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Permutations and tableaux
Permutations
Standard Young tableaux

Pattern avoidance

Two sequences ay ...ax and by ... by are order-isomorphic if
a,-<aj<:>b,-<bj.

Example: 634 and 312 are order-isomorphic.
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Two sequences ay ...ax and by ... by are order-isomorphic if
a,-<aj<:>b,-<bj.
Example: 634 and 312 are order-isomorphic.

Given two permutations 7 € S, and o € Sy,
m contains o if some subsequence of 7 is order-isomorphic to o.

Example: 216354 contains 312.
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Two sequences ay ...ax and by ... by are order-isomorphic if
a,-<aj<:>b,-<bj.
Example: 634 and 312 are order-isomorphic.

Given two permutations 7 € S, and o € Sy,
m contains o if some subsequence of 7 is order-isomorphic to o.

Example: 216354 contains 312.

Given a set of permutations B,
m avoids B if w does not contain any o € B.
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Permutations and tableaux
Permutations
Standard Young tableaux

Pattern avoidance

Two sequences ay ...ax and by ... by are order-isomorphic if
a,-<aj<:>b,-<bj.
Example: 634 and 312 are order-isomorphic.

Given two permutations 7 € S, and o € Sy,

m contains o if some subsequence of 7 is order-isomorphic to o.
Example: 216354 contains 312.

Given a set of permutations B,

m avoids B if w does not contain any o € B.

Let
Sp(B) = {m € S, : 7 avoids B}.
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Permutations
Standard Young tableaux

Statistics on permutations

For m € S, define its

» descent set

Des(m) = {i: w(i) > n(i+1)},
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Statistics on permutations

For m € S, define its

» descent set
Des(m) = {i: «(i) > n(i+1)},
» inversion number

inv(m) = #{i <j: w(i) > ()}
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Permutations and tableaux
Permutations
Standard Young tableaux

Statistics on permutations

For m € S, define its

» descent set
Des(m) = {i: «(i) > n(i+1)},
» inversion number

inv(m) = #{i <j: w(i) > ()}

Example: For 7 = 51432,

Des(m) = {1,3,4}, inv(r)=4+2+1=7.
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Permutations and tableaux
Permutations
Standard Young tableaux

Standard Young tableaux

A= (A1, A\2,...) is a partition of nif Ay > A\ > --- >0 and
A1+ Ao+ =n. We write A F n.

Example: (4,2,1) -7
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Standard Young tableaux

A= (A1, A\2,...) is a partition of nif Ay > A\ > --- >0 and
A1+ Ao+ =n. We write A F n.

Example: (4,2,1) -7 u

A can be represented as
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Permutations
Standard Young tableaux

Standard Young tableaux

A= (A1, A\2,...) is a partition of nif Ay > A\ > --- >0 and
A1+ Ao+ =n. We write A F n.

Example: (4,2,1) -7 u

A can be represented as

A Standard Young tableau of shape \ is a filling of this shape with
the numbers 1,..., n with increasing rows and columns:

112[4]7]
Example: T =|3|6
5
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Permutations
Standard Young tableaux

Standard Young tableaux

A= (A1, A\2,...) is a partition of nif Ay > A\ > --- >0 and
A1+ Ao+ =n. We write A F n.

Example: (4,2,1) -7 u

A can be represented as

A Standard Young tableau of shape \ is a filling of this shape with

the numbers 1,..., n with increasing rows and columns:
112[4]7]

Example: T =|3|6 Des(T) = {2,4}
5

Its descent set is Des(T) = {i: i+ 1isin a lower row than i}.
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Standard and semistandard Young tableaux

Let SYT(X) be the set of all standard Young tableaux of shape A.
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Standard and semistandard Young tableaux

Let SYT(X) be the set of all standard Young tableaux of shape A.

N
N
w

3] [1]2]4] [1]2]5] [1]3]4] [1

5
YT(3.2) =
SYT(3,2) 45’35’34’25’24}

—
[
N
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Standard and semistandard Young tableaux

Let SYT(X) be the set of all standard Young tableaux of shape A.

w

3] [1]2]4] [1]2]5] [1]3]4] [1]3]5]
415] " [3]5] ' [3]4] [2]5] [2]4

N
N

—_
No

SYT(3,2) = {

Allowing the entries to be any positive entries (possibly repeated)
and the rows to be weakly increasing, we obtain the set SSYT())
of semistandard Young tableaux of shape \.
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Standard and semistandard Young tableaux

Let SYT(X) be the set of all standard Young tableaux of shape A.

