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Abstract

In this paper we will examine three simple economic models from a mathematical
perspective, and prove the existence of chaos in each. We will analyze a supply and
demand model, a model for endogenous fluctuations in a monetary economy, and a
model for the relationship between unemployment and inflation, and show how each
model can exhibit chaotic behavior for reasonable values of the relevant parameters.
No extensive knowledge of economics is assumed; all economic terms are defined
and explained.

1 A Simple Supply and Demand Model

This section addresses a simple model of supply and demand, and how for certain
parameter values, even this elementary model can display chaotic behavior. First, we
define the notion of a supply and demand model. Note that the model that follows is
from Zhang [5, p.178-83].

1.1 What is a Supply and Demand Model?

Supply and demand models are among the simplest classes of economic models. Sim-
ply stated, as the name implies, a supply and demand model is an economic model of the
market demand and market supply for a given good or service. In particular, a supply
and demand model is an effective means of modeling how market forces determine the
price, the quantity supplied by producers, and the quantity demanded by consumers, of
a good or service. At the market-clearing equilibrium, we have the condition that the
demand equals the supply.

1.2 Deriving the Zhang Supply and Demand Model

What follows is an explanation of the basic assumptions inherent in this specific model,
following from Zhang. First, we consider that there is a time lag in supply, which results
because producers must decide how much to produce before prices are observed in the
market. This is reflected in the model by the fact that quantity supplied will be given
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as a function of the expected price, and not the actual price. Note that expected price
simply refers to the mathematical expected value of the price.

Next, we assume that the supply curve exhibits an S-shape, as is standard. Start-
up costs and fixed costs of production for producers will limit supply, and force the
quantity supplied to increase slowly at low prices. Likewise, supply will increase slowly
at high prices due to constraints on the amount a producer is physically able to produce.
Observing that the arctan function exhibits such a shape, we may then express the
quantity supplied at a time t, qs(t), as a function of the expected price at a time t, pe(t),
by

qs(t) = arctan(µpe(t)). (1.1)

Supply is symmetric about the origin and has an inflection point there, following from
properties of the arctan function. As noted in Figure 1, the steepness of the S -shape
curve is determined by the parameter µ.

Figure 1: The relationship between supply and expected price

Note that high values of µ correspond to a very steep curve near the origin that quickly
flattens out, while low values correspond to a less steep curve near the origin that takes
longer to flatten.

Moving on to demand, we make the assumption that the demand curve is linear, for
simplicity. Then, we can represent the quantity demanded at a time t, qd(t), as a linear
function of the actual price at a time t, p(t), by

qd(t) = a− bp(t), b > 0 (1.2)

with parameters a and b.
Now, we assume that the expected price, pe(t + 1), at a time t + 1 is given as a

function of the actual price at t, p(t), and the expected price at t, pe(t). That is, the
price expectation satisfies

pe(t+ 1) = λp(t) + (1− λ)pe(t) (1.3)
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where λ is a parameter.
At market equilibrium, we have that the quantity supplied equals the quantity de-

manded, or qs(t) = qd(t). Thus, setting equation (1.1) equal to equation (1.2) and
simplifying, we obtain the following expression for price, in terms of expected price

p(t) =
a

b
− arctan(µpe(t)

b
.

Substituting the above equality into equation (1.3) and simplifying, we can then express
price expectation by the difference equation

pe(t+ 1) = (1− λ)pe(t) +
aλ

b
− λ arctan(µpe(t)

b
≡ f(pe(t)). (1.4)

1.3 Numerical Analysis

We demonstrate the dynamic behavior of this model numerically. For the remainder
of this section, we fix λ = 0.3 and b = 0.25. We now investigate bifurcation diagrams for
this model, allowing a to be a bifurcation parameter as we fix different values for µ.

Consider the case where µ = 1. Figure 2 below depicts the bifurcation diagram, where
a ε [−1.4, 1.4].

Figure 2: Bifurcation Diagram for µ = 1 and a ∈ [−1.4, 1.4]

Note that for these values, the map f as defined in equation (1.4) contains a unique
fixed point for all values of a, as evidenced by Figure 2.

Next, consider the case where we increase the value of µ to 3. The corresponding
bifurcation diagram with a as the bifurcation parameter is given below in Figure 3.
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Figure 3: Bifurcation Diagram for µ = 3 and a ∈ [−1.4, 1.4]

For low values of a, the map f once again contains a single unique fixed point. Then,
at roughly a = −0.9, a period-doubling bifurcation occurs. For values of a larger than
−0.9, there are now two fixed points for the map. This stable period-2 orbits persists
until roughly a = 0.9. At this point, a period-halving bifurcation occurs, and for values
of a greater than 0.9, there is once again a single, unique fixed point for the map, which
corresponds to a unique stable equilibrium.

Now, we increase the value of µ, and specify that µ = 3.5. Figure 4 depicts the
corresponding bifurcation diagram for this scenario.

Figure 4: Bifurcation Diagram for µ = 3.5 and a ∈ [−1.4, 1.4]

As in Figure 3, there are period-doubling and period-halving bifurcations at approx-
imately a = −0.9 and a = 0.9, respectively. However, additional period-doubling bifur-
cations that occur within this diagram. Figure 4 thus shows the existence of a period-4
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orbit for certain values of a, which eventually turns back into a period-2 orbit and finally
a stable equilibrium with a single, unique fixed point.

