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Abstract

When images are taken, the image itself is just a representation of what
you actually see. The camera’s image is susceptible to motion blur, bad
reflections, and the camera’s own limitations (e.g. how many megapix-
els). Having a camera image be as close as possible to the true image is
advantageous in many applications across all different fields, e.g., photog-
raphy, astronomy, physics, etc. You can think of a camera image as the
true image combined with some ”blurring factor”. One way to get back
the true image is by deconvolution, a method that separates the camera
image from its ”blurring factor”.

This project will focus on some rudimentary issues with image decon-
volution: accounting for random noise and what to do when the ”blurring
factor” is unknown, i.e., blind image deconvolution.

1 The Basic Problem

Image deconvolution is a prototypical example of an inverse problem, i.e., a
problem where you want to find the inputs (the true image and the ”blurring
factor”) given the outputs (the camera image). One issue with inverse problems
is they can be extremely sensitive to the inputs. If one of the inputs changes
slightly, the output can be completely different.

Definition A problem is ill-posed if one of the following is true:

1. a solution does not exist

2. a solution is not unique

3. the solution’s behavior does not change continuously with the inputs

In many cases, the ”blurring factor”, also known as the Point Spread
Function (PSF), takes the form of a large and unwieldy matrix with one value
for each pixel. Such an ill-conditioned matrix will almost always cause image
deconvolution to be an ill-posed inverse problem. A consequence of this is
if there is any noise unaccounted for in the PSF, the deconvolved image will
generally not be a great representation of the true image.

Notation note: Throughout this write-up, the output image or blurred image
will be referred to as the camera image. The exact image will be referred to as
the true image. The ”blurring factor” will be referred to as the PSF.
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Deconvolved Image without Noise in the PSF Deconvolved Image with Noise in the PSF

Figure 1: An example of how noise can overwhelm a deconvolved image

2 Regularization

One way to solve ill-posed inverse problems is by a process called regular-
ization. This process introduces additional information in the form of extra
constraints.

2.1 Least Squares Method

The regularization method we will be using builds off the least squares method
for solving a system. Given a problem

Ax = b

where A is a matrix, x is the input vector, and b is the output vector, we want
to find the optimal x given A and b. One solution to this problem is to find x
such that it minimizes the squared norm of the difference of the two sides of the
equation, i.e.,

min
x
‖Ax− b‖22

In the context of image deconvolution, we can think of A as the PSF, x as the
true image, and b as the camera image. However, if b has a bit of noise in it,
i.e.,

b = b̂+ ε

for ε some noise and b̂ the actual output we want to find an optimal x for, we can
find a bad solution if the problem is ill-posed. Remember, the intuition behind
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an ill-posed problem is even if b and b̂ are extremely similar to each other, the
optimal x for each can look completely different.

2.2 Tikhonov Regularization

Tikhonov regularization, named for Russian mathematician Andrey Tikhonov,
attempts to fix the issue that arises when the least squares method is used
with an ill-posed inverse problem by adding an additional constraint on the
minimization:

min
x
{‖Ax− b‖22 + λ2‖x‖22}

In the new minimization, the additional constraint is the squared norm of
x. λ is a non-negative constant decided in advance, acting as a weight on the
strength of the additional constraint. Some alternate ways to write Tikhonov
regularization include

(ATA+ λ2I)x = AT b

and

min

∥∥∥∥[AλI
]
x−

[
b
0

]∥∥∥∥
Intuitively, why does this help solve an ill-posed problem? When decon-

volving an image, we divide out the PSF’s coefficients from the camera image’s
coefficients in the Fourier domain, i.e.,

f̃m =
h̃m
g̃m

+
ε̃m
g̃m

where f̃ represents the true image’s Fourier coefficients, h̃ represents the camera
image’s Fourier coefficients, and g̃ represents the PSF’s Fourier coefficients. ε
represents the noise or error in h. When the PSF’s coefficients are small, dividing
by them amplifies the noise term ε̃m

g̃m
in the camera image’s coefficients.

