
Primality Testing and Factorization

Eli Howey

MATH 56
Dartmouth College

May 27, 2014

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)

Premise

Two keys (exponents): public and private

Requires Euler φ function and multiplicative inverse

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

Two keys (exponents): public and private

Requires Euler φ function and multiplicative inverse

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

Two keys (exponents): public and private

Requires Euler φ function and multiplicative inverse

RSA: Background

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)
Premise

Two keys (exponents): public and private

Requires Euler φ function and multiplicative inverse

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Algorithm

1 Randomly choose two distinct primes p and q of
approximately equal size.

2 Compute n = pq.

3 Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1).

4 Choose e ∈ Z with gcd(e, φ(n)) = 1. If e is prime, then one
must only check that e - φ(n).

5 Find the multiplicative inverse d = e−1 mod φ(n).

6 The public key is defined as the pair (e, n), and the private
key as (d , n).

RSA: Encryption/Decryption

Given a message M, 0 ≤ M < n (or ciphertext C):

Encryption: E (M) ≡ Me mod n (only requires public key)

Decryption: D(C) ≡ Md mod n (requires private key)

Private key functionally impossible to crack without p, q

RSA: Encryption/Decryption

Given a message M, 0 ≤ M < n (or ciphertext C):

Encryption: E (M) ≡ Me mod n (only requires public key)

Decryption: D(C) ≡ Md mod n (requires private key)

Private key functionally impossible to crack without p, q

RSA: Encryption/Decryption

Given a message M, 0 ≤ M < n (or ciphertext C):

Encryption: E (M) ≡ Me mod n (only requires public key)

Decryption: D(C) ≡ Md mod n (requires private key)

Private key functionally impossible to crack without p, q

RSA: Encryption/Decryption

Given a message M, 0 ≤ M < n (or ciphertext C):

Encryption: E (M) ≡ Me mod n (only requires public key)

Decryption: D(C) ≡ Md mod n (requires private key)

Private key functionally impossible to crack without p, q

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)

Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element

Good for n < 1012, but segmenting can extend range

Primality Testing

Two major (deterministic) methods:

Trial division

O(n1/2 ln n (ln ln n)2)
Best for n < 1010

Sieve of Eratosthenes

O(ln ln n) per sieve element
Good for n < 1012, but segmenting can extend range

Factorization Methods

Covers four method classes

Methods covered in class

Trial division (sieve implementation)
Fermat’s method

Probabilistic: Pollard ρ method

Quadratic sieve (QS) & number field sieve (NFS)

Factoring multiple RSA keys with Batch GCD

Factorization Methods

Covers four method classes

Methods covered in class

Trial division (sieve implementation)
Fermat’s method

Probabilistic: Pollard ρ method

Quadratic sieve (QS) & number field sieve (NFS)

Factoring multiple RSA keys with Batch GCD

Factorization Methods

Covers four method classes

Methods covered in class

Trial division (sieve implementation)
Fermat’s method

Probabilistic: Pollard ρ method

Quadratic sieve (QS) & number field sieve (NFS)

Factoring multiple RSA keys with Batch GCD

Factorization Methods

Covers four method classes

Methods covered in class

Trial division (sieve implementation)
Fermat’s method

Probabilistic: Pollard ρ method

Quadratic sieve (QS) & number field sieve (NFS)

Factoring multiple RSA keys with Batch GCD

Factorization Methods

Covers four method classes

Methods covered in class

Trial division (sieve implementation)
Fermat’s method

Probabilistic: Pollard ρ method

Quadratic sieve (QS) & number field sieve (NFS)

Factoring multiple RSA keys with Batch GCD

Pollard ρ method: Premise

Let n ∈ Z+ be composite with least prime factor p.
S = {1, 2, . . . , p − 1} f (x) = x2 + a mod p, a ∈ S
For all s ∈ S, the sequence

s, f (s), f (f (s)), . . .

eventually becomes cyclic (after O(
√
p) iterations).

F (x) = x2 + a mod n ≡ f (x) mod p

[Floyd] ∃i such that 2i = O(
√
p) and F (i)(s) ≡ F (2i)(s) mod p

=⇒ gcd(F (i)(s)− F (2i)(s), n) is a factor (if 6= n)

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Algorithm

1 Randomly choose integers a ∈ [1, n − 3] and s ∈ [0, n − 1].

2 Define F (x) = (x2 + a) mod n.

3 Set U = V = s.

4 Iterate U and V as follows:

U = F (U),
V = F (2)(V).

5 Calculate g = gcd(U − V , n).

6 If g = 1, go back to Step 4. If g = n, go back to Step 1.

7 Return g .

Pollard ρ method: Runtime

Step 4 iteration occurs ≤ 1
2O(
√
p) times

O(ln n ln ln n) per iteration

Total runtime:

O(p1/2 ln n ln ln n) ≈ O(n1/4 ln n ln ln n)

Probabilistic (choice of a and s affects result)

Pollard ρ method: Runtime

Step 4 iteration occurs ≤ 1
2O(
√
p) times

O(ln n ln ln n) per iteration

Total runtime:

O(p1/2 ln n ln ln n) ≈ O(n1/4 ln n ln ln n)

Probabilistic (choice of a and s affects result)

Pollard ρ method: Runtime

Step 4 iteration occurs ≤ 1
2O(
√
p) times

O(ln n ln ln n) per iteration

Total runtime:

O(p1/2 ln n ln ln n) ≈ O(n1/4 ln n ln ln n)

Probabilistic (choice of a and s affects result)

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth
candidates

x2 ≡ y2 mod n

Optimal B [Pomerance]:

B ≈ exp(
1

2

√
ln n ln ln n)