We conclude this section by examining the bifurcation diagrams for larger values of
µ. Figure 5 displays the bifurcation diagrams for µ values of 4, 5.7, and 15. Note the
presence of chaos within the period four orbits in Figure 5a. In Figure 5b, there clearly
exist period three orbits within a certain window of values for the parameter a. Since
the existence of a period three orbit in a continuous map guarantees orbits of all periods,
as well as sensitive dependence, we know that Figure 5b also exhibits chaos [1, p.32-5].
Finally, as we increase µ to 15, the bifurcation diagram becomes much more complicated,
but because a period three orbit still exists, we are guaranteed chaos.

(a) µ = 4 (b) µ = 5.7 (c) µ = 15

Figure 5: Bifurcation Diagrams

The reader is directed to the Appendix for the source code to reproduce these plots
in Matlab. Additionally, the appendix contains the code to create a bifurcation video,
which shows how the bifurcation diagrams for the bifurcation parameter a changes as we
slowly increase the value of µ from 0 to 15.

2 A Model of a Monetary Economy

This section identifies and analyzes endogenous fluctuations in a monetary economy,
first proposed by Matsuyama [3]. That is, the model presented in this section examines
how internal forces within a monetary economy are able to bring about irregular variations
in the economy. The goal of this section is to rigorously prove that, for specific values
of some parameters, the model must exhibit chaos. Before we present the model itself,
though, first we present enough background economics to make sense of this model.

2.1 Basic Economics

In this model, the assumption is made that the monetary economy in question is
inhabited by an agent with an infinite lifetime and perfect foresight. Within economics,
the term agent is simply used to refer to a decision maker within a model, and can be
used to indicate a specific person, household, firm, or even government. In particular,
the agent in this model is assumed to have an infinite lifetime, and to possess perfect
foresight, or the ability to predict future prices perfectly.
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The goal of the agent within the model is to maximize his utility. Within economics,
utility is simply a measure of consumer satisfaction. In this specific model, we assume
that the agent derives satisfaction from both the consumption of goods and the possession
of money. Hence, the agent’s utility function will be given as a function of consumption
and real balance. Note that real balance simply refers to the actual amount of money the
agent possesses, adjusted for inflation.

2.2 Derivation of the Model

A fundamental assumption of this model is that the agent will maximize his total
utility. However, since the agent is assumed to be infinitely lived, he will have a utility
function for each of the infinite number of periods that he is alive. Hence, he will maximize
not his specific utility in one period t, but rather the sum of his utility over all periods.
So, the agent maximizes

∞∑
t=0

βtU(c(t),m(t))

where, as previously discussed, his utility U in the current period, t, is expressed as
a function of his current consumption, c(t), and real balance, m(t). In this equation,
β ∈ (0, 1) is the discount factor, a parameter that determines how heavily the agent
discounts his utility in the future time periods. That is, β describes how much less the
agent cares about his utility in future periods compared to the amount he cares about
his utility in the current period.

However, clearly the agent must have some constraints on his consumption and real
balance, or else his utility would always be trivially infinite. We express this constraint
through the following flow budget constraint, given M(−1):

M(t) = P (t)(y − c(t)) +H(t) +M(t− 1).

This equation expresses the agent’s limited budget in the period t. In this equation
y is the constant endowment of perishable consumption goods, meaning y denotes a
parameter describing the constant level of a consumption good that the agent has already
been given. M(t) is simply the agent’s nominal money holdings in the period t, where
nominal money holdings refers to the amount of money the agent possesses unadjusted
for inflation; hence, the agent holds this money in name only. We can relate M(t) to the
agent’s real balance m(t) by

m(t) =
M(t)

P (t)

where P (t) is the current price level. The agent considers this price level during every
period, {P (t)}∞t=0, to be independent of his own money holdings, meaning P (t) never
depends on M(t) or m(t). Additionally, we specify that at the beginning of each period
t, the agent receives H(t) units of paper money from the government, an event consid-
ered independent of the agent’s previous money holdings. In effect, H(t) represents a
”helicopter drop” of money to the agent in every period.

We assume that the money supply in the economy grows at the rate µ, where µ > β.
Hence, by the definition of µ we have that M(t) = µM(t− 1). Then, by observing that
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we can express H(t) as the difference in the nominal money holdings during periods t−1
and t, we may use the previous equation to obtain

H(t) = (µ− 1)M(t− 1)

Hence, the markets will clear when we have

M(t) = µtM0, c(t) = y ∀ t.

Following from Matsuyama, we observe that an equilibrium point of this economy can be
given by a nonnegative sequence of real balances that satisfy

βUc(y,m(t+ 1))m(t+ 1) = µm(t)[Uc(y,m(t))− Um(y,m(t))], (2.1)

where Uc and Um denote the respective partial derivatives of U . In addition, for an
equilibrium point to occur we require that the transversality condition

lim
t→∞

βtUc(y,m(t))m(t) = 0

be satisfied. A transversality condition in an economic model is simply a condition on
variables inherent to the model. Since it typically appears only for optimization problems
in which there is an infinite horizon, it generally takes the form of a limit of some quantity
as time approaches infinity.

The steady state of this system is simply given by m(t) = m∗. However, since we also
have that M(t) = µtM0 and m(t) = M(t)/P (t), this then implies that the steady state
can be rewritten as

P (t) = µt
M0

m∗
∀ t.

Note that m∗ > 0, m∗ must exist uniquely, and that m∗ must satisfy

(µ− β)Uc(y,m
∗) = µUm(y,m∗),

where the above is obtained by substituting m(t+ 1) = m(t) = m∗ into equation (2.1).
Following Matsuyama, we make the simplifying assumption that the utility function

is of the form

U(c,m) =

{
− [g(c)m]−(1+η)

1+η
for η 6= −1,

log g(c) + logm otherwise
(2.2)

where g is simply some arbitrary function of c satisfying g > 0, g′ > 0, and

sup

[
gg′′

g′2

]
< 1.

