagrangian and
the Hamiltonian equations of motions are derived.
We will find that the system is governed by a set of
coupled non-linear ordinary differential equations
and using these, the system can be simulated.
Finally we analyze Poincaré sections, the largest
lyapunov exponent, progression of trajectories, and
change of angular velocities with time for certain
system parameters at varying initial conditions.

System of coordinates

The double pendulum is illustrated in Fig. 1. It is
convenient to define the coordinates in terms of
the angles between each rod and the vertical. In
this diagram my, L3, and 8, represent the mass,
length and the angle from the normal of the inner
bob and m,, L,, and 8, stand for the mass, length,
and the angle from the normal of the outer bob. To
simply our numerical analysis, let us assume that
m;=m,;=mand L, =L, =|. That is, we consider two

identical rods with (I = 1—12ml2). Assume that

masses of rods can be neglected but their moment
of inertia should be included to better reflect the
physical system they represent”.

Figure 1: Schematic representation of the
construction of a simple double pendulum where
my, Ly, and B, represent the mass, length and the
angle from the normal of the inner bob and m,, L,,
and 6, stand for the mass, length, and the angle
from the normal of the outer bob”.

Equations of motion

Now, by resolving these quantities onto horizontal
and vertical components, we obtain the position of
the center of mass of the two rods, where( x4, y1)
are the position of the inner bob and (x,, y,) is the
position of the outer bob.

x; = 5sin(6,)>(1)
X, = l(sin(@l) + %sin(ez))é(z)
Y1 = —3cos(6:)>(3)

1
vy, = —1 (cos(@l) + Ecos(ez))ém)

The Lagranian is given by L = Kinetic Energy —
Potential Energy

L= %m (v? +v3) +%1 (6% +62) —mg(y, +

y2) 2(5)
L=-m(GE+y2+33 +y3) +51 (67 +63) -
mg(y, +y2) 2(6)

The first term is the linear kinetic energy of the

center of mass of the bodies and the second termis
the rotational kinetic energy around the center of



mass of each rod. The last term is the potential
energy of the bodies in a uniform gravitational
field.

Plugging in the coordinates above, we obtain

L= %mlz [922 + 4‘912 + 39192COS (91 - 92)] +
%mgl (3cos0, + cosb,)>(7)
There is only one conserved quantity (the energy),

and no conserved momenta. The two momenta
may be written as

Do, = ;—QLI = %ml2 [86; + 36,cos (8, —
62)1>(8)

Pe, = ;—QLZ = %ml2 [26, + 36, cos (0, —
62)1>(9)

These expressions may be inverted to get
. 6 2pg,—3cos (61—62)pe
6, = — =41 1_2792.3(10)
ml2  16—9cos2(0,—65)
. 6 8pg,—3cos (01—02)pg
0, = —>—=2 15 (11)
ml%2  16—9cos2(0,—65)
The remaining equations of motion for momentum

are

. oL 1 o
Do, = 55, = —Eml2 [9192 sin(6; — 6,) +

3%sin91]e(12)
. oL 1 s s

Do, = 3. = —Eml2 [—9192 sin(6; — 6,) +
%sinez]e(la) 3

Let’s assume now that m = [ = 1. This gives us a

set of four equations that can be used to simulate

the behavior of the double pendulum
. 21761_3‘305 (91_92)7762A
01=06 16—9c0s2(61—65) >(14)
3y 8p92—3COS (91_92)1’)91A
0, =06 16—9c0s2(61-65) >(15)

pel = —%[9162 Sin(91 - 92) + 3gSln91]9(16)

. 1 . . . .

sz = _E [—0192 51n(91 - 92) + 9517162]9(17)
The conserved quantity, energy function, is given

by Hamiltonian = Kinetic Energy +
Potential Energy
H = 0;p; — L = ml?6} +%m12922 +
ml?6,6, cos(8;, — 6,) — 2mglcos6; —
mglcos6,>(18)
Substituiting the above solved equations for 91 and
92, we obtain
o= 3ml2pg,2—2mi®pg, pg,cos (6,—63) _
2ml4[m+m sin?(6,-0,)]
2mglcosf,; — mglcos6,—>(19)
Again, when m=I=1,
H = 3pg,2—2DPg,Pp,C0S (61—62)
2[1+sin?(60,—6,)]
gcosH,>(20) *

— 2gcos6, —

Simulation of the motion for various initial
conditions can be performed by running the
attached MATLAB code that uses ode45.

