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1 Introduction to the SAM

A normal Atwood Machine is composed of two masses connected with a string, hanging from pulleys, (see

figure 1). This system is often used to teach Newton’s laws of motion due to its simplicity. However, it is not

very interesting to study beyond that. When the two masses are not equal, the heavier one will accelerate

down and the other will accelerate up at the same rate. When the masses are equal, there is no acceleration.

In order to make the system more interesting, it is possible to introduce a second degree of freedom, giving

rise to the Swinging Atwood Machine.

Figure 1: Atwood Machine, http://physics.stackexchange.com/questions/118917/newtons-

third-law-and-atwood-machines-confusion-about-tension

In the Swinging Atwood Machine (see figure 2), a second degree of freedom is added by letting one of the

masses swing from the pulley through an angle ✓. Since the total energy of the system is no longer simply

dependent on the height of the two masses, bounded orbiits can exist. Note that while one mass can move

throughout the plane and is free in 2 dimensions, the mass constrained to moving vertically does not have

another degree of freedom as its height is completely defined by r, the distance between the other mass and

its pulley.
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Figure 2: Swinging Atwood Machine, https://en.wikipedia.org/wiki/Swinging Atwood%27s machine

Many simplifications can be made to solve this system. The first is that there is no friction. Otherwise,

the damping would force the system toowards ✓ = 0, where it would behave like the regular Atwood Machine.

All orbits would either asymptotically approach a fixed point or be unbounded and go to infinity. Another

simplification is that the pulleys themselves are massless and have negligible radii.

2 Derivation of Hamiltonian Equations

Using classical physics, it it easy to derive the energy present in the system. PE = mgh and KE = 1
2mv2

M has a potential energy of Mgr and a kinetic energy of 1
2Mṙ2

m has a potential energy of �mgrcos(✓) and a kinetic energy of 1
2m(ṙ2 + r2✓̇2)

The total potential energy of the system is given by Mgr �mgrcos(✓))

The total kinetic energy of the system is given by 1
2Mṙ2 + 1

2m(ṙ2 + r2✓̇2))

The Lagrangian of the system is the di↵erence between kinetic and potential energies:

L =
1

2
Mṙ2 +

1

2
m(ṙ2 + r2✓̇2))�Mgr +mgrcos(✓))

The Hamiltonian of the system is the total energy in the system:

H =
1

2
Mṙ2 +

1

2
m(ṙ2 + r2✓̇2)) +Mgr �mgrcos(✓)) (1)
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Find the values of pi for the system. For simplicity of notation, let q1 = r, p1 = pr, q2 = ✓, p2 = p✓

pr =
@L

@ṙ
= (M +m)ṙ

p✓ =
@L

@✓̇
= mr2✓̇

Plugging these back in gives H = 1
2 (M +m)( pr

M+m )2 + 1
2mr2( p✓

mr2 )
2 +Mgr �mgrcos(✓)

H =
p2r

2(M +m)
+ (

p2✓
2mr2

)2 +Mgr �mgrcos(✓) (2)

This equation can be used to find a system of 4 coupled di↵erential equaitons describing the motion of the

system. Given some initial condition, the equations below can be plugged into a numerical ODE solver like

ode45 in Matlab to find its orbit.

ṙ =
@H

@pr
=

pr
M +m

✓̇ =
@H

@p✓
=

p✓
mr2

ṗr = �@H

@r
=

p2✓
mr3

�Mg +mgcos(✓)

ṗ✓ = �@H

@✓
= �mgrsin(✓)

(3)

These equations give rise to many di↵erent orbits, depending on the values of parameters and initial

conditions given (see figure 3).

3 Sensitive Dependence

Starting with some simple numerical models, it quickly became clear that the Swinging Atwood machine

exhibited chaotic characteristics. To start, I plotted the orbits of two points starting very close to each other.