Additionally, η is a parameter satisfying

(η + 2)

[
2− sup

(
gg′′

g′2

)]
> 1.

The parameter η has an economic interpretation, since η relates to the elasticity of in-
tertemporal substitution of real balances, σ, through
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σ = (η + 2)−1.

The elasticity of intertemporal substitution of real balances is a term that describes the
responsiveness of the growth rate of real balances to the real interest rate, or the rate of
interest an investor expects to receive after allowing for inflation.

Substitution of equation (2.2) into equation (2.1) yields

p(t+ 1) = (1 + δ)1/ηp(t)(1− p(t))1/η ≡ F (p(t)) ∀ t. (2.3)

We define the new parameter δ and the new variable p(t) by

δ ≡ µ

β
− 1 > 0, p(t) ≡ g(y)

g′(y)m(t)
, p(t) ∈ (0, 1).

For this new variable p, the previous transversality condition now becomes

lim
t→∞

βtpη(t) = 0.

We can also determine the unique steady state in terms of these new parameters:

p∗ =
δ

1 + δ
.

We rule out the case of η = 0 for simplicity. For the remainder of this section, we require
that η > 0. The special case where η = 1 is a well-known case, since substituting η = 1
into equation (2.3) yields

F (p(t)) = (1 + δ)p(t)(1− p(t)), p(t) ∈ (0, 1). (2.4)

This is simply the well-studied logistic map, which is analyzed in most basic texts on
chaos [1, p.17-31]. It contains periodic, aperiodic, and chaotic solutions to the given
system.

2.3 Proving the Existence of Chaos

The remainder of this section is dedicated to proving the existence of period three
orbits, which guarantees both orbits of all periods and an uncountably infinite set of
points displaying sensitive dependence. The proof that the existence of a period three
orbit implies chaos can be found in texts on chaos [1, p.32-5].

At this point we cite five properties of the function F. The proof of these properties
is straightforward and contained in Matsuyama.

1. F (0) = F (1) = 0

2. F has a single peak at p̃ = η
1+η

. F is strictly increasing on [0, p̃) and strictly

decreasing on ( p̃, 1]

3. F ′(0) = (1 + δ)1/η > 1

4. F ′(p∗) = 1− δ
η
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5. Define ∆(η) by ∆(η) ≡ η−η(1 + η)1+η − 1. If δ ≤ (>)1, then F (p̃) ≤ (>)1. F maps
[0, 1] onto itself if δ ≤ ∆(η), and F maps (0, 1) into itself if δ < ∆(η). Finally, the
function ∆(η) defined on (0,∞) is strictly increasing, and

lim
η→∞

∆(η) = 0, ∆(η) > 0, ∀ η.

Next, we cite a proposition from Matsuyama that will aid in our eventual proof of the
existence of chaos in the model.

Proposition 2.1

1. If 0 < δ ≤ 2η, then for all p0 ∈ (0, 1),

lim
t→∞

F t(p0) = p∗

2. If 0 < 2η ≤ δ, then a period-2 orbit must exist, and the set p0 ∈ (0, 1) such
that F t(p0) converges, denoted N , is at most a countable set. Additionally, if
2η ≤ δ < ∆(η), then the set of initial prices that lead to equilibrium points along
which the price level will fluctuate forever, denoted N∗, is of full Lebesgue measure.

At this point, we are finally ready to prove the following proposition, which guarantees
the existence of chaos in the model:

Proposition 2.2 For any η > 0, there exists a value ∆∗(η) satisfying 2η < ∆∗(η) <
∆(η), such that a period-3 orbit of F exists if δ > ∆∗(η).

Proof: We define the following function G(p) by:

G(p) ≡
(
F 3(p)

p

)η
.

Recall that since p∗ is the steady state that, by definition, F (p∗) = p∗. This implies
that F 3(p∗) = p∗ and so G(p∗) = 1. Consider some p0 ∈ (0, p̃) that is close to 0. Since
F ′(0) > 1 and F is strictly increasing on [0, p̃) , we have that F (p0) > p0 for values of p0
near 0. But then this implies that F 3(p0) > p0, and so F 3(p0)

p0
> 1 and G(p0) > 1. Taking

the limit as p0 → 0+ then yields G(0+) > 1.
We have that G(0+) > 1 and G(p∗) = 1. Hence, by the Intermediate Value Theorem,

it suffices to show that there exists some pc ∈ (0, p̃) such that G(pc) < 1. To see this,
note that G(pc) < 1 implies there exists some p′ ∈ (0, p̃) such that G(p′) = 1 by the

Intermediate Value Theorem. But, G(p′) = 1 implies that
(
F 3(p′)
p′

)η
= 1. Since we

assume η > 0 as stated previously, we have that F 3(p′) = p′ which suggests that p′ is a
point in a period-3 orbit of F . Clearly, p′ is not a fixed point of F since the only fixed
points are 0 and p∗, so p′ must correspond to a period-3 orbit. Therefore, if we can show
that there exists some pc ∈ (0, p̃) such that G(pc) < 1, the proof is complete.