Some Theory
Let us introduce a new concept of quasi periodic

motion. Roughly speaking, they refer to “almost
periodic” motion. More mathematically, it can be
thought of as °the type of motion executed by a
dynamical system containing a finite number of
incommensurable frequencies.

From equations 14 to 17, we see that the dynamics
of a double pendulum can be described with 4
variables, the two angles and their corresponding
(angular) velocities, which span the four-
dimensional phase space of the system®. Since the
double pendulum is a hamiltonian system, total
energy is conserved (equation 20) and this reduces
the four-dimensional phase space to a three-
dimensional manifold. Further, The KAM theorem
states that if a hamiltonian system is subjected to a
weak nonlinear perturbation, some of the invariant
tori that have “sufficiently irrational” frequencies
survive. In other words, the motion continues to be
quasiperiodic’. KAM tells us that at lower energies,
the function is integrable (it has as many conserved
guantities as there are degrees of freedom in the
system)®. At high energy the pendulum behaves
like a simple rotor, with the system rotating rapidly
in a stretched cofiguration ( 8,= 1,8, = 0). In this
case the kinetic energy terms in the Lagrangian
dominate the potential energy terms and may be
described by setting g = 0 in the equations of
motion. The total angular momentum is conserved,
because in the absence of gravity, there is no
torque on the pendulum. The resulting motion of
the system is regular (non-chaotic), because a
system with two degrees of freedom and two
constraints (conservation of total energy and total
angular momentum) cannot exhibit chaos. It
follows, for example, that the double square
pendulum would not exhibit chaos if installed on
the space station’. Lower energies and higher
energies = periodic motion. From this theoretical
evidence, we hypothesize that the behavior of a
double pendulum varies from regular motion at
low energies, to chaos at intermediate energies,
and back to regular motion at high energies'’.



Poincare

Poincare sections allow fast and informative insight
into the dynamics of the double pendulum. The
different types of motion appear as finite number
of points for periodic orbits, curve filling points
(‘invariant curves’) for quasi periodic motion and
area filling points for chaotic trajectories.

We can construct a two-dimensional Poincare
section by looking at the trajectory only at those
points when the outer pendulum passes the
vertical position, that is 6, = 0. Equation 20 then
yield s a quadratic equation for 6,, with solutions
92i =

—6,cos0; +

\/(9160391)2 - #(mgl(l — cos6,) + %mlzélz - H)

-2>(21)

We can now plot a (6;, 8;) in the phase space of
the inner pendulum when the two conditions
6, = 0 and 6;cos6; > 0 are fulfilled.

Largest Lyapunov Exponent

Sensitive dependence on initial conditions — small
separations between arbitrarily close initial
conditions are amplified exponentially in time —is
the hallmark of chaos. The underlying cause of this
behavior, namely the exponential growth, can be
numerically and analytically evaluated using
lyapunov exponents. Largest lyapunov
exponents'?, as it effectively gives us the
information on the divergence of two close
trajectories. We can use the same first order
equations used in the MATLAB simulation to
evaluate the exponent. The method to calculate
the lyapunov exponent is to first plot the natural
logarithm of the separation between the two
closely launched trajectories against time and then
find the slope of the region where it is increasing.
As usual, positive lyapunov exponents are
indicative of chaotic behavior.

Other informative plots

We can also plot the four variables that
characterize the system against each other to get a
qualitative sense of the behavior of the system. It is
more difficult to gauge what is happening with the
dynamics of the system with such plots but they
are still indicative of periodic versus chaotic
behavior.

Now we have all the tools to look at some
simulations and see if the theory fits the observed
behavior.

