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Notation

[n] = {1, 2, . . . , n}, π ∈ Sn

π = 2517364
︸ ︷︷ ︸

one line notation

= (1, 2, 5, 3)(4, 7)(6)
︸ ︷︷ ︸

cycle notation

= (5, 3, 1, 2)(6)(7, 4)
︸ ︷︷ ︸

cycle notation
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Notation

[n] = {1, 2, . . . , n}, π ∈ Sn

π = 2517364
︸ ︷︷ ︸

one line notation

= (1, 2, 5, 3)(4, 7)(6)
︸ ︷︷ ︸

cycle notation

= (5, 3, 1, 2)(6)(7, 4)
︸ ︷︷ ︸

cycle notation

Cn ⊂ Sn cyclic permutations |Cn| = (n − 1)!

C3 = {(1, 2, 3), (1, 3, 2)} = {231, 312}
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Notation

[n] = {1, 2, . . . , n}, π ∈ Sn

π = 2517364
︸ ︷︷ ︸

one line notation

= (1, 2, 5, 3)(4, 7)(6)
︸ ︷︷ ︸

cycle notation

= (5, 3, 1, 2)(6)(7, 4)
︸ ︷︷ ︸

cycle notation

Cn ⊂ Sn cyclic permutations |Cn| = (n − 1)!

C3 = {(1, 2, 3), (1, 3, 2)} = {231, 312}

The descent set of π ∈ Sn is

D(π) = {i : 1 ≤ i ≤ n − 1, π(i) > π(i + 1)}.

D(25·17·36·4) = {2, 4, 6}
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Notation

[n] = {1, 2, . . . , n}, π ∈ Sn

π = 2517364
︸ ︷︷ ︸

one line notation

= (1, 2, 5, 3)(4, 7)(6)
︸ ︷︷ ︸

cycle notation

= (5, 3, 1, 2)(6)(7, 4)
︸ ︷︷ ︸

cycle notation

Cn ⊂ Sn cyclic permutations |Cn| = (n − 1)!

C3 = {(1, 2, 3), (1, 3, 2)} = {231, 312}

The descent set of π ∈ Sn is

D(π) = {i : 1 ≤ i ≤ n − 1, π(i) > π(i + 1)}.

D(25·17·36·4) = {2, 4, 6}

i is a weak excedance of π if π(i) ≥ i .
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Allowed patterns of a map

Let X be a linearly ordered set, f : X → X . For each x ∈ X and
n ≥ 1, consider the sequence

x , f (x), f 2(x), . . . , f n−1(x).
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Allowed patterns of a map

Let X be a linearly ordered set, f : X → X . For each x ∈ X and
n ≥ 1, consider the sequence

x , f (x), f 2(x), . . . , f n−1(x).

If there are no repetitions, the relative order of the entries
determines a permutation, called an allowed pattern of f .
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Allowed patterns of a map

Let X be a linearly ordered set, f : X → X . For each x ∈ X and
n ≥ 1, consider the sequence

x , f (x), f 2(x), . . . , f n−1(x).

If there are no repetitions, the relative order of the entries
determines a permutation, called an allowed pattern of f .

Example
f : [0, 1] → [0, 1]

x 7→ 4x(1 − x).

For x = 0.8 and n = 4, the sequence

0.8, 0.64, 0.9216, 0.2890

determines the permutation 3241.
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Forbidden patterns of a map

Permutations that cannot be obtained in this way for any x ∈ X

are called forbidden patterns of f .

Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
Final remarks

Permutations
Patterns realized by a map
Shifts
Example

Forbidden patterns of a map

Permutations that cannot be obtained in this way for any x ∈ X

are called forbidden patterns of f .

Theorem (Bandt-Keller-Pompe ’02)

Every piecewise monotone map has forbidden patterns.
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Forbidden patterns of a map

Permutations that cannot be obtained in this way for any x ∈ X

are called forbidden patterns of f .

Theorem (Bandt-Keller-Pompe ’02)

Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random
sequences.
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Forbidden patterns of a map

Permutations that cannot be obtained in this way for any x ∈ X

are called forbidden patterns of f .

