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1.2. THE REMAINDER THEOREM

Our goal in this section is to explain why Taylor polynomials make such nice approxima-
tions to certain functions. The object of interest for us is therefore the remainder term,

Rn x f x Tn x .

While you may be accustomed to “remainder” being a notion from division, here we are
using its more general meaning as “the part left over.” Three remainder terms for sin x

(centered at 0) are shown below. As can be seen from these plots, the Taylor polynomials
for sinx give better and better approximations near x 0.
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If we can show that the remainder term is close to 0, then that means that the Taylor
polynomial is a good approximation to the function. For example, consider the remainder
terms plotted above; T5 x is a better approximation to sin x than T3 x because R5 x is
close to 0 for more values of x than R3 x . Our main tool in bounding the remainder term
is, somewhat surprisingly, a result from Calculus I.

Rolle’s Theorem. Suppose that f is a differentiable function. If
f a f b for some a b then there is at least one number c

between a and b at which f c 0.

Rolle’s Theorem is named after the French mathematician Michael Rolle (1652–1719),
although it also appears (without proof) in the 12th century work of the Indian astronomer
Bhāskara II (circa 1114–1185).

In order to show how Rolle’s Theorem can possibly tell us anything about Taylor poly-
nomials, we begin with the following problem.

Example 1. Determine how close the Taylor polynomial of degree 3 for sin x centered at 0,
T3 x x x3 6, is to sin x at the point x 1 2.

Of course, there is an easy way to cheat: just compute the difference between T3
1 2

and sin 1 2. In fact, we did this in the last section. But let’s pretend for a moment that we
don’t have access to calculators or computers, so we have to estimate the error, rather than
simply compute the error. This is a valuable exercise because error estimates are useful
theoretically.
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Solution. There is certainly some value of K for which

sin 1 2 T3
1 2 K 1 2

4 ,

because we could just solve for K (if we did so, we would find that K 0.00414, but
remember that we are pretending not to have calculators!).

Let K be this value. Now define the function F x by

F x sin x T3 x Kx4.

This function is 0 at two points: 0 (which is, not coincidentally, the center), and 1 2, because
that’s how we defined K . Therefore we can apply Rolle’s Theorem to see that

F x sin x T3 x 4Kx3

is 0 at some point c1 between 0 and 1 2. But F x is also 0 at x 0, because sin x T3 x

at x 0 and 4Kx3 is 0 at x 0. Using Rolle’s Theorem again, we see that

F x sin x T3 x 12Kx2

is 0 at some point c2 between 0 and c1. Again, F 0 0, so Rolle’s Theorem says that

F x sin x T3 x 24Kx

is 0 at some point c3 between 0 and c2. Still, F 0 0, so we can apply Rolle’s Theorem
once again:

F 4 sin 4 x T
4

3 x 24K

is 0 at some point c4 between 0 and c3. This is the point we are really interested in, so let’s

set c c4. Notice that T
4

3 x is 0, because T3 x is just a degree 3 polynomial, so, solving
for K ,

K
sin 4 c

24
.

But how big can K be? Since sin 4 x sin x, the numerator of this fraction is between 1

and 1, so K 1 24. So if we go back to how we defined K , we see that

sin 1 2 T3
1 2 K 1 2

4 1

24 24

1

384
0.0026.

(The actual error is a power of 10 smaller, 0.00026.)

Thanks to the following theorem, due to Lagrange, we do not have to repeat this cal-
culation over and over again.
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The Remainder Theorem. Suppose that f is n 1 times differen-
tiable and let Rn denote the difference between f x and the Taylor
polynomial of degree n for f x centered at a. Then

Rn x f x Tn x
f n 1 c

n 1 !
x a n 1

for some c between a and x.

The importance of the Remainder Theorem is that it allows us to bound the size of the
remainder easily, based on values of the function’s derivatives. Remember that n! grows
very quickly, even more quickly than any exponential, like 2n or 10n. This means that
the n 1 ! in the denominator of the Remainder Theorem will (as n increases) dominate
the power x a n 1. The remainders will therefore get very small, provided that the
derivatives don’t increase too quickly as n increases.

The proof of the Remainder Theorem is much like our solution of Example 1.

Proof of the Remainder Theorem. We wish to show that for all b,

Rn b
f n 1 c

n 1 !
b a n 1

for some c between a and b. (We have switched the xs in the statement into bs, for clarity in what
follows, but of course this is the same result.)

Choose K so that
f b Tn b K b a n 1

and define the function
F x f x Tn x K x a n 1.

Note that the first n derivatives of F x at x a are all 0, because Tn x was constructed to match
the first n derivatives of f x at x a, and the first n derivatives of K x a n 1 at x a are all 0.

As we just noted, F a 0 (this is the 0th derivative), and we also have (because we chose K
this way) F b 0. Therefore we can apply Rolle’s Theorem to see that F c1 0 for some c1

between a and b. Now consider F x . We have (so long as n 1) that F a 0, and we have just
seen that F c1 0, so applying Rolle’s Theorem again, there is some c2 between a and c1 so that
F c2 0. We can repeat this argument n times, finding a c3 between a and c2 so that F c3 0,
and so on, until we find a cn between a and cn 1 so that F n cn 0.