N
N
w

3] [1]2]4] [1]2]5] [1]3]4] [1]3]5]
415] " [3]5] ' [3]4] [2]5] [2]4

SYT(3,2) =

—
[
N

Allowing the entries to be any positive entries (possibly repeated)
and the rows to be weakly increasing, we obtain the set SSYT())
of semistandard Young tableaux of shape \.

1[1]1] [1]1]2] [1]2]2] [1]2]3] 2[4]5]
2[2] 7 [2]2] ’[2]3] [2][3] " i3]5]

SSYT(3,2) = {
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Symmetric functions
Quasi-symmetric functions
Known Schur-positive sets

Schur-positivity

Symmetric functions

A symmetric function is a formal power series f(xi, x,...) of
bounded degree that is invariant under any permutation of the
(infinitely many) variables x;, x2, . . ..
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Schur-positivity

Symmetric functions

A symmetric function is a formal power series f(xi, x,...) of
bounded degree that is invariant under any permutation of the
(infinitely many) variables x;, x2, . . ..

Examples
f= ZX?XJ = xf'xz + X§X1 + x13X3 + xgxl + XSX3 + xng +...
i#j
gZQZXiz+ZXi)(j:2X12+2X22+"’+X1X2+X1X3+---
i i<j
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Schur-positivity

Symmetric functions

A symmetric function is a formal power series f(xi, x,...) of
bounded degree that is invariant under any permutation of the
(infinitely many) variables x;, x2, . . ..

Examples
f= ZX?XJ = xf'xz +x§x1 —i—x13X3 +X§X1 +X§X3 +X33X2 +...
i#j
ngZx,-erZx,-xj =2F +2x5 + -+ x0 +xxs ...

i i<j

The set of homogeneous symmetric functions of degree k forms a
vector space over Q, denoted by Ay.
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Schur-positivity

Schur functions

For \ I k, define the Schur function

S\ = } : Hxlpumber of is in T'

TESSYT(N) i
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Schur-positivity

Schur functions

For \ I k, define the Schur function
ber of isin T
D O | i
TESSYT(N) i

Example

111 [1]2] [1]1] [1]3][2]2] [2 112] [1
55y‘r(2)1):{2 \7 L \7 L \7 33\’3 \’ 33\, L \7 237_._}
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Schur-positivity

Schur functions

For \ I k, define the Schur function
ber of isin T
D O | i
TESSYT(N) i

Example

SSYT(2,1):{ 1] [1]2] [1]1] [1]3][2]2] [2]3] [1]2] 137.._}

1
12 712 73] 73] '[3] T3] |3 |2

2 2 2 2 2 2
21 =Xy X2 + X1X5 + X{ X3+ X1X3 + Xp X3 + Xpx3 + 2x1X0X3 + . ..
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Schur-positivity

Schur functions

For \ I k, define the Schur function
ber of isin T
D O | i
TESSYT(N) i

Example

SSYT(2,1):{ 1] [1]2] [1]1] [1]3][2]2] [2]3] [1]2] 137.._}

1
12 712 73] 73] '[3] T3] |3 |2

2 2 2 2 2 2
21 =Xy X2 + X1X5 + X{ X3+ X1X3 + Xp X3 + Xpx3 + 2x1X0X3 + . ..

Theorem
Schur functions are symmetric, and {sy : A\ k} is a basis for N\y.
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Schur-positivity

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are nonnegative.
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Schur-positivity

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are nonnegative.

Example: Given A k and p F ¢, consider the product

v
S\Sy = E CX juSv-
1%
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Schur-positivity

Schur-positivity

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are nonnegative.

