
1. WEEK 1

1.1. LECTURE 1: BINOMIAL COEFFICIENTS, UNIMODAL-
ITY, LOG-CONCAVITY

Recall that the number of k-element subsets of an n-element set is denoted by n
k . This is

read “n choose k.” To refresh your memory, the binomial coefficients have the following
formula and recurrence.
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k! n k !

n 1

k

n 1

k 1
.

Of course, this recurrence shows the connection between the binomial coefficients and
Pascal’s Triangle:
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1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The binomial coefficients satisfy a vast number of interesting identities, for example,
the following

n

k
2n,

k
n

k
n2n 1,

n

k

2 2n

n
.

It would be a good exercise to try to remember (or reinvent, or simply invent) proofs for
these three. Generally there are three ways to prove any binomial coefficient identity:
combinatorially, with the formula or recurrence, or via the Binomial Theorem:
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Binomial Theorem. For all non-negative integers n,

x y n n

k
xkyn k.

Proof. Simply multiply the left-handside:

x y x y x y

n times

.

To get an xkyn k term in this product, we must choose precisely k xs and n k ys. Therefore the

coefficient of xkyn k is the number of ways to do this, n
k

.

Notice that Pascal’s Triangle increases to the maximum and then decreases. More gen-
erally, we say that the sequence ak is unimodal if for some integer m,

ak 1 ak if k m, and
ak ak 1 if k m.

Theorem 1. For every n, the sequence n
k

is unimodal.

Proof. Dividing n
k 1

by n
k ,

n
k 1

n
k

n k

k 1
,

we see that the sequence is increasing if n k k 1, i.e., if 2k 1 n, and decreasing if 2k 1 n.

Let us now extend our definition a bit, and say that the polynomial p x a0 a1x

anxn is unimodal if the sequence a0, a1, . . . , an is unimodal. So, we’ve just seen that
the polynomial

x 1
n

0

n

1
x

n

n
xn

is unimodal for all n. But clearly, this is not the only example of a unimodal polynomial. It
would be nice to have some conditions which would imply that polynomials are unimodal
without expanding them out.

First, we need to introduce a strongly property. The sequence ak is log-concave if

a2
k ak 1ak 1
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for all (relevant) k. This property gets its name from the fact that if ak is log-concave,
then the sequence log ak is concave, i.e., it satisfies

log ak
log ak 1 log ak 1

2
.

As with unimodal, we also extend this definition to polynomials, and will say that the
polynomial p x a0 a1x anxn is log-concave if the sequence a0, a1, . . . , an is
log-concave.

Theorem 2. If the sequence ak is log-concave, then it is unimodal.

Proof. Rearranging the defining inequality for log-concavity, we see that

ak

ak 1

ak 1

ak
,

so the ratio of consecutive terms is decreasing. Until the ratios decrease below 1, the sequence is

increasing, and after this point, the sequence is decreasing, so it is unimodal.

Theorem 3. For every n, the sequence
n

k
is log-concave.

Theorem 4. We want
n

k

n

k

n

k 1

n

k 1
.

After expressing all the binomial coefficients in terms of factorials and simplifying, this
reduces to

1

k n k

1

k 1 n k 1
,

which is clearly true.
Our goal now is to prove a famous sufficient condition for unimodality, due to Newton.

Newton’s Real Roots Theorem. If the polynomial

p x a0 a1x anxn

has positive ( 0) coefficients and all of its roots are real, then it is
log-concave, and hence unimodal.

How could a condition on real roots have any relation to unimodality? The only poly-
nomials most of us know how to solve (other than the linear ones) are quadratics, so let’s
look at the case where

p x ax2 bx c.
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For p x to be log-concave means that

b2 ac,

while for it to have real roots, we need that its discriminant (the quantity under the radical
in the quadratic formula) must be nonnegative:

b2 4ac 0.

Clearly if b2 4ac 0 then b2 ac, so indeed, Newton’s Real Roots Theorem holds for
quadratics.

In the general proof though, we’re going to need to show that a2
k ak 1ak 1, so we

need somehow to reduce a degree n polynomial to a quadratic. To do so, we will take
derivatives, making use of the following result.

Lemma 5. If the polynomial p x has all real roots, then its derivative has all real roots as
well.

Proof. Suppose that the degree of p x is n, so having all real roots means that it has n real roots,

counting multiplicity, and that we would like to show that its derivative has n 1 real roots. Sup-

pose that the roots of p x are r1 r2 r!, where the root ri occurs with multiplicity mi. We

know that its derivative has a root at ri of multiplicity mi 1, so we only need to find the other

! 1 roots that get us up to n 1. Rolle’s Theorem does this for us, because it says that between

any two roots p ri p ri 1 0, the derivative p x must have a root. Since there are ! 1 pairs

of consecutive roots, we have found all n 1 roots and we know they are all real.

The proof of Newton’s Real Roots Theorem now follows from some creative shifting
around of the coefficients of p x .

Proof of Newton’s Real Roots Theorem. Choose k between 1 and n 1. We would like to prove
that a2

k ak 1ak 1. Our strategy is to manipulate p x until we have a quadratic with precisely
these three coefficients (plus some factorials), and then we will observe that the discriminant must
be nonnegative. In order to get rid of the coefficients a0, a1, . . . , ak 2, we first define

q x
dk 1

dxk 1
p x k 1 !ak 1 k!akx

k 1 !

2
ak 1x

2 .

Note that q x has real roots by iterating Lemma 5. Now we would like to get rid of the coeffi-
cients ak 2, ak 3, . . . , an, but taking derivatives won’t help us there. Instead, we flip the coefficients
around:

r x xn k 1p 1 x ,

xn k 1 k 1 !ak 1 k!ak
1

x

k 1 !

2
ak 1

1

x

2

,

k 1 !ak 1x
n k 1 k!akxn k k 1 !

2
ak 1x

n k 1 .
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Note that r x is a polynomial because the degree of q x was n k 1. Also note that the roots of
r x are the reciprocals of the roots of q x , so they are all real. Now we can use the derivative trick
once more to get rid of the coefficients ak 2, ak 3, . . . , an:

s x
dn k 1

dxn k 1
r x

k 1 ! n k 1

2
ak 1x

2 k! n k !akx
k 1 ! n k 1

2
ak 1.

Noticing the similarity between the coefficients of s x and binomial coefficients, we simplify this
as

s x
n!

2

ak 1

n
k 1

x2 2
ak
n
k

x
ak 1

n
k 1

.

Since we got s x by taking derivatives of r x , we know that it too must have all real roots. There-
fore we know that its discriminant must be nonnegative:

4
ak
n
k

2

4
ak 1

n
k 1

ak 1

n
k 1

0.

This shows that the sequence ak
n
k

is log-concave. This is actually stronger than what we

wanted. Notice that if bk and ck are both log-concave, then b2
k bk 1bk 1 and c2

k ck 1ck 2,

so clearly bkck
2 bk 1ck 1 bk 1ck 1 . That is, the product bkck is also log-concave. There-

fore, since we know that ak
n
k

is log-concave, and we know that n
k

is log-concave, we may

conclude that their product, ak , is log-concave.