Simulations

Let us start with low energy conditions. Using the
Hamiltonian, the energy can easily be calculated in
Joules. When we have initial conditions = y0 =

[61, 62, Do, Pa, | = [0.2,0.2828,0,0], the energy =
0.7809 J. At this low energy we expected periodic
behavior. The attached code titled ‘hamiltonian.m’
returns this value for an input of y0.

(Figures 2, 3, 4, 5, 6 are in Appendix A) The periodic
trajectory of the outer bob is clear from figure 2a,
the Poincare sections are presented in figure 2b
and show a finite number of points that grow
outwards with time but form a general pear shape.
The plot in 3-D forms a pear shape when rotated
about the x; axis. When a second trajectory is
launched at a distance of 10 from this initial
condition, we see from figure 2d that they move
together indicating that there is no chaos. When
the lyapunov graph is plotted, it is clear that the
lyapunov exponent is negative (= -3.426) and hence
the system is not chaotic. The angular velocities of
the inner and outer bobs are in phase and periodic
further confirming that these initial conditions at
low energy are indicative of the non-chaotic
regime.

As we increase the energy to 1.2807J with the intial
conditions y0 = [0.7,0.3825,0,0], we enter the quasi
periodic regime. The periodic trajectory of the
outer bob is in figure 3a and we see that the inner
and the outer bob are out of phase (also
exemplified in the angular velocities graph in 3d.
Figure 3e shows that two closely launched
trajectories do not diverge from each other. Using
this distance separation, when the lyapunov graph
was generated in 3e, we see that the lyapunov
exponent does not remain entirely negative and
starts to begin increasing to positive values with
time. The average lyapunov exponent is -1.203
which is higher than for the periodic condition.

When the energy is further increased to be 29.4 J
with initial conditions y0 = [r,11,0.5,0]. We repeat
the same process and find a average positive
lyapunov exponent of 1.906 (figure 4e). This
average number was obtained by calculating the
average over a range of initial conditions around
this yO (figure 4f). We see in figure 4a that the path
of the outer bob is random and unpredictable. The
Poincare section is clearly area filling and the two
closely launched trajectories (with an initial



separation of 10°) start off together but move
away from each other. The angular velocities which
are qualitative indicators, also show that there is no
regular behavior. All of these clearly indicate that at
these energies, the system is chaotic.

So far we found that as we increase energy, the
system moves from being periodic to quasi-periodic
to chaos. Now, if we increase the energy even more
to reach 104.25 J with initial conditions y0 = [m, O,
0.5, 0.5], we see the quasi-periodic state again!
Clearly, from 5d the trajectories have not diverged
from each other. Also, there is a decrease in the
lyapunov exponent to 0.4320. The angular
velocities (figure 5c) are out of phase together. The
trajectory in figure 5a is a certain indication of
guasi-periodic motion. Although the Poincare
sections are a little difficult to understand, the
other graphs are indicative of quasi-periodic
behavior at these energies.

Let us take a look at figure 6, that has other
informative plots of the variables plotted against
each other. There is qualitative trend indicating the
system starts out to be periodic, in the sense that
the shape of the curves can be predicted for later
times, to chaotic unpredictable behavior and finally
back to shapes resembling periodicity. In each of
them, the top left is the angles of the inner and
outer bob, top right has the angular velocities of
the inner and the outer bob. Bottom and left and
right show the angle versus angular velocity of the
inner bob and the outer bob respectively.

