
A A Brief Introduction to Partition Theory

The general problem in the theory of partitions is to enumerate representations of a positive
integer n as the sum

n = λ1 + λ2 + · · ·+ λk

where each λi comes from a specified multiset of integers. A partition of n is a representation
of n as a sum of integers where the order of the terms (or parts) is irrelevant. Therefore we
will use the convention that a partition λ = (λ1, λ2, . . . , λk) is a weakly decreasing sequence of
nonnegative integers. The size of λ, denoted by |λ|, is the sum λ1 + · · ·+ λk. If |λ| = n then λ
is said to be a partition of n, denoted λ ` n.

The Ferrers diagram corresponding to a partition λ is a graphical representation of λ. To
construct the Ferrers diagram for λ = (λ1, λ2, . . . , λk), simply place a row of λi+1 left justified
blocks on top of λi blocks, for each i = 1, 2, . . . , k − 1. For example, the Ferrers diagram for the
partition λ = (6, 4, 3, 1, 1) is

The main tool we will use to count partitions by size is the geometric series

1
1− q

= 1 + q + q2 + q3 + · · · 1
1− qn

= 1 + qn + q2n + q3n + · · ·

We can think of these series as building up Ferrers diagrams by rows

1
1−

= 1 + + + + · · · 1
1−

= 1 + + + + · · ·

or by columns

1
1−

= 1 + + + + · · · 1
1−

= 1 + + + + · · ·

Multiplication of two or more series of the above form corresponds to the juxtaposition of rows
or columns to build up Ferrers diagrams. This leads us to our first fundamental result:

Theorem A.1 The generating function that counts partitions by size (i.e.
∑

n≥0 p(n)qn where
p(n) is the number of partitions of n) is given by∏

n≥1

1
1− qn

.

151. Write down the generating function for partitions with...

(a) ...largest part at most n.

(b) ...largest part exactly n.

(c) ...at most n parts.

(d) ...exactly n parts.

(e) What is the connection between parts a) and c)? b) and d)? Can you think of a map
between these two pairs of sets of partitions?



152. How many partitions are there that fit inside an n × m box? In other words, how many
partitions are there with at most m parts and each part is at most n. What recursion
is satisfied by your formula? What does this recursion say about these partitions? Write
down a recursion for the generating function that counts these partitions by size. Can you
find a rational function of q that solves this recursion?

153. Write down the generating function for partitions with...

(a) ...exactly n distinct parts.

(b) ...any number of distinct parts.

Write down the identity that results in summing your answer from part (a) over all possible
values of n.

154. Write down the generating function for partitions with...

(a) ...only odd parts.

(b) ...no part repeated more than m times.

155. Consider the following identity:∏
n≥1

(1 + qn) =
∏
n≥1

1
(1− q2n−1)

Translate this identity into a statement regarding partitions. We have seen a simple alge-
braic proof in class. Can you give a combinatorial proof of this fact?

156. Let S ⊆ Z+. Write down the generating function for partitions...

(a) ...whose parts are elements of S.

(b) ...whose parts are distinct elements of S.

157. How many ways are there to make change for a ten dollar bill? What if each coin/bill
can be used at most once? Give a numerical answer as well as an answer in terms of the
coefficient of a power of q in a particular power series. The use of a computer may be
required to get the numerical answer.

Up until now, we have been using generating functions to count partitions by size. That is to
say, the coefficient of qn in each of the above generating functions tells us how many partitions
of n there are with a particular characteristic (i.e. only odd parts, distinct parts, each part used
at most twice, etc.). There are of course other statistics associated with partitions. For example,
we may be interested in keeping track of how many nonzero parts are in a partition. This is
referred to as the length of λ, denoted l(λ).

158. Write down a generating function that counts partitions both by size and by length. In
other words, we want a power series in two variables, say q and z, such that the coefficient
of zlqn is the number of partitions of n with exactly l parts.

159. Write down an identity similar in nature to your answer to question 153 that counts
partitions with distinct parts by size and length.

160. The following product

(1 + z)(1 + zq)(1 + zq2) · · · (1 + zqn−1)



is said to be a q-analog of (1 + z)n since

lim
q→1

(1 + z)(1 + zq)(1 + zq2) · · · (1 + zqn−1) = (1 + z)n.

Of course (1+z)n can be expanded using the Binomial theorem. Find and prove a q-analog
of the Binomial theorem. Similarly,

1
(1− z)(1− zq)(1− zq2) · · · (1− zqn−1)

is a q-analog of (1 − z)−n. Find and prove a q-analog to the power series expansion of
(1− z)−n.

The Durfee square of the partition λ is the largest square that can be imbedded in the Ferrers
diagram of λ. Formally, the size of the Durfee square is the largest value i such that

λi ≥ i.

For example, the partition λ = (6, 4, 3, 1, 1) has a 3× 3 Durfee square associated with it.

161. What is the generating function that counts all partitions by size that have an m × m
Durfee square. What do you get if you sum over all m ≥ 0? How do your answers change
if you want to count these partitions by size and by length?

162. Write down an identity that decomposes partitions with distinct parts based on the size of
their Durfee square. Can you count by size and length?

163. A partition λ is said to be self-conjugate if the number of squares in the ith row of its
Ferrers diagram is the same as the number of squares in the ith column. Show that the
number of self-conjugate partitions of n is the equal to the number of partitions of n using
distinct odd parts. Translate this statement into an identity of generating functions. How
does your identity change if you want to count by size and length of partitions?

164. In your solution to the previous problem, replace z by −1 and simplify. This result is
known as Euler’s Pentagonal Number Theorem.

165. Consider the following product of generating functions

∏
n≥1

1
(1− qn)

∞∑
m=−∞

(−1)mq
3m2−m

2

Using Euler’s Pentagonal Number Theorem, simplify the above expression. Give a general
formula for the coefficient of qn of the above product in terms of the partition function
p(n)= the number of partitions of n. Use this to give a recursive formula for p(n). Compute
p(13).