At this stage we apply Rolle’s Theorem a final time, to see that there is some cn 1 between a
and cn so that F n 1 cn 1 0. But what is F n 1 x ? It is nothing but

F n 1 x f n 1 x n 1 !K

(note that the n 1st derivative of Tn x is 0, because Tn x is a polynomial of degree n). Now we
solve for K :

K
f n 1 cn 1

n 1 !
.
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Defining c cn 1 and returning to our definition of K , we see that

f b Tn b
f n 1 c

n 1 !
b a n 1.

Subtracting Tn b from both sides completes the proof.

Note that in the proof of the Remainder Theorem we have given, we don’t care in the
end about c1, c2, . . . , cn at all, it is only cn 1 that matters. This “book-keeping” is common
in mathematical arguments; one must often keep track of extra information which is not
itself of interest.

Using the Remainder Theorem to bound the error in an approximation is a straight-
forward procedure:

1. Find an upper-bound, M , on the absolute value of the n 1st derivative of f between
a (the center) and x (where you want to bound the error).

2. The error Rn x is then at most
M

n 1 !
x a n 1.

Example 2. What is the maximum possible error if the Taylor polynomial of degree 5 for
the function f x sin x centered at 0 is used to approximate sin 1 2?

Solution. Since
f 1 2 sin 1 2 T5 1 2 R5 1 2 ,

we simply want an upper bound on the remainder term, R5 1 2 . The Remainder Theorem
states that

R5 1 2
f 6 c

6!
1 2 6,

for some c between 0 and 1 2. Furthermore, f 6 c 1 for all c, because the derivatives
of sin are simply cos, sin, cos, and sin, so

R5 x
1

6! 26

1

46080
0.0000217.

This compares well with the actual error we found in Example 1 of Section 1.1, which was
0.0000154.

Example 3. What is the maximum possible error if the Taylor polynomial of degree 4 for
the function f x ex centered at 0 is used to approximate e0.2?

Solution. As in the previous example, we simply bound the remainder term. We have

R4 0.2
f 5 c

5!
0.2 5
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for some c between 0 and 0.2. Since f 5 ex, the maximum that f 5 c can be for c

between 0 and 0.2 is e0.2, so the error in this estimate is at most

R4 0.2
e0.2

5!
0.2 5 0.0000326

(the actual error in this estimate is about 0.0000276). One might complain that we used the
value of e0.2 in bounding the error. To avoid this, you can instead use the bound f 5 c 2,
which would give a maximum error of about 0.0000533.

Example 4. What degree Taylor polynomial for sin x (centered at 0) must you use in order
to approximate sin 1 to within 0.001 accuracy?

Solution. This is a bit different than the previous problems, because we are given the
accuracy and must solve for n. By the Remainder Theorem,

Rn 1
sin n 1

n 1 !
.

Because all derivatives of sin x are bounded between 1 and 1, we have that Rn 1

1 n 1 !. Choosing n 5 might not work, because 1 6! 1 720 0.001, but n 6 is
certainly enough because 1 7! 1 5040 0.001. (Actually, T5 x and T6 x are the same
Taylor polynomials in this case.)

Taylor polynomials (and the Remainder Theorem) are frequently used to analyze func-
tions. The next two examples show two such uses. We first revisit the Second Derivative
Test, and then we prove the more useful nth Derivative Test.

The Second Derivative Test. Suppose f x , f x , and f x are continuous on an open
interval containing a critical point a of f x .

1. If f a 0 then f has a local maximum at a.

2. If f a 0 then f has a local minimum at a.

3. If f a 0 then the test is inconclusive.

Proof. The Taylor polynomial of degree 1 for f x is

T1 x f a
f a

1!
x a ,

and since f a 0 (because a is a critical point), T1 x is simply f a . By the Remainder Theorem,
we have

f x T1 x R1 x f a
f c

2
x a 2
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for some c between a and x (note that f a 0 by the hypotheses). Because f x is continuous,

for c near a, f c is near f a . Therefore if f a 0 then for x near a, f c will also be negative,

so from the Taylor polynomial expansion of f x we see that a will be a local maximum. The case

f a 0 follows analogously.

The Second Derivative Test is not useful if f a 0. Consider, for example, f x

1 cos x2 at the point 0. Here we have f 0 f 0 0, so we cannot classify this critical
point. In such situations, a higher order tests is required.

The nth Derivative Test. Suppose f x , f x , . . . , f n x are continuous on an open inter-
val containing a critical point a of f x , that f a f a f n 1 a 0, and that
f n 0 0.

1. If n is even and f n a 0 then f has a local maximum at a.

2. If n is even and f n a 0 then f has a local minimum at a.

3. If n is odd then f has an inflection point at a.

Proof. As in the proof of the Second Derivative Test, we expand f x as a Taylor Polynomial
centered at a, although in this case we use a degree n 1 expansion together with its remainder
term:

f x f a
f n c

n!
x a n.

Because f n is continuous (we assumed this in our hypotheses), for x close enough to a, f n c

will be the same sign as f n a . The proof is now identical to the proof of the Second Derivative

Test.