The graphs were generated using the codes
PoincareTrajecAngleEnergy.m and crudelyap.m.
They need Hamiltonian.m, doublependulum2.m
and zerocross2.m to work. All the code is attached
in Appendix B.
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Figure 2: y0 = [0.2,0.2828,0,0] produces periodic motion. a) Trajectory of the outer bob; b) 2-D Poincare map
for the section when the outer bob is hanging vertically i.e 8, = 0; ¢) 3-D Poincare map when the position of the
outer bob is at zero i.e sinB,=0; d) angular velocities of the outer and the inner bob against time; e) Trajectories
of two curves at a distance of 10 between them; f) lllustrates the negative lyapunov exponent.
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Figure 3: y0 = [0.2,- 0.2828,0,0] produces quasi-periodic motion. a) Trajectory of the outer bob; b) 2-D Poincare
map for the section when the outer bob is hanging vertically i.e 8, = 0; c) 3-D Poincare map when the position
of the outer bob is at zero i.e sinB,=0; d) angular velocities of the outer and the inner bob against time; e)
Trajectories of two curves at a distance of 10”° between them; f) slowly increasing lyapunov exponent.
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Figure 4: y0 = [r,t,0.5,0] produces chaos! a) Trajectory of the outer bob; b) 2-D Poincare map for the section
when the outer bob is hanging vertically i.e 6, = 0; c) angular velocities of the outer and the inner bob against
time; d) Trajectories of two curves at a distance of 10”° between them; e) positive lyapunov exponent; f)
average lyapunov exponent for various initial conditions.
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Figure 5: y0 = [1,0,0.5,0.5] produces quasi-periodic motion. a) Trajectory of the outer bob; b) 2-D Poincare map
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inner bob against time; d) Trajectories of two curves at a distance of 10 between them; e) slightly positive
lyapunov exponent; f) average lyapunov exponent for various initial conditions.
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Appendix B: MATLAB codes

Animation of the pendulum

doublependulumAnimation.m
% modified from http://math.la.asu.edu/~kawski/MATLAB/matlab.html
%comments by Roja

function out=dpend()
if nargin < 5

n=3;
end
%declare variables
global m1 m2 L1 L2 g;

ml = 2;

m2 = 1;

g =1;

L1 = 1;

L2 = sqrt(3);

dt = 0.1;

y0 = [-pi O -pi 2*rand(1,1)-1];
t0 = O;

twin=30;

rl = (L1+L2)/20*sqrt(ml/(m1+m2));

r2 = (L1+L2)/20*sqrt(m2/(m1+m2));

%size the animation window

LL = 1.2 * (L1 + L2 );

% re-use data while disk is being plotted
bx = cos(pi*[0:0.1:2]);

by = sin(pi*[0:0.1:2]);

% initial positions (delete previous images later)
x1= L1*sin(y0(1));

yl=-L1*cos(y0(1));

x2=x1+L2*sin(y0(3));

y2=y1-L2*cos(y0(3));
b4=plot([0,x1],[0,y1], "k-", "LineWidth",2);
hold on

b3=plot([x1,x2],[yl,y2], "k-","LineWidth",2);
bl1=Fill (x1+rl1*bx,yl+rl*by, "magenta®);

b2=Fill (xX2+r2*bx,y2+r2*by, "black");

% scale the window to fit the double pendulum
axis([-LL LL -LL LL])

for N=[1:1000]
% save the old angles and positions
posold=[x1 yl1 x2 y2]*~;
yold=y0;
% solve the systems of odes until next frame
[t,y]=0ode45("doublependullum2*,[t0,t0+dt],y0,[],9.8,1,1,1,1);
% keep the new angles and delete the old ones
yo=y(size(y,1),:);
clear y
clear t
% translate angles into [-pi,pi]
y0(1)=mod(y0(1)+pi,2*pi)-pi;
yO0(3)=mod(y0(3)+pi,2*pi)-pi;
t0=t0+dt;

% delete the old pictures of the pendulum
% calculate the new positions



x1l = L1*sin(y0(1));
yl = - L1*cos(yo(1));
x2 = x1 + L2*sin(y0(3));
y2 =yl - L2*cos(Y0(3));

% plot the path of the pendulumsin last time interval (overlay)
plot([posold(1) x1],[posold(2) yl], "magenta®);
plot([posold(3) x2],[posold(4) y2],"black®);
% plot the images of the pendulums at new positions (overlay)
set(b4, "xdata“",[0,x1], "ydata®,[0,y1]);
set(b3, "xdata“", [x1,x2], "ydata®,[yl,y2]);
set(bl, "xdata” ,x1+rl*bx, "ydata”,yl+rl*by);
set(b2, "xdata“® ,x2+r2*bx, "ydata® ,y2+r2*by);
drawnow
pause(0.01)
end