Now, if δ > ∆(η) then by Property 5 for F we have that F (p̃) > 1. From Property 1
of F , we know F (0) = 0. Since F is strictly increasing on [0, p̃) , then by the Intermediate
Value Theorem we have that there must exist some pc ∈ (0, p∗) such that F (pc) = 1. But,
F (pc) = 1 implies F 2(pc) = F 3(pc) = 0, and so we have that G(pc) = 0 < 1. Clearly, for
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δ > ∆(η) we have found a pc with the required property; all that remains is to show that
there exists some ∆∗(η) satisfying 2η < ∆∗(η) < ∆(η) where, if δ > ∆∗(η), there still
exists such a pc.

Consider the case where δ < ∆(η). Now, recall that for δ > ∆(η) we have that there
exists some pc ∈ (0, p∗) such that G(pc) = 0. Hence, by the continuity of G on δ, if
we specify that δ < ∆(η), then there must exist some pc ∈ (0, p∗) such that G(pc) < 1,
since if there exists pc ∈ (0, p∗) such that G(pc) = 0 for δ > ∆(η), then for some values of
δ < ∆(η) there must exist pc ∈ (0, p∗) such that G(pc) < 1, although we do not necessarily
have G(pc) = 0. At some value of δ < ∆(η), however, we do not necessarily have that
there exists some pc ∈ (0, p∗) such that G(pc) < 1. Denote the threshold value of δ where
we have that G(p0) ≥ 1 for any p0 ∈ (0, p∗) by ∆∗(η), so that for ∆∗(η) < δ < ∆(η) we
have that there exists some pc ∈ (0, p∗) such that G(pc) < 1, while for δ < ∆∗(η) we do
not have some pc ∈ (0, p∗) such that G(pc) < 1.

The only thing that remains to be shown is that 2η < ∆∗(η). This follows directly from
Statement 1 of Proposition 2.1. If 0 < δ ≤ 2η, we have that ∀ p0 ∈ (0, 1), limt→∞ F

t(p0) =
p∗, meaning that there cannot exist a pc ∈ (0, p∗) such that G(pc) < 1 for δ ≤ 2η. This
is because the condition that G(pc) < 1 implies the existence of orbits of all periods,
but Proposition 2.1 forces all orbits to converge to the fixed point. Hence, we have that
2η < ∆∗(η). This completes our proof.

Therefore, we have shown that for any η > 0, there exists a value ∆∗(η) satisfying
2η < ∆∗(η) < ∆(η), such that a period-3 orbit of F exists if δ > ∆∗(η). Thus, this model
exhibits chaos for certain values of the parameter δ.

3 Chaos in a Model of Unemployment and Inflation

This section explores a model of unemployment and inflation, as originally proposed
by Neugart [4]. It is a model of worker flow, meaning that it shows how unemployment
changes in discrete time as some workers become unemployed and others find jobs. First,
we will derive the model showing how the levels of unemployment and inflation in a
period t+ 1 depends on the levels of unemployment and inflation in the period t. Then,
we numerically explore various aspects of the model.

3.1 Derivation of the Model

3.1.1 Deriving the Unemployment Model

We begin with the basic assumption that the unemployment level will change only
if the inflow and outflow rate of the unemployment sector differ. Thus, we are able to
express the unemployment Ut by the equation

Ut+1 − Ut = i(L− Ut)− otUt. (3.1)

The parameter i, where we specify i > 0, denotes the inflow rate of workers that are
entering the unemployment sector. People enter unemployment because of structural
shifts in the economy, causing their jobs to be reallocated elsewhere and thereby forcing
the worker into unemployment. Note that the parameter i is exogenous, meaning that its
value is predetermined and unrelated to any of the other quantities present in the model.
For the time being, we assume that i is constant for simplicity, although when numerically
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investigating the model we will change the value of i. L simply refers to the labor force,
or the total number of people that are able to work, regardless of their employment
status, and for simplicity, we specify that L = 1. Finally, ot is the outflow rate from
unemployment, meaning it is simply the rate of workers leaving the unemployment sector.
We define ot as the fraction of jobs that come to the market at a time t to the total number
of people seeking jobs. That is,

ot =
Jt

Ut + d(1− Ut)
. (3.2)

The parameter d describes the number of currently employed workers who are searching
for jobs as a constant fraction of total employed workers, and we specify that 0 < d < 1.
In addition, Jt denotes job creations. Note that this formulation of the outflow rate
tells us two important qualitative things about the overall unemployment level. First,
for a given number of jobs in the economy, an unemployed worker is less likely to leave
unemployment and find work if there is an increasing number of other workers who are
also unemployed and seeking jobs. This makes sense, and is supported by the model
through the fact that ot will clearly decrease if we increase Ut and hold everything else
constant. Second, it is also less likely that an unemployed worker will be able to leave
unemployment and find a job if they are forced to compete with a higher number of
already employed workers also currently searching for jobs. Again, this basic intuition is
supported in the model by the simple fact that an increase in d will cause ot to decrease.

Now, let Jt be given by

Jt = Js + γ(m− πt). (3.3)

In this formulation, Js is a parameter denoting the job creation due to the structural
characteristics of the economy, and the γ(m− πt) term describes the cyclical component
of job creations. We have γ as a positive parameter, and m is the exogenous money
growth rate, which is simply the growth rate in the total amount of money available in
the economy at a given time. In addition, πt refers to the specific inflation rate at t.
Although an intuitive term, recall that inflation rate simply refers to the rate at which
the general level of prices of goods and services increases in the economy. Thus, the above
formulation reveals that the total number of jobs created in a period depends on both
the constant, structural characteristics of the economy and on the cyclical term, which
itself depends on fluctuating money growth and inflation rates. Note that if the inflation
rate exceeds the money growth rate, then there will intuitively be a decrease in the total
supply of money in the economy, leading to a loss in jobs. This is in accordance with
equation (3.3), since πt > m implies that Jt will decrease. Conversely, if the inflation rate
does not exceed the money growth rate, then there will be an increase in the total supply
of money in the economy, leading to an increase in jobs; this also follows from equation
(3.3) since m > πt implies that Jt will increase.

