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Pattern avoidance

Two sequences a1 . . . ak and b1 . . . bk are order-isomorphic if

ai < aj ⇐⇒ bi < bj .

Example: 634 and 312 are order-isomorphic.

Given two permutations π ∈ Sn and σ ∈ Sk ,
π contains σ if some subsequence of π is order-isomorphic to σ.

Example: 216354 contains 312.

Given a set of permutations B ,

π avoids B if π does not contain any σ ∈ B .

Let

Sn(B) = {π ∈ Sn : π avoids B}.
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Statistics on permutations

For π ∈ Sn, de�ne its

I descent set

Des(π) = {i : π(i) > π(i + 1)},

I inversion number

inv(π) = #{i < j : π(i) > π(j)}.

Example: For π = 51432,

Des(π) = {1, 3, 4}, inv(π) = 4 + 2 + 1 = 7.
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Standard Young tableaux

λ = (λ1, λ2, . . . ) is a partition of n if λ1 ≥ λ2 ≥ · · · ≥ 0 and

λ1 + λ2 + · · · = n. We write λ ` n.

Example: (4, 2, 1) ` 7

λ can be represented as

A Standard Young tableau of shape λ is a �lling of this shape with

the numbers 1, . . . , n with increasing rows and columns:

Example: T =
1 2 4 7
3 6
5

Des(T ) = {2, 4}

Its descent set is Des(T ) = {i : i + 1 is in a lower row than i}.
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Standard and semistandard Young tableaux

Let SYT(λ) be the set of all standard Young tableaux of shape λ.

SYT(3, 2) =

{
1 2 3
4 5

, 1 2 4
3 5

, 1 2 5
3 4

, 1 3 4
2 5

, 1 3 5
2 4

}

Allowing the entries to be any positive entries (possibly repeated)

and the rows to be weakly increasing, we obtain the set SSYT(λ)
of semistandard Young tableaux of shape λ.

SSYT(3, 2) =

{
1 1 1
2 2

, 1 1 2
2 2

, 1 2 2
2 3

, 1 2 3
2 3

, . . . , 2 4 5
3 5

, . . .

}
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Symmetric functions

A symmetric function is a formal power series f (x1, x2, . . .) of

bounded degree that is invariant under any permutation of the

(in�nitely many) variables x1, x2, . . . .

Examples

f =
∑
i 6=j

x3i xj = x31x2 + x32x1 + x31x3 + x33x1 + x32x3 + x33x2 + . . .

g = 2
∑
i

x2i +
∑
i<j

xixj = 2x21 + 2x22 + · · ·+ x1x2 + x1x3 + . . .

The set of homogeneous symmetric functions of degree k forms a

vector space over Q, denoted by Λk .
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Schur functions

For λ ` k , de�ne the Schur function

sλ =
∑

T∈SSYT(λ)

∏
i

xnumber of is in T
i .

Example

SSYT(2, 1) =

{
1 1

2
, 1 2

2
, 1 1

3
, 1 3

3
, 2 2

3
, 2 3

3
, 1 2

3
, 1 3

2
, . . .

}

s2,1 = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + 2x1x2x3 + . . .

Theorem
Schur functions are symmetric, and {sλ : λ ` k} is a basis for Λk .
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Schur-positivity

A symmetric function is Schur-positive if all the coe�cients in its

expansion in the Schur basis are nonnegative.

Example: Given λ ` k and µ ` `, consider the product

sλsµ =
∑
ν

cνλ,µsν .

The Littlewood�Richardson rule gives a combinatorial interpretation

of the coe�cients cνλ,µ, showing that sλsµ is Schur-positive.
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Quasi-symmetric functions

A quasi-symmetric function is a formal power series f (x1, x2, . . .) of

bounded degree where, for every �xed α1, . . . , αk , the coe�cient of

xα1i1
. . . xαk

ik
is the same for any increasing indices i1 < · · · < ik .

