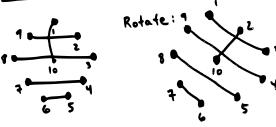
Scheduling games

10 football teams
9 Saturdays
each team must play
every other.

Solution:



and repeat...

Our construction generalizes to show that Kzn has a 1-factorization for all n.

What about generalizing this?

Kzn"="{ all z-subsets of [2n]}

Suppose kin. Can we partition the k-subsets of [n] nicely?

<u>Terminology</u>

A <u>perfect matching</u> for the graph G is a collection of edges so that every vertex is in precisely one edge.

These are also called 1-factors.

A 1-factorization of G is a partition of its edges into 1-factors.

Aside: How many 1-factorizations does Ky have?

98, 758, 655, 816, 833, 727, 741, 338, 583, 040. (1 million times #stars in universe)

A parallel class is a set of NK disjoint elements of ([n]), the set of all k-subsets of [n].

If kIn, can we partition ([N]) into parallel classes?

If we could, how many parallel classes would we need?

Answer: $\frac{\binom{n}{k}}{\frac{n}{k}} = \binom{n-1}{k-1}$.

Baranyai's Theorem (1973):

If k(n, then ([n]) can be partitioned into (n-1) parallel classes.

<u>Proof:</u> We give the proof due to Browner and Schrijver.

This proof is inductive, but we need a "catalytic" variable to make the induction work.

Def: An m-partition of the set X is a multiset Q of m pairwise disjoint subsets of X (some of which may be empty) whose union is X.

Inductive claim: Suppose kln.

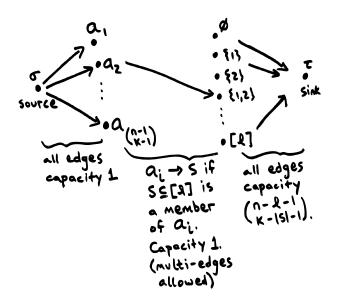
For any Oslsn, there exists a collection

 $\alpha_1, \alpha_2, ..., \alpha_{(\kappa-1)}$ of π -partitions of [x] with the property that each subset $S \subseteq [x]$ occurs in precisely

(n-1)

of the A-partions ai.

Note: l = 0 is trivial... $a_i = \{g^{n/k}\}$. l = n implies the theorem. Suppose the claim holds for 130. We construct a network.



A flow in this network:

all edges $\sigma \rightarrow a_i$ flow 1

all edges $a_i \rightarrow s$ flow $\frac{k-1s_i}{n-k}$ all edges $s \rightarrow \tau$ flow $\binom{n-k-1}{k-1s_{i-1}}$.

Out-flow at a_i : $\sum_{k=1s_i} \frac{k-1s_i}{n-k} = \frac{1}{n-k} \binom{mk-\sum_{s \in a_i}}{s \in a_i}$ $= \frac{1}{n-k} \binom{mk-k}{s}$ (where m = n/k.)

In-flow at S: $\sum_{k-1SI} \frac{k-1SI}{n-k} = \frac{k-1SI}{n-k} \binom{n-k}{k-1SI}$ $= \binom{n-k-1}{k-1SI-1}.$ This verifies that this is a flow.

This verities that this is a flow.

Since all edges leaving of are at capacity, this is a maximum. flow.

Also, the edges entering t are saturated. Hence they must be solvrated in any maximum flow.

Our proof of the Max-Flow Min-Cut theorem actually proved more — if all capacities are integers, then there is an integral maximum flow.

So this network has a maximum integral flow. What does this flow look like? For each i, it assigns a flow of 1 to the edge $a_i \rightarrow S$ for some member S of a_i .

Call this member "special"

Now the flow assigns $\binom{n-2-1}{k-151-1}$ to each edge $S \rightarrow T$, so each $S \subseteq [2]$ is special for precisely this many $\frac{n}{k}$ - partitions Q_i .

It is time to construct a set B_1 , B_2 , ..., $B_{\binom{N-1}{K-1}}$ of 1+1.

Do this by replacing the special member SEQ; by SU{1+1} to form Bi.