We may substitute equation (3.3) into (3.2) in order to express the outflow rate from
unemployment as

ot =
Js + γ(m− πt)
Ut + d(1− Ut)

. (3.4)

At this point, we rearrange equation (3.1) to yield

Ut+1 = Ut + i(L− Ut)− otUt
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Substituting equation (3.4), and the fact that L = 1, into the above we finally have an
equation for unemployment in the period t + 1 in terms of unemployment and inflation
during the period t:

Ut+1 = Ut + i(1− Ut)− Ut
Js + γ(m− πt)
Ut + d(1− Ut)

≡ f(Ut, πt). (3.5)

3.1.2 Deriving the Inflation Model

Following the model proposed in Neugart, we suppose that future inflation rates will
be governed solely by the expected inflation rate, and by the wage gap

wb,t−wp
wp

. That is,

we define the inflation rate πt by

πt =
1

δ

(
πet +

wb,t − wp
wp

)
. (3.6)

wb,t is simply the wage, adjusted for inflation, that workers would bargain with employers
for, while wp refers to the wage, adjusted for inflation, that is determined solely by price.
That is, wb,t is the bargained real wage, while wp is the price determined real wage. The
expected inflation rate during t is represented by πet . We make the assumption that
firms may only change their prices by some fraction of nominal wage during any given
time period t, where nominal wage simply refers to wage unadjusted for inflation. This
assumption reflects the requirement that δ > 1. Our reasoning behind having inflation
rates partly driven by the previously defined wage gap is very intuitive, and is as follows.

If unemployment rates are low, available labor is low and workers are in a good posi-
tion, causing bargained real wage to exceed price determined real wage. This inequality
will cause firms to raise prices, and hence increase the inflation rate, in order to try to
capture their share of the output. Conversely, if unemployment is high, workers are not
in a position to bargain and so price determined real wage will exceed bargained real
wage. This will result in a decline in prices, and so a falling inflation rate, as claims on
output fall short of what they were previously.

Following Neugart, we express the price determined real wage by

wp = (1− µ)y. (3.7)

The parameter y is the constant marginal labor productivity, defined to be a constant
that represents the gain to productivity from hiring an additional worker. For simplicity,
we normalize to the value y = 1. The parameter µ ≥ 0 is the inverse of the demand
elasticity, also known as the fixed mark-up, and it relates to a firm’s ability to price a
good over its cost.

Typically, the bargained real wage is determined in a way that takes into account the
value that a worker derives from having a job and not being unemployed, and the value
that a firm derives from having a job filled. It makes sense that the bargained real wage
is a decreasing function of the unemployment rate, since at higher unemployment rates
it is easier for firms to fill jobs and more difficult for workers to acquire jobs. Hence, at
high levels of unemployment most of the bargaining power lies with the firms, implying
a lower bargained real wage than at lower levels of unemployment where labor is more
scarce. We will express bargained real wage by the simple function

wb,t = 1− (1− b)Ut. (3.8)
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In the case that there is no unemployment, we would then logically have that workers
bargain for a real wage that equals their marginal labor productivity, which in this in-
stance has been specified by y = 1. Conversely, when all workers are unemployed, we
have that the bargained real wage equals b, which is the reservation wage. This parameter
0 < b < 1, then, is intuitively determined by unemployment benefits or the unemploy-
ment assistance program of an economy, since it relates what the bargained real wage
will be in the case of all workers being unemployed.

We define the expected inflation rate in the period t+ 1 as a weighted average of the
actual inflation rate and the expected inflation rate during the previous period. That is,

πet+1 = aπt + (1− a)πet , (3.9)

where a is a parameter that determines the relative weights of the actual inflation rate
and the expected inflation rate in the weighted average.

Now, we substitute equations (3.7) and (3.8) into (3.6) to yield

πt =
1

δ

(
πet +

µ− (1− b)Ut
1− µ

)
. (3.10)

First, let us shift time forward for the above so we have an expression for πt+1:

πt+1 =
1

δ

(
πet+1 +

µ− (1− b)Ut+1

1− µ

)
. (3.11)

Additionally, we solve equation (3.10) for πet :

πet = δπt −
µ− (1− b)Ut

1− µ
.

Substituting the above equation into (3.9), and then substituting the resulting expression
for πet+1 back into equation (3.11), we finally have an expression for πt+1 in terms of πt
and Ut:

πt+1 =
1

δ

(
µ

1− µ
+ aπt + (1− a)

(
δπt −

µ− (1− b)Ut
1− µ

)
− 1− b

1− µ
f(Ut, πt)

)
≡ g(Ut, πt) (3.12)

where we have made the additional substitution Ut+1 ≡ f(Ut, πt). Hence we have our
system.

3.2 Analysis of the Model

3.2.1 Analytical

For an equilibrium state (U∗, π∗) we know by definition that πt = πt+1 = π∗ and Ut =
Ut+1 = U∗. Note that we make the assumption that in the steady state, the inflation rate
will be equal to the real money growth rate, π∗ = m. It makes intuitive sense that in an
equilibrium, the inflation rate in the economy equals the growth rate of the real money
supply.