Runtime:
O(B2) ≈ L(n) = O(exp(

√
ln n ln ln n))

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth
candidates

x2 ≡ y2 mod n

Optimal B [Pomerance]:

B ≈ exp(
1

2

√
ln n ln ln n)

Runtime:
O(B2) ≈ L(n) = O(exp(

√
ln n ln ln n))

Quadratic Sieve (QS)

Establish quadratic congruence among products of B-smooth
candidates

x2 ≡ y2 mod n

Optimal B [Pomerance]:

B ≈ exp(
1

2

√
ln n ln ln n)

Runtime:
O(B2) ≈ L(n) = O(exp(

√
ln n ln ln n))

NFS: Number Fields

Let f be a polynomial with coeffs. in Z, degree k , root r ∈ C.
f is irreducible if f cannot be expressed as the product of two
polynomials with coeffs. in Z, degree < k . If f is irreducible, we
can define the polynomial ring (number field)

Z[r] = {ck−1rk−1 + · · ·+ c1r + c0 ∈ R | c0, c1, . . . , ck−1 ∈ Z}

Multiplication in Z[r]: polynomial multiplication, then reduction
mod rk

NFS: Concept

Establish quadratic congruence among products of B-smooth
products of polynomials in Z[x]

u2 ≡ v2 mod n,

where v2 is the product of a− bm for pairs (a, b) such that
F (a, b)G (a, b) is B-smooth, and m an approximate root of n

NFS: Algorithm

Setup:

Set d = b(3 ln n/ ln ln n)c.
Set B = bexp((8/9)1/3(ln n)1/3(ln ln n)2/3)c.1

Set m = bn1/dc.
Write n in base m: n = md + cd−1m

d−1 + · · ·+ c0.

Define f (x) = xd + cd−1x
d−1 + · · ·+ c0. Note f (m) = n.

Attempt to factor f into irreducible polynomials g , h ∈ Z[x]
and, if it factors, return n = g(m)h(m).

Define F (x , y) = xd + cd−1x
d−1y + · · ·+ c0y

d .

Define G (x , y) = x −my .

1The values of d and B can be tuned to taste; these are experimentally
determined optimal values [Pomerance].

NFS: Algorithm

Setup (continued):

Compute R(p) = {r ∈ [0, p − 1] | f (r) ≡ 0 mod p} for each
prime p ≤ B.

Set k = b3 lg nc.
Set B ′ =

∑
p≤B #R(p).

Set V = 1 + π(B) + B ′ + k .

Set M = B.

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.
7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.
7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.
7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.
7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.

6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a
homomorphism.

7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.

7 Return gcd(u − f ′(m)v , n).

NFS: Algorithm

1 Sieve for a set S ′ of (at least) V + 1 coprime integer pairs
(a, b) with 0 < |a|, b ≤ M, and F (a, b)G (a, b) B-smooth. If
this fails, increase M and retry this step.

2 Create an exponent matrix from the pairs from Step 2. Each
row will be the exponent vector for a− bα for some root α of
f .

3 Use linear algebra to find a subset S of S ′ whose elementwise
sum is the zero vector (e.g., Block Lanczos).

4 Compute v such that
∏

(a,b)∈S(a− bm) ≡ v2 mod n.

5 Find a γ in Z[α] such that
(
f ′(m)2

∏
(a,b)∈S(a− bm)

)
≡ γ2

mod n.
6 Compute u ≡ φ(γ) mod n, where φ : Z[x]→ Z/nZ a

homomorphism.
7 Return gcd(u − f ′(m)v , n).

NFS: Runtime

Complexity given heuristically [Pomerance], proof eludes us!

O

(
exp

(
3

√
64

9
+ o(1)

)
(ln n)1/3(ln ln n)2/3

)
Compare to quadratic sieve:

O(exp(
√

ln n ln ln n))

Batch GCD

RSA keys may be created using faulty prime number
generators

If two keys share a factor, then we can factor both keys!

Given keys {N1,N2, . . . ,Nm}, calculate

gcd(N1,N1N2 · · ·Nm),

gcd(N2,N1N3 · · ·Nm),

· · ·

gcd(Nm,N1N2 · · ·Nm−1)

Batch GCD

RSA keys may be created using faulty prime number
generators

If two keys share a factor, then we can factor both keys!

Given keys {N1,N2, . . . ,Nm}, calculate

gcd(N1,N1N2 · · ·Nm),

gcd(N2,N1N3 · · ·Nm),

· · ·

gcd(Nm,N1N2 · · ·Nm−1)

Batch GCD

RSA keys may be created using faulty prime number
generators

If two keys share a factor, then we can factor both keys!

Given keys {N1,N2, . . . ,Nm}, calculate

gcd(N1,N1N2 · · ·Nm),

gcd(N2,N1N3 · · ·Nm),

· · ·

gcd(Nm,N1N2 · · ·Nm−1)

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Algorithm

Given a list {N1,N2, . . . ,Nm} of RSA keys:

1 Calculate N = N1N2 · · ·Nm.

2 Create a list G of length m.

3 For each i = 1, 2, . . . ,m:

Calculate Ri ≡ N mod N2
i .

Set Gi = gcd(Ni ,Ri/Ni) = gcd(Ni ,N/Ni).

4 Return G .

Batch GCD: Considerations

{Ni | Gi > 1} is the set of keys that share a factor with some other
key

1 Gi prime =⇒ Gi nontrivial factor of Ni

2 Gi = 1 or composite =⇒ find pairwise GCDs until (1)

Complexity:
O(m (ln n)2)

For RSA-specific cracks, may be much more effective than any
other method listed
Used to crack thousands of RSA keys from a set of size O(107)
(2011)

Future of Factorization

Ever-growing push for better methods
Current research

