The Matrix-Tree Theorem

First, what's a tree?

A path in a graph G is a sequence V1, V2, ..., Vx of vertices so that viave ... ~ Vx.

A cycle is a path VI, Vz, ..., Vk with K > 3 Such that V, ~ V_K.

Fact: Every tree with n22 vertices has at least two leaves (vertices of degree 1).

Proof: Let T be a tree. Since T is connected, deg v31 for all VET. NOW

$$\sum_{v \in T} deg v = \frac{2(n-1)}{each} = 2n-2,$$
veT
$$= \frac{2(n-1)}{each} = 2n-2,$$
counted twice

so deq v = 1 for at least two verticës. 🔳

Fact: If G has n vertices and n-1 edges and is not a tree, then G has an isolated vertex (vertex of degree O).

Proof: Similar.

A graph is connected if there is a path between every two of its vertices.

A tree is a connected graph without cycles.

Theorem: The following are equivalent for a graph T:

OT is a tree,

2 any two vertices of T are connected by a unique path,

3 T is minimally connected, i.e., T-e is disconnected for every edge e of T,

T is maximally acyclic, i.e.,

The has a cycle for every edge e not in T. Proofi HW.

How many trees on [n] are there?

Cayley's Theorem: There are nn-2 trees on [n].

Another perspective

The graph $H = (V_H, E_H)$ is a <u>subgraph</u> of the graph $G = (V_G, E_G)$ if $V_H \subseteq V_G$ and $E_H \subseteq E_G$.

H is a spanning subgraph of G if $V_H = V_G$ and $E_H \subseteq E_G$.

H is a spanning tree of G if H is a spanning subgraph of G and H is a tree.

The complete graph K_n has vertices [n] and all edges $\binom{[n]}{2}$.

So: how many spanning trees does Kn have?

We will actually figure out how to compute the number of spanning trees for any graph G.

Def: Let G be a directed graph without loops. Let VG = { v1, ..., vn }

and EG = { e1, ..., em }.

The incidence matrix of G is the nx m matrix A defined by

Aij = 1 if ej ends at vi

Aij = 1 if ej begins at vi

Aij = 0 otherwise.

spanning trees?

e,e, e,e, e,ey = 5

e,e, e,ey

Theorem 10.20 Let G be a directed graph without loops, and let A be the incidence matrix of G. Remove any row (corresponds to a vertex) from A to obtain the matrix Ao. The number of spanning subtrees of G is det Ao. Ao.

Note: Spanning tree of a directed graph? This just means that if you ignore the directions you have a spanning tree.

<u>Proof:</u> The Binet-Cauchy formula states that

det $A_0A_0^T = \sum_{i=1}^{\infty} (\det B_i)^2$ where the sum ranges over all $(n-1) \times (n-1)$ submatrices B of A_0 .

(Here n = # vertices of G.)

Every such B corresponds to a spanning subgraph H of G with n-1 edges.

Claim: det $B = \begin{cases} \pm 1 & \text{if } H \text{ is a tree,} \\ 0 & \text{otherwise.} \end{cases}$

We prove the claim by induction on n.

First suppose that H has two leaves. Then at least one of these leaves corresponds to a row of Ao, so B has a row with a single nonzero entry. Expanding det B along this row, we see that

det B = ± det B',
where B' denotes the submatrix
of B with this row and
corresponding column removed.
B' defines a graph itself, H'.
By induction, det B' = ±1 if
H' is a tree and O otherwise.

Back to Ex:

Remove last row of A to get $A_0 = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & 0 & 1 & -1 \end{bmatrix}$

which 2x2 matrices B give det B \$0?

spanning trees = 5.

Now suppose that H does not have two leaves. Then H is not a tree, and also, since H has only n-1 edges, H must have a vertex of degree O (an isolated vertex). Thus B has an all-D row, so det B=0.