The additional constraint that Tikhonov regularization adds is the ”size”
of x, meaning it favors small coefficients over large ones. Basically, it prevents
pixel values of x from blowing up to extreme values and amplifying any noise.
It can be thought of as a dampening of the coefficients in the Fourier domain
that have large error from the noise in the camera image.

In a mathematical sense, the additional constraint acts as a weight on each
coefficient in the Fourier domain. For the PSF’s Fourier coefficients that are
sufficiently small, the corresponding true image’s Fourier coefficients are multi-
plied by a weight close to zero, since these coefficients are overwhelmed by error
from noise. Figure 2 shows how this weight changes based on the PSF’s Fourier
coefficients. There is a threshold at

√
λ, derived from the minimization in the

Fourier domain.
For choice of λ, there is an optimal value specific to each problem that can

be found through heuristic methods. If λ is too small, the amplified noise won’t
be dampened enough. If λ is too large, the image will be dampened too much
and become a poor representation of the true image. Figure 3 shows an example
of this.
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Figure 2: How Tikhonov regularization weights Fourier coefficients. There is a
threshold

√
λ below which the weight smoothly goes to zero

Figure 3: λ does have an optimal value that produces the best approximation
of the true image
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3 Blind Image Deconvolution

Tikhonov regularization is a good method for approximating the true image
when the PSF is known, but what about when the PSF isn’t known? Most real
life applications of image deconvolution need to be able to deconvolve an image
without knowing the exact PSF.

Definition Attempting to reconstruct the true image and the PSF from a
camera image is called blind image deconvolution.

There are many algorithms that attempt to solve blind image deconvolution
(enough to fill entire textbooks just on this problem!). Here we will focus on
one of these algorithms, iterative blind image deconvolution.

3.1 Iterative Blind Image Deconvolution

Definition An iterative algorithm is one that takes an initial input, ap-
proximates the output, then takes this approximation as an input and
repeats to create a sequence of approximations that converge toward the
true solution.

There are many iterative algorithms for solving blind image deconvolution,
because at each iteration you can do many different things to get the next
approximation. In our examples, we will use basic image deconvolution with
Tikhonov regularization at each iteration.

However, in order to get the next iteration, we have to have some prior
knowledge about either the PSF or the true image (we can’t find the true image
if we know zero information about how it got altered!). At each iteration, we
apply this knowledge to the outputs of the previous iteration before creating
the new outputs.

For example, if we know that the PSF or the true image has all non-negative
values, we can simply take all negative values in the previous output and set
them to 0 before proceeding with the algorithm. Other examples of prior knowl-
edge include knowing the pixel dimensions of the PSF, knowing a bandwidth of
values the PSF or true image must stay between, or knowing something about
the kind of effect the PSF had on the true image (e.g. motion blur, radial
blur, etc.). Figure 4 summarizes how iterative blind deconvolution works, while
Figures 5-7 show an example of iterative blind deconvolution in use.
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Figure 4: Given f̃0 as an initial guess for the true image and C the camera
image, steps (1), (2), and (3) use the Fourier domain to find an initial guess for
g, the PSF. Step (4) is where prior knowledge is applied to change the PSF.
From the changed PSF, steps (5), (6), and (7) find a new approximation of the
true image. Step (8) is again where prior knowledge is applied to change the
true image. Then the algorithm repeats.

3.2 Complexity

The downside of iterative algorithms is their computing time. In our algorithm,
each step uses Tikhonov regularization. Tikhonov regularization is optimized at
complexity O(N log2N). The number of steps depends on what prior knowledge
you have. The convergence rate can be quite slow, meaning the true time
complexity can be much worse than O(N log2N).
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True Image Camera Image

True PSF Initial Input − PSF Guess (All 1s)

Figure 5: An example of iterative blind deconvolution. The initial input was a
guess at the PSF, simply all 1s. Conditions on the PSF were its 10x10 dimen-
sions and non-negative entry values. Figures 6 and 7 show the results.

10 iterations 50 iterations

200 iterations True Image

Figure 6: The approximated true images
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10 iterations 50 iterations

200 iterations True PSF

Figure 7: The approximated true PSFs
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