From these simple facts, we can determine a value for Js. We make the substitutions
that Ut = Ut+1 = U∗ and πt = πt+1 = π∗ = m into equation (3.5) and then solve for Js:
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U∗ = U∗ + i(1− U∗)− U∗ Js
U∗ + d(1− U∗)

Js =
i(1− U∗)(U∗ + d(1− U∗))

U∗

By substituting this expression for Js into equation (3.12), and once again making
the substitutions that Ut = Ut+1 = U∗ and πt = πt+1 = π∗ = m, we can solve to find U∗

in terms of parameters. This algebra then yields the unique steady state pe:

pe = (U∗, π∗) =

(
µ−m(δ − 1)(1− µ)

1− b
,m

)
(3.13)

To analyze stability of the steady state, we take the Jacobian of our system of coupled
equation, and then evaluate at pe. Omitting the algebra, the Jacobian matrix J for this
system is:

J =

 ∂f
∂U

∂f
∂π

∂g
∂U

∂g
∂π


∂f

∂U

∣∣∣∣
pe

= 1− i
(

1 + d
1− U∗

U∗(U∗ + d(1− U∗))

)
≡ j11

∂f

∂π

∣∣∣∣
pe

= γ
U∗

U∗ + d(1− U∗)
≡ j12

∂g

∂U

∣∣∣∣
pe

=
1− b

δ(1− µ)
(1− a− j11)

≡ j21
∂g

∂π

∣∣∣∣
pe

=
1

δ

(
a+ δ(1− a)− j12

1− b
1− µ

)
≡ j22

Now that we have the Jacobian, we can calculate its eigenvalues, thereby determining
the stability of our steady state equilibrium. By definition, the steady state is stable
when |λ1.2| < 1 and unstable when |λ1| > 1 or |λ2| > 1. Using the four terms of the
Jacobian above, we can explicitly express the eigenvalues of the Jacobian by:

λ1,2 =
j11 + j22

2
± 1

2

√
(j11 − j22)2 + 4j12j21

3.2.2 Numerical

For the numerical analysis of this system, we define specific values for the parameters in
the model, as proposed by Neugart [4], and use them for several numerical examples. For
the remainder of this section, we define
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a = .5 b = .5 d = .01 m = .03

µ = .04 δ = 2 γ = .5

unless otherwise stated. Substitution of the above values into equation (3.13) yields a
numerical value for the steady state of the system: (U∗, π∗) = (.0224, .03).

We now test the stability of the system for various values of the parameter i. First,
let i = 0.12. This produces the Jacobian

J ≈

(
−0.748 0.348

0.325 0.659

)
which has eigenvalues:

λ1 = −0.8239

λ2 = 0.7356.

Since |λ1,2| < 1, the steady state is at a stable equilibrium given this value for i. Next,
we let i = .16, yielding

J ≈

(
−1.330 0.348

0.477 0.659

)
with eigenvalues:

λ1 = −1.4104

λ2 = 0.7395.

Since |λ1| > 1, we have that the steady state is unstable for i = .16. Hence, it is
clear that for some value of i between 0.12 and 0.16, the system loses stability. It is
straightforward to verify numerically that the negative eigenvalue achieves a value of −1
when i = 0.131992. Hence, at this value of i the steady state loses stability.

The following bifurcation diagrams for the system depict the equilibrium values for
Unemployment and Inflation (U∗ and π∗, respectively) for different values of the param-
eter i.

(a) U∗ vs i (b) π∗ vs i

Figure 6: Bifurcation Diagrams
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Figure 6 supports all of the results we previously derived. For low values of i, we
have the single unique steady state (U∗, π∗) = (.0224, .03). At i = 0.131992 we observe
that the single steady state becomes unstable and a period-doubling bifurcation occurs
in both bifurcation diagrams of Figure 6. Hence, for i > 0.131992 we no longer have a
stable fixed point for the system. Instead, this fixed point is now unstable, replaced by a
stable period-2 orbit. A period doubling cascade occurs at i ≈ 0.17. This period doubling
bifurcation route to chaos implies that for large values of i, the model must exhibit chaos.
For the remainder of this section, we fix i = 0.18; hence, for the rest of this section, orbits
of any period are possible.

Given this coupled system of equations for unemployment and inflation, as t tends to
infinity any initial value is either eventually periodic to the fixed point (U, π) ≈ (-.1832,
.1371), or is sucked into an orbit, often times an orbit inside the chaotic attractor, shown
in Figure 7. If it does not end up inside the chaotic attractor or at the fixed point, it
will end up in some sort of periodic orbit; note that since i = 0.18, orbits of all periods
are possible, from Figure 6. However, the remarkable thing about a chaotic orbit is that,
after running 50,000 iterations on the system, not a single point is repeated. That is,
given an initial condition that is sucked into the attractor, it will never visit the same
point in the attractor twice. Hence, the attractor appears to be dense in this given area
of the plane, although a proof is not obvious.

Figure 7: Chaotic Attractor, Initial Condition (0.1, 0.37)

On a related note, it is very straightforward to show the existence of sensitive depen-
dence on initial conditions for the model, using what we have already shown. Consider
initial conditions a0 = (.2, .15) and b0 = (.2, .15 + 10−10). Although these initial condi-
tions only differ by 10−10 in one coordinate, as t tends to infinity, these initial conditions
diverge from each other, eventually converging to entirely different orbits. The difference
between ak0 and bk0, where k is the number of iterations, is shown in Figure 8 with re-
spect to U and π. At around 60 iterations, the difference stabilizes to that of any two
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arbitrary points in the chaotic orbit, showing the divergence of points initially arbitrarily
close. Furthermore, many iterations later, a0 actually regains stability in a period-11
orbit within the chaotic attractor, while b0 remains in the attractor. Plotted next to each
other in Figure 9 are the iterations of a0 and b0, where the final period-11 orbit of a0 is
shown in white points.

