Chaotic Billiards
Steven Dai

Math 53, Fall 2011

Abstract

In this paper, we will investigate the simpler circular billiard and the slightly more
complex (and more chaotic) stadium billiard. We will analyze the billiards for their
sensitive dependence on initial conditions, measure their chaotic behavior by
calculating their Lyapunov exponents and finally, some general remarks on the
behaviors of both the mappings and a run-time improvement on the stadium code
that was achieved through eliminating an external function call.

Introduction to Dynamical Billiard Systems

Billiards can be thought of as a mathematical model for many physical phenomena
where one or more particles move in a container and collide with its walls and/or
with each other. An important aspect of these billiard systems is that neither the x
velocity nor the y velocity is lost or reduced in contact with the boundaries. The
dynamical properties of this movement are largely determined by the shape of the
walls of the container, which can vary from completely regular shapes (squares,
circles, ellipses) to fully chaotic[1]. The chaotic shapes are the most intriguing,
though a bit out of the scope of this paper. So, for now, we will focus on the simpler
billiard within a circle and the billiard within a stadium. The stadium shape can be
described as two semicircles separated by a rectangular region that can vary in size
(and, as we find through testing, the chaotic behavior will also vary with the size of
these straight walls).

The Circular Billiard

The circular billiard will give us a simple
introduction to the dynamics of reflection
of a velocity vector in a circle and give us
half of the behavior necessary to implement
the stadium billiard. The circle billiard can
be generated in a circle with any size
radius, but for simplicity, let us assume that
we are dealing with the unit circle. This
means that the point of impact is always
going to be at x and y such that x2 + y2 = 1.
We know already that the velocities remain
constant and only change direction and that
change in direction is defined by the

05+

05}

Figure 1 - Reflection of the velocity vector off
the tangent vector at the boundary (in red). 1

classical rule: “the angle of incidence is equal to the angle of reflection” [1]. Figure 1
shows this angle of reflection.

Because this is a continuous map of a moving particle, we can describe the motion of
the billiard with the following system of equations[1]:
X,is =Xt+I/ltS u

t+s = ut

yt+s=yf+wts WT+S=WI
where (X, y) are the positions of the particle at time t and (u,w) is the velocity of
vector of the vector. This holds for whenever the particle has not contacted the
boundary. At that point, we must calculate the new vector as the ball moves away
from the boundary. This reflection is represented by the following equation:

vnew = Vold - 2<Vald,n>n

where the new velocity vector is determined by subtracting twice the dot product of
the old velocity vector and normal vector at the boundary times the normal vector
from the old vector. Using these rules, we are able to model the behavior of

particles that move within the circle.

Notice that it is also possible to model this behavior with the following set of
equations:

0, =0, +2ny,(mod2m)
wn = WO

where 6, €[0,27] is the subsequent collision point on the circle (the position is
given by (radius- cos(0,),radius- sin(6,))), 0, is the initial collision point on the circle
(again, its position is given by (radius- cos(6,),radius- sin(6,))), and 1, is the angle
between the velocity and tangent vectors. Given that these equations hold, we can
see that all in the circular case, all the distances between the reflection points are

equal and the angle of reflection remains unchanged as the particle moves through
the circle.

The Stadium Billiard

The stadium billiard is slightly harder to model, as there are several cases to handle

at the boundary cases. The stadium can be

pictured as the union of four curves: the lines aty

Feo ey = radius, y = -radius with lengths a, and two

ot/ \ halves of a circle parameterized by the vectors

ol | | (=radius- cos(t) — a/2,-radius- sin(t)) and

/ (radius- cos(t) + a/2,radius- sin(t)) where

Y P —mw/2 < t=<m/2[4]. For simplicities sake, we have
e 1 assumed in these simulations that the radius of

the circles is one.

-05

Figure 2 - Stadium Billiard witha=1

The previous velocity and position equations still hold for the particles that move

within the boundaries. But when we hit the boundaries, the reflection must either

follow the reflection dictated by the circle above or the reflection of the wall. Ata

reflection with a straight line, the velocity vector changes in the following way:
(XyersVver) = (Xp0r5=Y et

The two types of collisions are shown below:

Sensitive Dependence on Initial Conditions
Sensitive dependence is defined by Alligood et. al as follows:

“A point Xo has sensitive dependence on initial conditions if there is a
nonzero distance d such that some points arbitrarily near xo are
eventually mapped at least d units from the corresponding image of

»n

X0.