Example: Given A k and p F ¢, consider the product

v
S\Sy = E CX juSv-
1%

The Littlewood—Richardson rule gives a combinatorial interpretation
of the coefficients S showing that sys, is Schur-positive.
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Schur-positivity

Quasi-symmetric functions

A quasi-symmetric function is a formal power series f(x1, X2, . ..) of
bounded degree where, for every fixed ag, ..., ayk, the coefficient of

I'C:l .. .xi‘k is the same for any increasing indices i; < -+ < i.
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Schur-positivity

Quasi-symmetric functions

A quasi-symmetric function is a formal power series f(x1, X2, . ..) of
bounded degree where, for every fixed ag, ..., ayk, the coefficient of

xA .xi‘k is the same for any increasing indices i; < -+ < i.

i1

Example: f = Z,<j x?x; is quasisymmetric but not symmetric.
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Schur-positivity

Quasi-symmetric functions

A quasi-symmetric function is a formal power series f(x1, X2, . ..) of
bounded degree where, for every fixed ag, ..., ayk, the coefficient of

i?l .. .xi‘k is the same for any increasing indices i; < -+ < i.

Example: f = Z,<j x?x; is quasisymmetric but not symmetric.

For m € S,, define the quasisymmetric function

F7r = E X,'IX,'2 cee X,'n.

i <ip<...<in
"j<ij+1 if j€eDes()
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Schur-positivity

Quasi-symmetric functions

A quasi-symmetric function is a formal power series f(x1, X2, . ..) of
bounded degree where, for every fixed ag, ..., ayk, the coefficient of

xA .xi‘k is the same for any increasing indices i; < -+ < i.

i1

Example: f = Z,<j x?x; is quasisymmetric but not symmetric.

For m € S,, define the quasisymmetric function

F7r = E X,'IX,'2 cee X,'n.

i <ip<...<in
"j<ij+1 if j€eDes()

Example: m = 132, Des(m) = {2}.
Fi3o = xyx1x0 + x1X1X3 + X1X0X3 + XoXoX3 + . ...
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Symmetric functions
functions
Known Schur-positive sets

Schur-positivity

Quasi-symmetric functions

For AC S, let

TEA
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Schur-positivity

Quasi-symmetric functions

For AC S, let

Question 1 (Gessel, Reutenauer '93):
For which A C S,, is Q(A) symmetric?
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Schur-positivity

Quasi-symmetric functions

For AC S, let

Question 1 (Gessel, Reutenauer '93):
For which A C S,, is Q(A) symmetric?

Question 2 (Adin, Roichman "13):
For which A C S, is Q(A) Schur-positive?
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Schur-positivity

Quasi-symmetric functions

For AC S, let

Question 1 (Gessel, Reutenauer '93):
For which A C S,, is Q(A) symmetric?

Question 2 (Adin, Roichman "13):
For which A C S, is Q(A) Schur-positive?

For simplicity, we'll say “A is Schur-positive” instead of
“O(A) is Schur-positive”.
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Schur-positivity

Quasi-symmetric functions

For AC S, let

Question 1 (Gessel, Reutenauer '93):
For which A C S,, is Q(A) symmetric?

Question 2 (Adin, Roichman "13):
For which A C S, is Q(A) Schur-positive?

For simplicity, we'll say “A is Schur-positive” instead of
“O(A) is Schur-positive”.

We define Q(A) similarly if A is a multiset.
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Schur-positivity

Known Schur-positive sets

Theorem (Gessel '84)
Q(Sn) = 2 [SYT(A)] sx-

AFn
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Schur-positivity

Known Schur-positive sets

Theorem (Gessel '84)
Q(Sn) = 2 [SYT(A)] sx-

AFn

Theorem (Gessel '84)

Subsets of S, closed under Knuth relations are Schur-positive.
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Schur-positivity

Known Schur-positive sets

Theorem (Gessel '84)
Q(Sn) = 22 [SYT(A)] sr.
AFn
Theorem (Gessel '84)
Subsets of S, closed under Knuth relations are Schur-positive.

RSK
= (

The proof uses that if 7 P, @), then Des(7) = Des(Q).
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Schur-positivity

Known Schur-positive sets

Theorem (Gessel '84)
Q(Sn) = 2 [SYT(A)] sx-

AFn

Theorem (Gessel '84)
Subsets of S, closed under Knuth relations are Schur-positive.

The proof uses that if 7 fek (P, Q), then Des(m) = Des(Q).

For J C {1,...,n— 1}, define the inverse descent class

D' ={r€S,: Des(n ) =J}.
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Schur-positivity

Known Schur-positive sets

Theorem (Gessel '84)

Q(Sn) = > |SYT(N)]sn.
AFn

Theorem (Gessel '84)

Subsets of S, closed under Knuth relations are Schur-positive.