The distance between these points grew exponentially over time until they reached a distance on the order

of the initial radius apart (see figure 4). This shows the possibility of sensitive dependence in the swinging

Atwood Machine. However, since this may not be true for initial conditions, a more rigorous method must

be used to prove Chaos. To do this, I calculated the Lyapunov exponents of the orbits.
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(a) r = 5, ✓ = ⇡/2, pr = 0, p✓ = 0,m = 1,M = 3 (b) r = 5, ✓ = ⇡/3, pr = 0, p✓ = 0,m = 1,M = 2

Figure 3: Some orbits of the SAM

Figure 4: Sensitive dependence in the SAM
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3.1 The Jacobian

The first step in calculating the Lyapunov exponents of a flow is finding the Jacobian of the di↵erential

equations. For this system it is:

J =

0

BBBBBB@

@
@r ṙ

@
@✓ ṙ

@
@pr

ṙ @
@p✓

ṙ

@
@r ✓̇

@
@✓ ✓̇

@
@pr

✓̇ @
@p✓

✓̇

@
@r ṗr

@
@✓ ṗr

@
@pr

ṗr
@

@p✓
ṗr

@
@r ṗ✓

@
@✓ ṗ✓

@
@pr

ṗ✓
@

@p✓
ṗ✓

1

CCCCCCA
=

0

BBBBBB@

0 0 1
M+m 0

�2p✓

mr3 0 0 1
mr2

�3p2
✓

mr4 �mgsin(✓) 0 2p✓

mr3

�mgsin(✓) mgrcos(✓) 0 0

1

CCCCCCA

Then using Matlab, it is possible to iterate the ode45 solver for the values of the orbit as well as up-

dating the Jacobian. Then, averaging the exponential growth of the Jacobian matrix over time gives values

for the Lypunov exponents numerically. I used Matlab for all the coding. My programs are attached at the

end of this document.

4 Parameter Variation

Most of the numerical exploration in this project came from observing what happened to Lyapunov exponents

while changing all the di↵erent variables in the system.

4.1 Mass

The first observation about changing the values of mass in the system is that the ratio between masses M

and m determines the characteristics of the system, but the the actual values do not. For example, the orbit

of a system with m=1 and M=5 (see figure 5a) looks identical to that of a system with m=7 and M=35 (see

figure 5b). The starting conditions for this orbit were randomly chosen to be r = 5, ✓ = ⇡/3, pr = 0, p✓ = 0.

From here on, the ratio M/m will be denoted by µ, to be consistent with the literature.

(a) Mass Dependence, m=1 and M=5 (b) Mass Dependence, m=7 and M=35

Figure 5: µ = 5
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The next step in this exploration was to vary the value of µ in the system. I set m=1, M=1µ for

simplicity. I chose an initial condition almost at random, while making sure it would not generally lie on a

stable or unstable manifold. r = 1, ✓ = 0.5, pr = 0.1, p✓ = 0.1 was a good set of initial conditions for this. I

then varied µ between 1 and 100 to obtain the Lyapunov exponents. Since this is a system of 4 equations,

there are 4 Lyapunov exponents returned by the code. The inital plot of these values is shown in figure 6.

By increasing the number of averaging loops and increasing the number of µ values used to calculate the

Lyapunov exponents, the figure became more detailed (see figure 7).

Figure 6: µ Dependence

4.2 Initial Conditions

Since sensitive dependence is a property of chaotic system, there should be a lyapunov exponent greater than

zero independent of the starting point. To make sure I didn’t just randomly guess some initial condition with

a positive lyapunov exponent, I varied the 4 initial conditions one at a time to see how they would impact

the values of h. Figure 8 shows the impact that varying initial conditions has on the lyapunov exponents.

These plots assume that three variables stay fixed at r = 1, ✓ = 0.5, pr = 0.1, p✓ = 0.1 while the fourth is

varied through a range of values. µ here is fixed at 10, since that parameter gives rise one of the largest h

values in the previous graphs. That indicates it should be easiest to see any changes that may occur at that

value.

The results show that changing the initial values of ✓, pr, and p✓ have very little e↵ect on the Lyapunov

exponents calculated for the system. The initial value of r does apepar to e↵ect the values of h. By increasing
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Figure 7: Detailed µ Dependence

(a) r 2 [1, 10] (b) ✓ 2 [0,⇡]

(c) pr 2 [1, 10] (d) p✓ 2 [1, 10]

Figure 8: Variations of initial conditions
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the initial radius, the lyapunov exponents grow closer to zero. However, the curves look like they level o↵

before approaching zero (or h2). Physically, this means that two nearby points will grow apart faster when

the initial conditions involve a smaller radius and should diverge slower with a larger initial radius. Having

said that, varying r should not make a chaotic orbit become periodic or vice versa.

