An alternative formulation

If REY in P, then

[x,y] = { 2: x = 2 = y}

is a closed interval in P.

We defined the incidence algebra I(P) as the set of all R-valued (for some ring R) matrices M indexed by the elements of P such that M(x,y) = 0 unless $x \le y$.

Others define I(P) as the set of all functions $f:InMrvals \rightarrow R$ with multiplication given by $(f \cdot g)([x,y]) = \sum f(x,z)g(z,y).$

These are equivalent.

Lattices

The poset P is called a <u>lattice</u> if every pair of elements x, y eP has

- a unique least upper bound, called the join and denoted x y, and
- · a unique greatest lower bound, called the <u>meet</u> and denoted x My.

Ex: $P = (2^{(n)}, \subseteq)$ is a lattice, $S \vee T = S \cup T$, $S \wedge T = S \cap T$.

Ex: P = (N, 1) is a lattice, $m \vee n = Acm(m, n)$, $m \wedge n = gcd(m, n)$.

Not all posets are lattices

Minimum and Maximum elements

By successively taking meets, we see that every finite Lattice has a unique minimum element.

This element is usually denoted O.

By symmetry, finite Lattices have unique maximum elements, denoted by 1.

Set partitions

Let TTn denote the collection of all (set) partitions of [n].

(Recall that |TTn| = B(n).)

Define an order on TTn by refinement:

of The every block of of the contained in a block of The

B(3) = 5.

Is To a lattice?

1 = 12...n (one block)

ô = 1/2/.../n (all singletons)

TAT: the elements i and j share a block in TAT if and only if they share a block in both T and T.

かって?

Ex: set partitions of cards

1 = all cards in same block

ô = all cards in different blocks

s = blocks are the suits

c = blocks are the colors

V = blocks are the blackjack

N = blocks are the names (ace, King, ...)

Observe:

S&C

N&V

NAS= ô

NAC is all doubleton blocks

 $5 \lor \lor = \hat{1}$

TTn is a lattice

The poset P is a <u>meet-semilattice</u> if x x y exists for all x, y \(\text{P} \).

Ex: TTn is a meet-semilattice.

Lemma 16.30: Every finite meetsemilattice with a maximum element is a lattice.

Proof: Suppose L satisfies these hypotheses and take x, y & L.

Let U = {z e L: z > x, y }. Q & U.

U is nonempty because Q & U,

and U is finite because L is

finite. Therefore U has a

minimal element given by

u, N uz A ... A Uk

where U = {u, vz, ..., vk}. This is

the join of x and y.

Weisner's Theorem 16.33: Let L be a finite Lattice with 0 and 1. Then for any element a \$1 in L,

$$\sum_{\mathbf{x}:\mathbf{x}\wedge\mathbf{a}=\mathbf{\hat{0}}}\mathcal{M}(\mathbf{x},\mathbf{\hat{1}}) = \mathbf{O}.$$

Note: The usefulness of this result is that it allows us to compute m(ô,î), with less hassle than our previous recurrence, which was based on

$$\sum_{\hat{0} \leq x \leq \hat{L}} \mathcal{M}(x, \hat{1}) = 0.$$

Example 16.34 Use Weisner's Theorem to compute MATA (ô,î).

It is up to us to choose a.

Then $x \wedge a = \hat{0} = 1/2/.../n$ if and only if all elements of [n-1] lie in different blocks in X.

There are n-1 such partitions x = 1/2/.../i-1/i n/i+1/.../n-1.

Proof of Weisner's Theorem

Fix a \$ 1. We can rewrite the sum in the theorem as

$$\sum_{x \in L} M(x, \hat{1}) \begin{cases} 1 & \text{if } x \land \alpha = \hat{0}, \\ 0 & \text{otherwise.} \end{cases}$$

By a bit of cleverness, this is

$$\sum_{X \in L} \mu(x, \hat{1}) \sum_{Y \leq X \wedge A} \mu(\hat{0}, Y).$$

Note that yexna iff yex and yea, so by reversing the order of summation, this is

$$\sum_{y \in Q} \mu(\hat{o}, y) \sum_{x \in [y, \hat{1}]} \mu(x, \hat{1}).$$

Now since y < a \$1, the inner sum is always O.

Now Weisner's Theorem shows

$$\sum_{\mathbf{X}:\mathbf{X}\wedge\mathbf{a}+\mathbf{\hat{o}}} \mathcal{M}_{\mathbf{n}}(\hat{o},\hat{1}) = 0,$$

so we have

For these choices of x,

so we see that

$$M_{\pi_2}(\hat{0},\hat{1}) = -1,$$

$$M_{\pi_2}(\hat{0},\hat{1}) = -2M_{\pi_2}(\hat{0},\hat{1}) = 2,$$
 $M_{\pi_3}(\hat{0},\hat{1}) = -3M_{\pi_3}(\hat{0},\hat{1}) = -6$

$$M_{\pi_3}(0,1) = -3M_{\pi_3}(0,1) = -6,$$
 $M_{\pi_4}(0,1) = -3M_{\pi_3}(0,1) = -6,$

and in general, $MT_{n}(\hat{0},\hat{1}) = -(n-1)MT_{n-1}(\hat{0},\hat{1});$

thus we see by induction that Mm, (ô,î) is (-1) n-1 (n-1)!

The full Mobius function for Th

Suppose that $T \le \pi$, where $\pi = B_1 / B_2 / \cdots / B_K$. Then T is formed by splitting these blocks. Suppose Bi is split into by blocks in T.

Then $[\tau, \pi] \cong \Pi_{b_1} \times \Pi_{b_2} \times ... \times \Pi_{b_{K_1}}$ so $\mathcal{M}_{\Pi_{A}}(\tau, \pi) = (-1)^{b_1 + ... + b_{K_1} - K} (b_1 - 1)! ... (b_{K_1} - 1)!$

Connected graphs are counted by $g(\hat{1}) = g(12 \dots n)$.

But f is trivial to compute: if $\sigma = B_1/B_2/.../B_K$, then $f(\sigma) = 2^{\binom{|B_1|}{2}} 2^{\binom{|B_1|}{2}}... 2^{\binom{|B_N|}{2}}$

Therefore, we can get a formula for $g(\hat{1})$ by Mobiüs inversion.

Counting connected graphs

There are $2^{\binom{n}{2}}$ (labeled) graphs on [n]. How many are connected?

Each graph G on [n] determines a set partition, whose blocks are the vertices of its connected components. Call this partition 17(G).

For $T \in T_n$, define g(T) = # graphs with $\pi(G) = T$. For $\sigma \in T_n$, define $f(\sigma) = \#$ graphs with $\pi(G) \leq \sigma$, $= \sum_{T \leq \sigma} g(T)$.