RSK

= (

The proof uses that if 7 P, @), then Des(7) = Des(Q).

For J C {1,...,n— 1}, define the inverse descent class
D' ={r€S,: Des(n ) =J}.

Corollary
DJ_1 is Schur-positive.
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Schur-positivity

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of S, closed under conjugation are Schur-positive.
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Schur-positivity

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of S, closed under conjugation are Schur-positive.

Corollary

» The set of involutions in S, is Schur-positive.
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Schur-positivity

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)
Subsets of S, closed under conjugation are Schur-positive.

Corollary

» The set of involutions in S, is Schur-positive.

» The set of derangements in S, is Schur-positive.
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Schur-positivity

Know Schur-positive sets

Theorem (Gessel, Reutenauer '93)

Subsets of S, closed under conjugation are Schur-positive.
Corollary

» The set of involutions in S, is Schur-positive.

» The set of derangements in S, is Schur-positive.

Theorem (Adin, Roichman '15)
For every k, the set {m € S, : inv(7) = k} is Schur-positive.
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Schur-positivity

Arc permutations

A permutation ™ € S, is an arc permutation if every prefix of 7
forms an interval in Z,,. Let A, = set of arc permutations in S,.
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Schur-positivity

Arc permutations

A permutation ™ € S, is an arc permutation if every prefix of 7
forms an interval in Z,,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ As.

Schur-positive grid classes



Symmetric functions
Quasi-symmetric functions
Known Schur-positive sets

Schur-positivity

Arc permutations

A permutation ™ € S, is an arc permutation if every prefix of 7
forms an interval in Z,,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ As.

Proposition
Ap = 8n(1324,1342,2413,2431,3124,3142,4213,4231)
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Schur-positivity

Arc permutations

A permutation ™ € S, is an arc permutation if every prefix of 7
forms an interval in Z,,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ As.

Proposition
Ap = 8n(1324,1342,2413,2431,3124,3142,4213,4231)

Theorem There is a bijection between A, and the set of SYT of
certain shapes that preserves the descent set.
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Schur-positivity

Arc permutations

A permutation ™ € S, is an arc permutation if every prefix of 7
forms an interval in Z,,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ As.

Proposition
Ap = 8n(1324,1342,2413,2431,3124,3142,4213,4231)

Theorem There is a bijection between A, and the set of SYT of
certain shapes that preserves the descent set.

Corollary —
A, is Schur-positive and ]
n—2 L n—2
Q(An) = Sp =+ Sin =+ Z Sn7k7271k—2 + 2 Z Snfk,].k‘
k=2 k=1
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Grid classes and pattern avoidance
Grid classes Schur-positive grid classes

Geometric grid classes

For a {0,1, —1}-matrix M, let [(M) be the set of line segments of
slope +1 whose locations are determined by the entries of M.
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Grid classes Schur-positive grid classes

Geometric grid classes

For a {0,1, —1}-matrix M, let [(M) be the set of line segments of
slope +1 whose locations are determined by the entries of M.

Example:
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Grid classes Schur-positive grid classes

Geometric grid classes

For a {0,1, —1}-matrix M, let [(M) be the set of line segments of
slope +1 whose locations are determined by the entries of M.

Example:

Define the geometric grid class

Gn(M) ={m € S, : m can be drawn on I'(M)}.
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Grid classes Schur-positive grid classes

Geometric grid classes

For a {0,1, —1}-matrix M, let [(M) be the set of line segments of
slope +1 whose locations are determined by the entries of M.

Example:

Define the geometric grid class

Gn(M) ={m € S, : m can be drawn on I'(M)}.

Example: 4532617 € G7(Y).
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Grid classes Schur-positive grid classes

Geometric grid classes

For a {0,1, —1}-matrix M, let [(M) be the set of line segments of
slope +1 whose locations are determined by the entries of M.

Example:

Define the geometric grid class

Gn(M) ={m € S, : m can be drawn on I'(M)}.

Example: 4532617 € G7(Y).
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Grid classes Schur-positive grid classes

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruskuc, Vatter '13)

Every geometric grid class can be characterized by avoidance of a
finite set of patterns.
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Grid classes Schur-positive grid classes

Grid classes and pattern avoidance

Theorem (Albert, Atkinson, Bouvel, Ruskuc, Vatter '13)

Every geometric grid class can be characterized by avoidance of a
finite set of patterns.