Figure 8: Difference in Orbits of a0,b0 after given number of iterations

Figure 9: Orbit of a0 at left, b0 at right

Recall that since we have fixed i = 0.18, the system clearly exhibits chaos. This
implies the existence of orbits of every period; these orbits appear to always occur within
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the attractor. For example, note the period-11 orbit inside the attractor in Figure 9.
However, the basin of a periodic orbit within a chaotic attractor is difficult to analyze.
In this case, it is the set of all points that eventually map to the given period-11 orbit.
In general, it is not easy or computationally feasible to determine the basin of a periodic
orbit for some given period; this makes sense since we are dealing with a seemingly dense
attractor that contains orbits of all periods. With exception of the fixed point and chaotic
attractor, the basin of any of these orbits is what is known as a riddled basin. A riddled
basin is a basin such that any arbitrarily small ε-disk contains a non-zero area of points
which converge to different orbits.

Although it is infeasible to produce a riddled basin, we can produce a basin for the
fixed point, as shown in Figure 10. This basin shows the end behavior of initial conditions.
Black points are attracted to the fixed point, while white points are sucked into the chaotic
attractor or into an orbit of period-2 or greater.

Figure 10: The Basin

4 Conclusions

4.1 Conclusions from the Supply and Demand Model

In Section 1, we determined that for given values of the parameters µ and a, the
model exhibits chaotic behavior. Recall that µ was the parameter that determined the
steepness of the supply curve, and a determined the vertical intercept, or intercept on the
quantity axis, of the demand curve. Since the steepness of the supply curve determines its
elasticity, this implies that if the supply curve is very elastic near the origin and inelastic
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far from the origin, then choosing certain values for a will yield chaotic behavior. Note
that an elastic supply curve implies that small changes in price yield large changes in
quantity, while an inelastic supply curve implies that small changes in price only yield
small changes in quantity.

More important than this specific conclusion is the fact that a very simple model of
supply and demand was able to exhibit chaotic behavior. For reasonable values of the
parameters, even this elementary model of supply and demand exhibits chaos.

4.2 Conclusions from the Model of a Monetary Economy

In Section 2, we determined that for large enough values of δ, this model exhibits
chaos. Since δ is a derived parameter, where δ ≡ µ

β
− 1 > 0, this implies that the model

will exhibit chaos for large enough values of µ and/or small enough values of β. Recall
that µ is the growth rate of the money supply and β is the discount factor. Hence, if
the agent severely discounts his future utility, if the money supply grows at a very large
rate, or both, the model will exhibit chaos. In short, in this section we show that a very
high growth rate of the money supply in an economy can cause the economy to exhibit
erratic, chaotic behavior, even in the absence of external forces.

4.3 Conclusions from the Unemployment and Inflation Model

Section 3 involves the most complicated model, and as such the analysis of this model
was more in depth than in the previous two sections. Ultimately, we chose reasonable
values of the parameters, following from Neugart [4], and drew conclusions based off of
the model given these parameters. Holding all other values constant, we showed through
the bifurcation diagrams in Figure 6 that high values of i result in chaos. Setting i to a
value in this range (again following Neugart, we chose i = 0.18) proved the existence of
a chaotic attractor, and hence guaranteed chaos for this economic model.

It is interesting to observe that the chaotic attractor derived from this model seems to
resemble the classical Phillips Curve from economics. Simply stated, the Phillips Curve
is a historical inverse relationship between inflation and unemployment. However, as we
observed in our numerical investigations, although the attractor seems to exhibit such an
inverse relationship, the fact that chaotic orbits in the attractor move around erratically
defies the existence of any stable tradeoff. Despite the resemblance to the Phillips curve,
irregular fluctuations due to the presence of a chaotic attractor make long run behavior
unpredictable.

4.4 Final Thoughts

The purpose of this paper is not to examine the implications of chaos in economic
models. Rather, it is simply to verify the existence of chaos in them. The models
that we examined are relevant to very different subfields of economics, but all clearly
demonstrated chaotic dynamics for reasonable parameters. Chaos is prevalent in models
throughout economics, and the role of chaos should not be discounted when analyzing
economic models.
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Appendices

A Matlab Code

A.1 Video/Bifurcation Code

This is the Matlab code used to produce a timelapse video of bifurcation diagrams for
Section 1. Note, specific pieces of code used to create the video file (i.e. getframe, aviobj,
etc.) were removed to allow for individual bifurcation plots to be made. .

%Code to create a timelapse movie of Bifurcation diagrams for a given

%function while varying a parameter within the function.

clear

l = .3;

b = .25;

pe = @(a,u,p) (1-l)*p+(a*l/b)-(l*atan(u*p)/b);

aviobj = avifile(’bifur.avi’);

for i=0:300

u = 0+i*.05;

r = 10000; % level of rounding

p = 200; % max points to plot

N = 3000; % number of values

M = 500; % number of iterations

a = -1.4; % starting value

b = 1.4; % final value

dt = linspace(a,b,N);

for j = 1:N

t=dt(j);

x=zeros(M,1);

x(1) = 0.5;

for k = 2:M

x(k) = pe(t,u,x(k-1));

end

out{j} = unique(round(r*x(end-p:end))); % output unique values

end

data = [];

for l = 1:length(dt)

n = length(out{l});

data = [data; dt(l)*ones(n,1),out{l}];
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end

data(:,2) = data(:,2)/r;

figure(1);

plot(data(:,1),data(:,2),’k.’,’markers’,1); % plot bifurcation diagram

axis tight

set(gcf,’color’,’white’)

axis([-1.4 1.4 -2.75 2.75])

F(i+1) = getframe;

end

aviobj = addframe(aviobj,F); % add set of frames F to .avi

aviobj = close(aviobj);

A.2 Attractor Code

This is Matlab code used to iterate the system of Section 3 given a set of initial conditions
and plot the last 5,000 iterations. It also calculates the number of points that are repeated
over 230,000 iterations.