Example: f =
∑

i<j x
2
i xj is quasisymmetric but not symmetric.

For π ∈ Sn, de�ne the quasisymmetric function

Fπ =
∑

i1≤i2≤...≤in
ij<ij+1 if j∈Des(π)

xi1xi2 · · · xin .

Example: π = 132, Des(π) = {2}.

F132 = x1x1x2 + x1x1x3 + x1x2x3 + x2x2x3 + . . . .
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Quasi-symmetric functions

For A ⊆ Sn, let
Q(A) =

∑
π∈A

Fπ.

Question 1 (Gessel, Reutenauer '93):

For which A ⊆ Sn is Q(A) symmetric?

Question 2 (Adin, Roichman '13):

For which A ⊆ Sn is Q(A) Schur-positive?

For simplicity, we'll say �A is Schur-positive� instead of

�Q(A) is Schur-positive�.

We de�ne Q(A) similarly if A is a multiset.
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Known Schur-positive sets

Theorem (Gessel '84)

Q(Sn) =
∑
λ`n
| SYT(λ)| sλ.

Theorem (Gessel '84)

Subsets of Sn closed under Knuth relations are Schur-positive.

The proof uses that if π
RSK7→ (P,Q), then Des(π) = Des(Q).

For J ⊆ {1, . . . , n − 1}, de�ne the inverse descent class

D−1J = {π ∈ Sn : Des(π−1) = J}.

Corollary

D−1J is Schur-positive.
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Theorem (Gessel, Reutenauer '93)

Subsets of Sn closed under conjugation are Schur-positive.

Corollary

I The set of involutions in Sn is Schur-positive.

I The set of derangements in Sn is Schur-positive.

Theorem (Adin, Roichman '15)

For every k , the set {π ∈ Sn : inv(π) = k} is Schur-positive.
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Symmetric functions
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Known Schur-positive sets

Arc permutations

A permutation π ∈ Sn is an arc permutation if every pre�x of π
forms an interval in Zn. Let An = set of arc permutations in Sn.

Example: 546132 ∈ A6, 541632 6∈ A6.

Proposition

An = Sn(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231)

Theorem There is a bijection between An and the set of SYT of

certain shapes that preserves the descent set.

Corollary

An is Schur-positive and

Q(An) = sn + s1n +
n−2∑
k=2

sn−k,2,1k−2 + 2

n−2∑
k=1

sn−k,1k .
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Schur-positivity

Grid classes
Products of Grid Classes

Grid classes and pattern avoidance
Schur-positive grid classes

Geometric grid classes

For a {0, 1,−1}-matrix M, let Γ(M) be the set of line segments of

slope ±1 whose locations are determined by the entries of M.

Example:

M =

 0 1

−1 0

1 −1

 Γ(M) =

De�ne the geometric grid class

Gn(M) = {π ∈ Sn : π can be drawn on Γ(M)}.

Example: 4532617 ∈ G7
(
1
−1
)
.
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Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ru²kuc, Vatter '13)

Every geometric grid class can be characterized by avoidance of a

�nite set of patterns.

Example:

Gn
(

1

1

)
= Sn(321, 2143, 2413).
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Grid classes
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Arc permutations as grid classes

Arc permutations can be expressed as a union of two (geometric)

grid classes:

An = Gn


1 0

−1 0

0 −1
0 1

 ∪ Gn


0 −1
0 1

1 0

−1 0

 .
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Schur-positivity

Grid classes
Products of Grid Classes

Grid classes and pattern avoidance
Schur-positive grid classes

Elementary examples of Schur-positive grid classes
One-Column grid classes

Proposition

Every one-column grid class is Schur-positive.