Example:

gn< 1 > = 85,(321,2143,2413).
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Grid classes Schur-positive grid classes

Arc permutations as grid classes

Arc permutations can be expressed as a union of two (geometric)

grid classes:
1 0 0 -1
1 0 0 1
An=Gnl o 3 [ V9| 1 o
0 1 -1 0
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Grid classes Schur-positive grid classes

Elementary examples of Schur-positive grid classes

One-Column grid classes

Proposition
Every one-column grid class is Schur-positive.
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Grid classes Schur-positive grid classes

Elementary examples of Schur-positive grid classes

One-Column grid classes

Proposition
Every one-column grid class is Schur-positive.

Example:
-1
Let H, =G, | —1
1

OQHMs) =s5+2s31+2532+35311+4S21+4111+511,1,1,1
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Grid classes Schur-positive grid classes

Elementary examples

Co-layered permutations

Let £X be the grid class determined by the k x k identity matrix.

Example:
Lk = G,(1d3) //
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Grid classes Schur-positive grid classes

Elementary examples

Co-layered permutations

Let £X be the grid class determined by the k x k identity matrix.

Example:

Lk = G,(1d3) /
/|

Proposition £k is Schur-positive and

k—1
Q(‘C’Z) = Z Sp—r,1r-
r=0
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Grid classes Schur-positive grid classes

Elementary examples

Co-layered permutations

Let £X be the grid class determined by the k x k identity matrix.

Example:

Lk = G,(1d3) /
/|

Proposition £k is Schur-positive and

k—1
Q(‘C’Z) = Z Sp—r,1r-
r=0

Example: L3 = {1234,4.123,34.12,234.1}.
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Grid classes and pattern avoidance
Grid classes Schur-positive grid classes

Elementary examples

Co-layered permutations

Let £X be the grid class determined by the k x k identity matrix.

Example:

Lk = G,(1d3) /
/|

Proposition £k is Schur-positive and

k—1
Q(‘C’Z) = Z Sp—r,1r-
r=0

Example: L3 = {1234,4.123,34.12,234.1}.

2
Q(Ly) =ss+s31.



Main theorem

Vertical rotations

Horizontal rotations
Products of Grid Classes

Main theorem

Given A, B € S,,, let AB be the multiset of permutations obtained
as products wo where m € A and o € B.
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rotations
Products of Grid Classes

Main theorem

Given A, B € S,,, let AB be the multiset of permutations obtained
as products wo where m € A and o € B.

Theorem
For every Schur-positive set A C S, and every J C [n— 1], the
multiset

AD;!

is Schur-positive.
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Products of Grid Classes

Main theorem

Given A, B € S,,, let AB be the multiset of permutations obtained
as products wo where m € A and o € B.

Theorem
For every Schur-positive set A C S, and every J C [n— 1], the
multiset

AD;!

is Schur-positive.

In fact,
Q(AD;") = Q(A) x Q(D; 1),

where * denotes the Kronecker product.
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Main theorem

Vertical rotations

Horiz | i
Products of Grid Classes

Application: vertical rotations

Let c € S, be the n-cycle ¢ = (1,2,...,n), and let
Co={c) ={c¥: 0 < k < n} be the subgroup it generates.
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Main theorem

Vertical rotations

Horiz | i
Products of Grid Classes

Application: vertical rotations

Let c € S, be the n-cycle ¢ = (1,2,...,n), and let
Co={c) ={c¥: 0 < k < n} be the subgroup it generates.

For ACS,, C,A s the multiset of vertical rotations of elements
in A.
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Main theorem

Vertical rotations

Horiz | i
Products of Grid Classes

Application: vertical rotations

Let c € S, be the n-cycle ¢ = (1,2,...,n), and let
Co={c) ={c¥: 0 < k < n} be the subgroup it generates.

For ACS,, C,A s the multiset of vertical rotations of elements

/|

Observation: C, = £2.
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Vertical rotations
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Application: vertical rotations

Let c € S, be the n-cycle ¢ = (1,2,...,n), and let
Co={c) ={c¥: 0 < k < n} be the subgroup it generates.