%Plot iterations of a coupled system of equations F with parameters given by

%a,b,d,de,m,me,g,i and JS, and given an initial value y0.

clear

a = .5; b = .5;

de = 2; d = .01;

m = .03; me = .04;

g = .5; i = .18;

Us=(me-m*(de-1)*(1-me)) / (1-b);

Js=i*(1-Us)*(Us+d*(1-Us))/Us;

F = @(y) [y(1,:)+i*(1-y(1,:))-y(1,:)*(Js+g*(m-y(2,:)))/(y(1,:)+d*(1-y(1,:)));...

1/de*(me/(1-me)+a*y(2,:)+(1-a)*(de*y(2,:)-(me-(1-b)*y(1,:))/(1-me))-(1-b)/...

(1-me)*(y(1,:)+i*(1-y(1,:))-y(1,:)*(Js+g*(m-y(2,:)))/(y(1,:)+d*(1-y(1,:)))))];

z(:,1) = [-1.189;1.159];

for j=2:30000

z(1:2,j) = F(z(1:2,j-1));

end

figure;

plot(z(1,25000:30000),z(2,25000:30000),’r*’)

xlabel(’Unemployment’);

ylabel(’Inflation’);

A = z’;
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B = unique(A,’rows’);

repeats = length(A)-length(B) % calculate the number of repeated points

A.3 Attracting Basin Code

This is Matlab code which plots the basin of the chaotic attractor of Section 3.

%Code which plots all points over a given (x,y) interval which converge

%to (-.1832,.1371) in black, and leaves all points which converge to other

%orbits in white.

clear

span = -3:.01:3; % x-interval

n = length(span);

span2 = -.5:.01:2.5; % y-interval

n2 = length(span2);

err = .001; % guaranteed convergence within this range

a = .5; b = .5;

de = 2; d = .01;

m = .03; me = .04;

g = .5; i = .18;

Us=(me-m*(de-1)*(1-me)) / (1-b);

Js=i*(1-Us)*(Us+d*(1-Us))/Us;

F = @(y) [y(1,:)+i*(1-y(1,:))-y(1,:)*(Js+g*(m-y(2,:)))/(y(1,:)+d*(1-y(1,:)));...

1/de*(me/(1-me)+a*y(2,:)+(1-a)*(de*y(2,:)-(me-(1-b)*y(1,:))/(1-me))-(1-b)/...

(1-me)*(y(1,:)+i*(1-y(1,:))-y(1,:)*(Js+g*(m-y(2,:)))/(y(1,:)+d*(1-y(1,:)))))];

l = 0;

for j=1:n

for k=1:n2

l = l+1;

y(:,1) = [span(j);span2(k)];

for i=2:2000

y(1:2,i) = F(y(1:2,i-1));

e1 = abs(y(1,i)+.1832);

e2 = abs(y(2,i)-.1371);

if e1 < err && e2 < err % output values which converge

out(l) = y(1,1);

out2(l) = y(2,1);

break;

end

end
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end

end

figure

plot(out(:),out2(:),’black.’)

title(’Points Converging to Chaotic Attractor’);

ylabel(’\pi0’);

xlabel(’U0’);

A.4 Bifurcation Diagram Code

%Code that can be used to plot bifurcation diagrams for the model in

%section 3 of unemployment and inflation.

clear

a=0.5;

del=2;

b=0.5;

gam=0.5;

d=0.01;

m=0.03;

mu=0.04;

Us=(mu-m.*(del-1).*(1-mu))/(1-b);

g=0.5;

me=0.04;

de=2;

N=300; %number of iterations to run for each value of the parameter

y = zeros(2,N+1);

ns= zeros(1,N+1);

figure; hold on;

axis([0.12 0.19 0 0.14]);

y(1,1)=0.01;

y(2,1)=0.01;

for i=.12:.0001:.19 %test i across a range of values

Js=i.*(1-Us).*(Us+d.*(1-Us))/Us;

for n=1:N

ns(1,n)=i;

y(1,n+1) = y(1,n)+i*(1-y(1,n))-y(1,n)*(Js+g*(m-y(2,n)))/...

(y(1,n)+d*(1-y(1,n))); %U(t+1)
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y(2,n+1) = 1/de*(me/(1-me)+a*y(2,n)+(1-a)*(de*y(2,n)-(me-(1-b)*y(1,n))/...

(1-me))-(1-b)/ (1-me)*(y(1,n)+i*(1-y(1,n))-y(1,n)*(Js+g*(m-y(2,n)))/...

(y(1,n)+d*(1-y(1,n))))); %Pi(t+1)

plot(ns(1,1:150),y(1,150:299), ’kx’,’markers’,1) %plot for this parameter value

hold on;

end

end

title(’bifurcation diagram of Unemployment vs i’);

xlabel(’inflow rate i’);

ylabel(’Unemployment’);
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