We were able to demonstrate sensitive dependence for varying initial conditions for
both the circular and stadium billiards. To achieve this, we start with an initial point
xo in both billiard systems and define another initial point yo a distance ¢ from xo.
We then iterate the billiards for a certain number of collisions until the distance
between x, and y is of order 1.

Let’s begin with the initial point (0,1/ w/i) with an initial velocity of (1,2) and let
£ =1x107. The collisions of x¢ are shown in blue and the collisions of yo are shown
in green. The graphs below show 30 collisions.

separafion after n collisions
o
=1
@

L . L L L
o S 10 15 20 25 30 35
collisions

Figure 3 - Sensitive Dependence in Circular Billiard

Figure 4 - Distance Between xn and yn vs.
Collisions

We can see that the distance between points grows linearly as the iterations of x,
and yn continue and the distance between x, and y, will soon reach order 1.

Now, let’s examine the stadium billiard. We will start with the initial point (0, 0.2),
initial velocity (1,0.5) and an initial separation of ¢ =1x107"°. The stadium we will
be using has a wall length, or a, of 2 and a circular radius of 1. Again, we will run the
collision simulation for 30 collisions and the blue path represents the trajectory of
xn and the green path represents the trajectory of yn.

w
w

w

~
@

w

separation after n callisions
~

=)
wn

Figure 6 - Collisions in Stadium Billiard

o

s n L L L
S 10 15 20 25 30
collisions

o

Figure 5 - Distances Between xn and yn

As we can see, the growth in separation starts dramatically around the 20t collision
of the particle against the boundary. It's already starting to look like the stadium
billiard is much more chaotic than the circular billiard.

Periodic Orbits

In the circular billiard, because the reflection relies on the initial 6 and 1, as defined
above, if we are able to establish a 6 and a 1 such that after a certain number, let’s
say n, of collisions: 6, ,, =60, +2ny, = 0,, then we will have a periodic orbit. Thatis
to say, if ¢, is a rational multiple of 7 less than s, we will be able to establish a
periodic orbit. Below is an example of a period-three orbit, starting at the initial
point (0.5, 0) with an initial velocity of (0,1).

Figure 7 - Period-3 Orbit in Circular Billiard

Also, notice that if we start at the origin, any velocity vector we give this point will
result in a period-2 orbit as the velocity vector will just get reflected back on its
original trajectory when it hits the boundary of the circle (the velocity vector forms
a 90 degree angle with the boundary tangent vector at the collision point.

Similarly, if we launch any particles originating in the stadium with a zero velocity in
the y direction, we will achieve a period-2 orbit as it hits the circular ends of the
stadium and reflects back on its original trajectory. If we launch any particle within
the bounds of the straight-line region of the stadium with any y-velocity and a zero
x-velocity, we will get a period-2 orbit that bounces between the two straight-line
boundaries.

We can also achieve periodic orbits that bounce of the circular ends such as the
rectangle starting from the point (0,1/\/5) with an initial velocity of (1,0). The
period-4 orbit is pictured below:

Figure 8 - Period-4 Orbit of Stadium Billiard

Lyapunov Exponents

To determine the Lyapunov exponents, we used the procedure documented in
Alligood, et. al. We started with initial points separated by a small distance

£ =1x107" and iterated the collisions until we achieved a separation of order 1. In
this case, we stopped the simulation as soon as the separation distance reached a
distance of at least 0.25. When it reached this distance, we took the log of the
growth divided by the initial epsilon separation and divided this entire value by the

number of collisions. In symbols:
b= ‘1 o (dlst
collisions €

In the circular billiard, because the growth was linear, all calculations of the
Lyapunov exponent produced a number very close to zero. From Alligood, this
number does not tell us much about the movement of the particle in the circular
billiard but in various plots generated show much less chaotic behavior than that of
the stadium.

