Dyck Paths

A path in the plane from (0,0) to (2n,0) which uses only the steps (1,1) and (1,-1) and never goes below the line y=0 is a Dyck path.

André's reflection principle (1881)

Total number of paths (not necessarily Dyck) from (0,0) to (2n,0) with these steps:

Number of paths from (0,0) to (2n, -2):

Every path from (0,0) to (2n,-2) crosses the line y=-1 somewhere.

At the first such step, reflect the rest of the path about this line.

This yields a bijection:

non-Dyck paths = # paths

(0,0) → (2n,0) = (0,0) → (2n,-2)

Therefore,

Dyck paths = # paths - # non-Dyck

= $\binom{2n}{n} - \binom{2n}{n-1}$ Since $\binom{2n}{n-1} = \frac{(2n)!}{(n-1)!(n+1)!}$ = $\frac{n}{n+1} \frac{(2n)!}{n!}$ = $\frac{n}{n+1} \binom{2n}{n}$,

we see that

Dyck paths = $\frac{1}{n+1} \binom{2n}{n}$.

These are known as the Catalan numbers.

<u>First passage decomposition</u>

Now we know that

$$D_{n} = \# \text{ Dyck paths } (0,0) \Rightarrow (2n,0)$$

$$= \frac{1}{n+1} {2n \choose n}$$

$$= C_{n} \text{ (the nth Cotalan #)}$$

Is there an easier way?

Consider the first time the path hits the line y=0:

$$C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$$
. for $n \ge 1$

This should remind you of a product...

Then the coeffient of xn in F2 is: $[x^n] F^2(x) = \sum_{i=0}^{\infty} C_i C_{n-i}$

So what we have above is the coefficient of x^{n} in $x F^{2}(x)$.

Therefore,

To find F explicitly, we solve x F2 - F + 1 = 0 using the quadratic formula. $F = \frac{1 \pm \sqrt{1 - 4x}}{2x}.$

We need to know whether to take + or -. We decide by plugging in x=0. Since F(0)=1, we must take the -:

$$F = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

We could double-check this g.f. using Newton's Binomial Theorem; this is on the homework.

Algebraic generating functions

Last time we showed that a generating function is rational if and only if the sequence satisfies a linear recurrence relation.

Today we would like to consider more general recurrences.

Recall that a complex number is algebraic if it is the root of a nonzero polynomial with rational coefficients.

The generating function F(x) is algebraic if there is a nonzero polynomial p(x,y) with rational coefficients such that P(x,F(x))=0.

The permutation π avoids 132 if there do not exist three indices i<j<k such that $\pi(i) < \pi(k) < \pi(j)$.

Consider any 132-avoiding permutation. Draw its plot and look at its maximum entry:

This gives the Catalan recurrence!

Lemma 14.9: The number of permutations of [n] that avoid 123 is also Cn.

Proof: A <u>left-to-right minima</u> in TT is an entry which is smaller than all those to its left.

Take a permutation T that avoids 123, and plot it, circling the Left-to-right minima:

Note that the remaining entries are in descending order.

The same number of permutations avoid 132 as avoid

231,

312, and

213.

(nhy?)

Therefore the only other cases of length 3 to Consider are 123 and 321, and these are the Same (why?).

Now remove everything but the Left-to-right minima:

Thus we are missing the entries 8,7,5,3, and 2. Insert these from left-to-right, at each stage inserting the smallest entry possible without creating a new left-to-right minima.

This is a bijection between 123- and 132-avoiding permutations.