Example 5. Classify the critical point 0 of f x 1 cos x2.

Solution. We see that f 0 f 0 f 0 0 but f 4 0 12 0, so the point 0 is a
local minimum for this function by the nth Derivative Test.

Because Taylor polynomials provide (or at least, seem to provide) better and better ap-
proximations as n increases, what would happen if we simply “set n ?” For example,
the Taylor polynomial of degree n for the function f x ex centered at 0 is

Tn x 1 x
x2

2

x3

6

xn

n!
.

What if we didn’t stop at n? That would give us the infinite sum

1 x
x2

2!

x3

3!
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(here means to keep adding forever). This is in some sense the “Taylor polynomial
of degree for the function f x ex centered at 0.” How well does this infinite sum
approximate ex? It turns out, as we will see later, that this infinite sum is actually equal to
ex for all values of x. Before that though, we need to do quite a bit of background work —
what does it even mean to add an infinite list of numbers together?

EXERCISES FOR SECTION 1.2

1. Explain why the graph shown below does not
depict the remainder term Rn x for any Taylor
polynomial centered at 0.

2. Explain why the graph shown below does not
depict the remainder term Rn x for any Taylor
polynomial centered at 0.

In Exercises 3–6, use the Remainder Theorem to
bound the error involved in using the specific Tay-
lor polynomial (centered at 0) to approximate f x
at a point.

3. T3 x for f x sin x at x 0.6

4. T5 x for f x sin x at x 0.25

5. T4 x for f x ex at x 0.8

6. T3 x for f x cos x at x 0.2

In Exercises 7–14, what degree Taylor polynomial
(centered at 0) would be required to approximate
f x at the given point to within the stated accu-
racy? You need not find the best possible degree,

but you should justify your answer using the Re-
mainder Theorem.

7. f x sin x, at x 0.1, to within 1 100

8. f x sin x, at x 0.2, to within 1 100

9. f x ex, at x 0.5, to within 1 100

10. f x ex, at x 1, to within 1 100

11. f x ex2

, at x 0.5, to within 1 100

12. f x 1 x13, at x 0.1, to within 1 100

13. f x 1 x 13, at x 0.1, to within 1 100

14. f x x ln 1 x , at x 0.2, to within 1 100

In using Taylor polynomials to approximate a func-
tion f x we need to choose the center, a, to be near
x, but we also need to be able to compute f and
its derivatives at a. What Taylor polynomial of de-
gree 3 would you use to approximate the functions
in Exercises 15–20 at the given value of x? Note
that that these problems have two parts; first you
should choose an appropriate center a, and then
you should compute the Taylor polynomials. Also
note that there may be several good answers for
each problem.

15. f x cosx near x 0.7

16. f x cos x 7 near x 22

17. f x 2 x near x 1.9

18. f x sin x near x 2

19. f x 3 1 x near x 7.3

20. f x sin x2 near x 1.25
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All of the functions in Exercises 21–24 have a critical
point at x 0. Compute the Taylor polynomial of
degree 4 centered at a 0 and classify this critical
point.

21. f x cosx x2
2 1

22. f x x sin x2

23. f x ex 1 x sin x

24. f x x arctan x2

A commonly used approximation is

1 x e x

for x close to 0. Exercises 25–28 investigate this ap-
proximation.

25. Approximate 1 1 11 in this way. Using a calcu-
lator or computer, determine the error in your ap-
proximation.

26. Approximate 1 1 11
5 in this way. Using a

calculator or computer, determine the error in your
approximation.

27. Explain the connection between this approxima-
tion and Taylor polynomials.

28. For what values of x is this approximation
within 1 100 of the true value of 1 x?

The result of Exercise 30 is often useful for proving
statements about polynomials with only real roots.
Exercise 29 is needed for its solution.

29. If the polynomial p x has a root at r, i.e.,
p r 0, then the multiplicity of r is the largest inte-
ger m such that p x x r mq x . Prove that if
p x has a root at r of multiplicity m 2, then p x
has a root at r of multiplicity m 1.

30. Using Rolle’s Theorem and Exercise 29, prove
that if all the roots of the polynomial p x are real,
then all of the roots of its derivative are also real.
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ANSWERS TO SELECTED EXERCISES, SECTION 1.2
1. The remainder must be 0 at the center, 0

3. Error
0.64

4!

5. Error
e0.8

5!
0.8 5

7. n 1 suffices

9. n 4 suffices; note that for c between 0 and 0.5, ec is at most e0 1.

11. n 3 suffices

13. n 5 suffices

15. a π 4 0.78 would be a good choice for the center, giving the Taylor polynomial

T3 x
1

2

1

2
x

π

4

1

2 2
x

π

4

2 1

6 2
x

π

4

3

17. a 2 would be a good choice for the center, giving the Taylor polynomial

T3 x 2
1

4
x 2

1

64
x 2 2 1

512
x 2 3

19. a 7 would be a good choice for the center, giving the Taylor polynomial

T3 x 2
1

12
x 7

1

288
x 7 2 5

20736
x 7 3