For ACS,, C,A s the multiset of vertical rotations of elements

/|

Observation: C, = £2.
» For J C [n— 1], the multiset C,,DJ_1 is Schur-positive.

Corollary

Schur-positive grid classes



Main theorem

Vertical rotations

Horiz | i
Products of Grid Classes

Application: vertical rotations

Let c € S, be the n-cycle ¢ = (1,2,...,n), and let
Co={c) ={c¥: 0 < k < n} be the subgroup it generates.

For ACS,, C,A s the multiset of vertical rotations of elements

/|

Observation: C, = £2.
» For J C [n— 1], the multiset C,,DJ_1 is Schur-positive.

Corollary

» For a one-column grid class H,, the multiset C,’H,, is
Schur-positive.
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Arc permutations revisited

Corollary
Ay, is Schur-positive.
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Arc permutations revisited

Corollary
Ay, is Schur-positive.

Proof Idea

.
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Arc permutations revisited

Corollary
Ay, is Schur-positive.

Proof Idea
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Arc permutations revisited

Corollary
Ay, is Schur-positive.

Proof Idea
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.

Theorem
For every Schur-positive set A C S,,_1, AC, is Schur-positive.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.

Theorem
For every Schur-positive set A C S,,_1, AC, is Schur-positive.

In fact, Q(AC,) = Q(A)s:.

Equivalently, if A “corresponds” to an S,_1-representation p, then
AC,, “corresponds” to the S,-representation p 1.
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Horizontal rotations

Let My be the 2k x 2 matrix whose odd rows are (1,0) and whose
even rows are (0,1).

Gn(Ms) ?
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Horizontal rotations

Let My be the 2k x 2 matrix whose odd rows are (1,0) and whose
even rows are (0,1).

Gn(Ms) ? Gn i /

Corollary
Q(Gn(My)) is Schur-positive for all k.
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Stacking operations

Given matrices My and Mb, one of which has one column, let
r (%) be the grid obtained by stacking I'(M;) atop (M), and

Gn (%;) the corresponding grid class.
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Vertical rotations

Horizontal rotations
Products of Grid Classes Stacking grids

Stacking operations

Given matrices My and Mb, one of which has one column, let
r (%) be the grid obtained by stacking I'(M;) atop (M), and

Gn <M1> the corresponding grid class.

Mo
Example
1
Gl 1 0 _—
01
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Stacking operations

Given matrices My and Mb, one of which has one column, let
r (%) be the grid obtained by stacking I'(M;) atop (M), and

Gn (%;) the corresponding grid class.

Example

10 :
01 /
(j / Gn )

1
Gn

1
0

Proposition The above two grids are Schur-positive.
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Stacking operations

Given matrices My and Mb, one of which has one column, let
r (%) be the grid obtained by stacking I'(M;) atop (M), and

Gn (%;) the corresponding grid class.

Example

10 :

1 /
01

g-) / Gn )

Gn

1
0

Proposition The above two grids are Schur-positive.

Question: If My has one column and G(M,) is Schur-positive, is

Gn (%;) necessarily Schur-positive?
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Open questions

Conjecture
For every one-column grid class H,, the set underlying the multiset

CyHp is Schur-positive.
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Open questions

Conjecture
For every one-column grid class H,, the set underlying the multiset
CyHp is Schur-positive.

Conjecture
For every Schur-positive set A C S, and every J C [n—1],

Q(D;'A) = Q(AD; ™).
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Open questions

Conjecture
For every one-column grid class H,, the set underlying the multiset
CyHp is Schur-positive.

Conjecture
For every Schur-positive set A C S, and every J C [n—1],

Q(D;'A) = Q(AD; ™).

Since our main theorem states that Dle is a fine multiset, it
would follow that ADJ_1 is fine as well.
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Vertical rotations

Horizontal rotations
Products of Grid Classes Stacking grids

Open questions

Conjecture
For every one-column grid class H,, the set underlying the multiset
CyHp is Schur-positive.

Conjecture
For every Schur-positive set A C S, and every J C [n—1],

Q(D;'A) = Q(AD; ™).

Since our main theorem states that Dle is a fine multiset, it
would follow that ADJ_1 is fine as well.

Question: Which pairs of Knuth classes A, B C S, satisfy
Q(AB) = Q(A) x Q(B)?
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T hanks

Schur-positi

e grid classes
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