Ffigure(myfig);
pause
close(myfig)

System of equations

Doublependulum2.m
%define a function that calculates the dynamics of the double pendulum
%flag determines initial positions and velocities of the inner and outer
%bob. Equations 14 to 17
function xprime=doublependulum2(t,x,flag,g,11,12,m1,m2)
xprime=zeros(4,1);

xprime(1l) = 6*(2*x(3)-3*cos(X(1)-x(2))*x(4))/(16-9*cos(xX(1)-x(2))"2);
xprime(2) = 6*(8*x(4)-3*cos(X(1)-x(2))*x(3))/(16-9*cos(x(1)-x(2))"2);
xprime(3) = -(xprime(1)*xprime(2)*sin(x(1)-x(2))+3*g*sin(x(1)))/2;
xprime(4) = -(-xprime(1)*xprime(2)*sin(x(1)-x(2))+g*sin(x(2)))/2;

end

Calculating Energy of the function
Hamiltonian.m

%Function to calculate energy using equation 20
function energy = hamiltonian(y0)

tl = yo(l);

t2 = y0(2);

vl = y0(3);

v2 = y0(4);

g = 9.8;

energy = abs(((3*(v272)-2*v1*v2*cos(tl-1t2))/(2+2*(sin(tl-t2)"2)))-2*g*cos(tl)-
g*cos(t2));
end

Defining the constant surface for the Poincare section
Zerocross2.m

function [v,ist,df] = zerocross2(t,x,varargin)% varargin absorbs unwanted
parameters flag,g,l11, etc
% event function for test_poincare.m

v = sin(x(2)); % event is x(2)=0 (ie when v is zero)

%v = x(2);

ist = 1; % if true, terminate evolution when this event occurs
df = 1; % increasing sense only



Producing the trajectory of the outer bob, Poincare section, angular velocity graph and energy of the system
PoincareTrajecAngleEnergy.m

clear

%Code mainly adapted from Alexander Barnett

%declare time step

T = 10;

%y0 [0;0;-2;0]; % close to regular

%y0 = [pi;pi;0;0];

% yO = [pi;pi;-5;0]; % chaotic

% y0=[0.5233;0;0.5233;0)%periodic

y0 = [0.2,0.2828,0,0)%perfect periodic with energy = 0.7809

%y0 = [0.2,-0.2828,0,0]%perfect quasiperiodic with energy = 0.7809
%y0 = [27.8;0;1.22;2.62] %perfect KAM scenario

%y0 = [0,0,2,20]

%y0 = [0,0,1,20];

y0 =[pi;0;.5;.5];%high energy

s=ode45(@doublependulum2,[0,T],y0,[],0,1,1,1,1);
t = 0:0.01:T; x = deval(s,t)";

x1l=sin(x(:,1));

yl=-cos(Xx(:,1));

x2=x1+sin(x(:,2));

y2=yl-cos(x(:,2));

figure; plot(x2,y2); axis equal; xlabel("position®);ylabel("velocity");title

("trajectory”)
tmax = 1e2; % max time to wait until next intersection
ns = 1000; % how many intersection (iterations of P map)

tp = nan*(1:ns); yp = nan*zeros(numel(y0),ns); yi = y0; % init arrays
figure;
for n=1:ns
s = ode45(@doublependulum2, [0, tmax], vyi,
odeset("Events®,@zerocross2, "abstol*,1e-9),0,9.8,1,1,1,1);
iT isempty(s.xe), disp("no intersection found!®);
else tp(n) = s.xe(end); yi = s.ye(:,end); yp(:,n) = yi;
Yplot3(mod(yi(1),2*pi),yi(3),yi(4),"+"); hold on; if mod(n,10)==0, drawnow; end
% note it"s in 3d now
plot(yi(1),yi(4));hold on; if mod(n,10)==0, drawnow; end
end
end
xlabel ("x_1"); ylabel("x _3"); zlabel("x 47); axis vis3d;
title("Poincare section (sin(x_2)=0, increasing)”);

figure;
plot(t,x(:,3), "magenta”,t,x(:,4), "black®);title("Angular velocities®);
energy = hamiltonian(y0)