Interestingly, the Lyapunov exponents of the stadium billiard seem to vary with the
length of the straight walls of the billiard. Below, we have calculated the Lyapunov
exponents of various wall lengths from 0 to 4 using the above method (Note that the
stadium with wall length of 0 is just the circular billiard, so we plotted this as a
number close to 0). Because of the erratic behavior of particles in this billiard, we
somewhat normalized the Lyapunov exponents by starting with 30 random initial
points and 30 random velocity vectors and taking the average of the calculated
Lyapunov exponents of each of these various initial conditions. The plots show the
maximum and the average Lyapunov exponents of each wall length.

Figure 10 - Maximum Lyapunov Exponent of Stadium Billiard With Varying Wall Lengths

Notice that these Lyapunov exponents are positive, confirming our suspicion that
the behavior of particles in this stadium is for the most part chaotic.

Run-time Improvements

In developing the bouncing algorithm, there were two codes developed to simulate
the collisions off the boundaries. The first utilized the solve function to abstract the
solving of collision points from the developer and the second used a direct
mathematical approach to determine intersection points.

Here are a few examples comparing the two:

Approach 1:

%general intersection formula
R = sym('R");

x = sym('px + t*rx');

y = sym('py + t*ry');

c = x"2+y"2-R"2;

t sol = solve(c);

x_sol = subs(x,'t',t _sol);
y _sol subs(y, 't',t sol);

%circle intersection

solutions = subs([x sol y sol],{'R' 'rx', 'ry', 'px',
'py'},{radius x dot y dot cir x 0 cir y 0});
intersection = solutions(2,:);

collision points(:,count + 2) = [intersection(l) +
wall length/2; intersection(2)];

and approach 2:

t = (-(2*y_point*y dot+2*x point*x dot) +
sqrt((2*y_point*y dot+2*x point*x dot)"2-4*(x_dot”2 +
y dot”2)*(y_point”2 + x point”2 -
radius”2)))/(2*(x_dot”"2+y dot"2));

Both of these approaches were used to solve for the intersection on the semi-circle
of a velocity vector from the initial position. The yo was adjusted so it was the y
portion of the intersection of the velocity vector with the line x = (wall length) /2. As
we can see, the first approach uses a symbolic representation of the x and y
direction vectors and used the solve subroutine to solve the circular equation. It
also called the substitute subroutine to generate the intersection points. Contrasted
with the second approach, we can see that we simply use the x and y direction
vectors, represented as such:

x(t) = x, + xt

() =y, + ¥t
and solved for t in the equation x. This t could then be re-applied to the system of
equations to determine the intersection point on the circular end of the stadium
billiard.

In the first approach, solve was used to solve for every intersection, be it with the
straight line or with the circular ends while the second approach replaced these
with direct mathematical equations. A quick look at the code for solve shows that
there are 14 steps executed in the solve sub-routine and within the solve
subroutine, it calls out to an external function as well. For a few computations, the
behavior of solve is marginally different from using the mathematical equations, but
as the number of calls to solve grows, the compute time grows exponentially faster
than its direct equation counter-part.

To test the run-time of these approaches and to account for OS differences in load,
we ran and timed 100 iterations of each approach and took the average time for
these 100 iterations. For 40 collisions, the first approach took approximately 7.8
seconds while the second approach took 2.25x10-3 seconds to execute. For 20
collisions, the first approach took approximately 4.18 seconds while the second
approach clocked in at 9.4x10-4 seconds.

While a decent level abstraction is nice in programming for these collisions, at the
cost of a factor of a couple thousand in compute time, this approach (at least for this
problem) is not worth it.

References

[1]Chernov, Nikolai, and Roberto Markarian. Chaotic Billiards. Mathematical Surveys
and Monographs. 127. Providence: American Mathematical Society, 2006. Print.

[2]Tabachnikov, Serge. Geometry and Billiards. Providence: American Mathe-
matical Society, 2005. Print.

[3]Alligood, Kathleen, Tim Sauer, and James Yorke. Chaos An Introduction to
Dynamical Systems. New York: Springer, 1996. Print.

[4]Parker, Ben, and Alex Rina. "Chaotic Billiards." (2009): 1-13. Print.