Example:

Let Hn = Gn

 −1−1
1



Q(H5) = s5 + 2 s4,1 + 2 s3,2 + 3 s3,1,1 + 4 s2,2,1 + 4 s2,1,1,1 + s1,1,1,1,1
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Schur-positivity

Grid classes
Products of Grid Classes

Grid classes and pattern avoidance
Schur-positive grid classes

Elementary examples
Co-layered permutations

Let Lkn be the grid class determined by the k × k identity matrix.

Example:

Lkn = Gn(Id3)

Proposition Lkn is Schur-positive and

Q(Lkn) =
k−1∑
r=0

sn−r ,1r .

Example: L24 = {1234, 4·123, 34·12, 234·1}.
Q(L24) = s4 + s3,1.
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Permutations and tableaux
Schur-positivity

Grid classes
Products of Grid Classes

Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Main theorem

Given A,B ∈ Sn, let AB be the multiset of permutations obtained

as products πσ where π ∈ A and σ ∈ B .

Theorem
For every Schur-positive set A ⊆ Sn and every J ⊆ [n − 1], the
multiset

AD−1J

is Schur-positive.

In fact,

Q(AD−1J ) = Q(A) ∗ Q(D−1J ),

where ∗ denotes the Kronecker product.
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Schur-positivity

Grid classes
Products of Grid Classes

Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Application: vertical rotations

Let c ∈ Sn be the n-cycle c = (1, 2, . . . , n), and let

Cn = 〈c〉 = {ck : 0 ≤ k < n} be the subgroup it generates.

For A ⊆ Sn, CnA is the multiset of vertical rotations of elements

in A.

Observation: Cn = L2n.

Corollary

I For J ⊆ [n − 1], the multiset CnD
−1
J is Schur-positive.

I For a one-column grid class Hn, the multiset CnHn is

Schur-positive.
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Schur-positivity

Grid classes
Products of Grid Classes

Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Arc permutations revisited

Corollary

An is Schur-positive.

Proof Idea

× = 2 + 2 = 2An.
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Schur-positivity
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Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Horizontal rotations

We can view Sn−1 as a subset of Sn by �xing the last entry n.

If A ⊆ Sn−1, then ACn ⊆ Sn is the set of horizontal rotations of

elements in A.

Theorem
For every Schur-positive set A ⊆ Sn−1, ACn is Schur-positive.

In fact, Q(ACn) = Q(A)s1.

Equivalently, if A �corresponds� to an Sn−1-representation ρ, then
ACn �corresponds� to the Sn-representation ρ ↑Sn .
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Horizontal rotations

Let Mk be the 2k × 2 matrix whose odd rows are (1, 0) and whose

even rows are (0, 1).

Gn(M3)

Gn

 1

1

1



Corollary

Q(Gn(Mk)) is Schur-positive for all k .
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Permutations and tableaux
Schur-positivity

Grid classes
Products of Grid Classes

Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Stacking operations

Given matrices M1 and M2, one of which has one column, let

Γ
(
M1

M2

)
be the grid obtained by stacking Γ(M1) atop Γ(M2), and

Gn
(
M1

M2

)
the corresponding grid class.

Example

Gn

 1

1 0

0 1



Gn

 1 0

0 1

−1



Proposition The above two grids are Schur-positive.

Question: If M1 has one column and G(M2) is Schur-positive, is

Gn
(
M1

M2

)
necessarily Schur-positive?
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Permutations and tableaux
Schur-positivity

Grid classes
Products of Grid Classes

Main theorem
Vertical rotations
Horizontal rotations
Stacking grids

Open questions

Conjecture

For every one-column grid class Hn, the set underlying the multiset

CnHn is Schur-positive.

Conjecture

For every Schur-positive set A ⊆ Sn and every J ⊆ [n − 1],

Q(D−1J A) = Q(AD−1J ).

Since our main theorem states that D−1J A is a �ne multiset, it

would follow that AD−1J is �ne as well.

Question: Which pairs of Knuth classes A,B ⊆ Sn satisfy

Q(AB) = Q(A) ∗ Q(B)?
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Thanks
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