Calculates the lyapunov exponent, the average lyapunov exponent and traces the separation of close trajectories
Crudelyap.m

clear

nruns =100;

%For calculating average later
h = zeros(1,nruns);

%indexing of h

k =1;

for j=1:nruns

% yO = [pi+0.1*rand(1);pi;-5;0];



% yO = [O+0.1*rand(1);0;-2;0];

%yO [pi;pi;10.515;-2.17];%periodic with T = 0.5
%yO [1:%quasiperiodic;
y0 = [pi+0.1*rand(1);pi;0.5;0];%chaotic

%yO = [pi;pi;0;0];

%y0 = [0;0;-2;0];%close to regular

%y0 = [27.8;0;1.22;2.62];

%y0 = [pi;0;0.5;0.5];

%yO0 = [0;0;2;20];

%y0 = [pi;0;5;5];%high energy

%y0 = [0.2;0.2828;0;0];%perfect periodic with energy = 0.7809

%y0 = [0.2+0.1*rand(1);-0.2828;0;0];

%y0 = [0.2;-0.2828;0;0];%perfect quasiperiodic with energy = 0.7809
T = 20;

0 = odeset("abstol”,le-14);

s=ode45(@doublependulum2,[0,T],y0,0,0,1,1,1,1); % note changes

eps = le-9;

s2 = ode45(@doublependulum2,[0,T],y0+[eps;0;0;0],0,0,1,1,1,1); % note changes
t = 0:0.01:T; x = deval(s,t)";xe = deval(s2,t)";

x1=sin(x(:,1));
yl=-cos(x(:,1));
x2=x1+sin(x(:,2));
y2=yl-cos(x(:,2));

xel = sin(xe(:,1));
yel=-cos(xe(:,1));

xe2 = xel+sin(xe(:,2));
ye2= yel-cos(xe(:,2));
%store the size

N = numel(ye2);

%figure; plot(t, [y2 ye2], "-");title("Trajectories of two intial points with a
distance 10™-9%)
logsep = zeros(1,N);
%loop Fills matrix logsep with natural log of the changing separation
%between the initial trajectories
for 1 = 1:N
g logsep(i) = (log(abs(y2(i)-ye2(i)))-log(eps));
en

%Figure; plot(t,logsep);title("lyapunov exponent®);
tl1=5;

t2=0.7;

%stores the exponent in a matric

h(k) = (logsep(t1/0.01)-logsep(t2/0.01))/(t1-t2);
k=k+1;

end

figure;

%average lyapunov exponent

plot(1:j,h)

title(Taverage lyapunov exponent®);

Graphs corresponding to the ‘other informative graphs’ sections of the input variables plotted against each other
Equilibria.m

= iO;O;O;lO]; %really good
%yO = [pi;pi;0.5;0];



%y0 = [0;0;-2;0];

%y0=[0;0;2;20];

%y0 = [27.8;0;1.22;2.62] %perfect KAM scenario
y0 [0.2,-0.2828,0,0];

y0 = [pi;0;.5;.5]

%y0 = [pi;pi;0.5;0]
s=ode45(@doublependulum2,[0,T],y0,[],0,1,1,1,1);
t = 0:0.01:T; x = deval(s,t)";

%Find energy for the inital conditions

energy = hamiltonian(y0)

%creates a plot with four figures of the variables plotted against each
%other

figure;

subplot(222)

plot(x(:,3),x(:,4));title(CCangular velocities")
subplot(221)

plot(x(:,1),x(:,2));title("angles®)

subplot(223)

plot(x(:,1),x(:,3));title("positions and momentum of 1%)
subplot(224)

plot(x(:,2),x(:,4));title("positions and momentum of 1%)
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