5 Analysis

In theory, Lyapunov exponents of a Hamiltonian system should come in pairs. That means for every exponent

h, there must also be an exponent of -h. This implies that the sum of all the exponents must be zero.

Therefore any Hamiltonian flow must be volume preserving in R2n, which is one statement of Liouville’s

Theorem (Kathleen T. Alligood, Section 9.6). Since this is a continous Hamiltonian flow, one of the Lyapunov

exponents must also equal zero (Gerald Jay Sussman, Section 4.2). This makes sense since starting a small

distance farther along the orbit should cause the final value to move a small distance along the orbit as well,

without exponential growth or decay. In this direction, h must equal zero.

In the case of the Swinging Atwood Machine, there are 4 coupled di↵erential equations, leading to 4

Lyapunov exponents. However, by the theorems above, they must be (h, 0, 0,�h). The numerical solutions

give two numbers close to zero, but not exactly zero. This fact can be used to put an error bound around the

plot of h. Since there should only be one h value in question, but there are actually 4 exponents, I averaged

h1 and �h4 to get the value of h. I averaged h2 and �h3 to get the error at each value of µ, since in theory

this should equal zero. I multiplied this average error value by 2 to be conservative about the accuracy in

the plot. Using the more detailed µ data plotted earlier, I created a new analyzed image (figure 9). While

the graph may seem busy, the important parts to notice are the values of µ where the lower red line dips

below zero. Any point where h could be at or below zero indicates a point that could show non-chaotic,

integrable behavior. Points that remain above zero for the entire error range are almost certainly chaotic.

According to another study (J. Casasayas), µ = 3 is the only value that can possibly give an integrable

solution analytically. The paper goes on to show that µ = 4n2 � 1 may also appear to be integrable from

numerical simulations, but they are not because the Hamiltonian is the only conserved quantity along an

orbit except when µ = 3. Examining these values (3, 15, 35, 63, 99) with respect to figure 9 gives a pretty

neat comparison. These values seem to occur exactly the ends of the “hills” that occur in my graph. At

µ = 3, h is small and it is hard to make out exactly what is happening, but at 15, it comes back to zero after

a hill. At 35, it comes back to zero after a hill, etc... Casasayas’ paper goes on to explain why these are not

actually integrable, but it goes into more complicated analysis that goes beyond the scope of this course.
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Figure 9: µ Dependence with Error

6 Further Exploration

After completing this project, there are many directions that further research in this topic could head. One

is simply getting more accurate values of h. By averaging the iterative time-1 map over more loops, the

solution should slowly converge to the exact values of h for the system. However, this would require more

computational power over more time. If I could just let code sit for weeks, it might give more accurate

solutions, but that is not practical in a 10 week course.

Another possibility is to extend the range of µ (like [1, 1000]) and see if it the numerical solution follows the

same pattern between values of 4n2�1 that held for µ 2 [1, 100]. It would also be interesting to see what the

apparently random dips in the “hills” correspond to: do they have physical meaning or are they just anomalies

of the numerical method? I could also extend the range of the initial r to see if h ever converged to zero or if it

asymptotically approached some positive number. Physically, I would expect that the starting radius would

not a↵ect whether a system is chaotic or not, but it might be a worthwhile study. I could also try running

the initial condition variations for some initial point other than µ = 10, r = 1, ✓ = 0.5, pr = 0.1, p✓ = 0.1 and

see if the trends still looked the same.

Another extension to the project could involve looking at the analytical solutions to the Swinging Atwood

Machine. While most orbits are chaotic, any µ could have periodic orbits if the initial conditions are chosen

carefully. This would tie into an exploration of the integrable case µ = 3 that should have a completely

defined solution family.

To anyone interested in learning more about the Liouville Theorem and the behavior of Lyapunov expo-

nents in general in R2n phase space, Chapters 3 and 4 of the Sussman-Wisdom textbook give a very in-depth

explanation of these properties.
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