Theorem (Bandt-Keller-Pompe ’02)

Every piecewise monotone map has forbidden patterns.

This can be used to distinguish deterministic from random
sequences.

We’d like to understand the set of forbidden patterns of a given f .
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Example

For the map
f : [0, 1] → [0, 1]

x 7→ 4x(1 − x),

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

f (x) f (f (x))

123 132 231 213 312
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Example

For the map
f : [0, 1] → [0, 1]

x 7→ 4x(1 − x),

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

f (x) f (f (x))

123 132 231 213 312

these patterns are forbidden: 321, 1423, 2134, 2143, 3142, 4231, . . .
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Example

For the map
f : [0, 1] → [0, 1]

x 7→ 4x(1 − x),

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

f (x) f (f (x))

123 132 231 213 312

these patterns are forbidden: 321, 1423, 2134, 2143, 3142, 4231, . . .

Theorem (E.-Liu): f has infinitely many “basic” forbidden patterns.
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Shift maps

For N ≥ 2, let WN = {0, 1, . . . ,N−1}N be the set of infinite words
on N letters, equipped with the lexicographic order.
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Shift maps

For N ≥ 2, let WN = {0, 1, . . . ,N−1}N be the set of infinite words
on N letters, equipped with the lexicographic order.

Define the shift on N letters:

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . .
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Shift maps

For N ≥ 2, let WN = {0, 1, . . . ,N−1}N be the set of infinite words
on N letters, equipped with the lexicographic order.

Define the shift on N letters:

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . .

ΣN has the same allowed/forbidden patterns as the sawtooth map

[0, 1] → [0, 1]
x 7→ Nx mod 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x
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Example

The permutation 4217536 is realized (i.e., allowed) by Σ3, because
if w = 2102212210 . . . ∈ W3, then

w = 2102212210 . . . 4
Σ3(w) = 102212210 . . . 2
Σ3

2(w) = 02212210 . . . 1
Σ3

3(w) = 2212210 . . . 7
Σ3

4(w) = 212210 . . . 5
Σ3

5(w) = 12210 . . . 3
Σ3

6(w) = 2210 . . . 6







lexicographic order
of the shifted words
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Some facts about shifts

Theorem (Amigó-E.-Kennel)

ΣN has no forbidden patterns of length n ≤ N + 1, but it has

forbidden patterns of each length n ≥ N + 2.
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Some facts about shifts

Theorem (Amigó-E.-Kennel)

ΣN has no forbidden patterns of length n ≤ N + 1, but it has

forbidden patterns of each length n ≥ N + 2.

Proposition (E.)

ΣN has exactly 6 forbidden patterns of length N + 2.
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Some facts about shifts

Theorem (Amigó-E.-Kennel)

ΣN has no forbidden patterns of length n ≤ N + 1, but it has

forbidden patterns of each length n ≥ N + 2.

Proposition (E.)

ΣN has exactly 6 forbidden patterns of length N + 2.

Example

The shortest forbidden patterns of Σ4 are

615243, 324156, 342516, 162534, 453621, 435261.
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The smallest # of letters needed to realize a pattern

For π ∈ Sn, let

N(π) = min{N : π is realized by ΣN}.
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The smallest # of letters needed to realize a pattern

For π ∈ Sn, let

N(π) = min{N : π is realized by ΣN}.

Given π = π1π2 · · · πn, here is how to compute N(π):

◮ Let π̂ be the cycle (π1, π2, . . . , πn) with the entry π1 replaced
with a ⋆.

◮ Let des(π̂) be the number of descents in π̂ skipping the ⋆.
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The smallest # of letters needed to realize a pattern

For π ∈ Sn, let

N(π) = min{N : π is realized by ΣN}.

Given π = π1π2 · · · πn, here is how to compute N(π):

◮ Let π̂ be the cycle (π1, π2, . . . , πn) with the entry π1 replaced
with a ⋆.

◮ Let des(π̂) be the number of descents in π̂ skipping the ⋆.

Example

π = 892364157  (8,9,2,3,6,4,1,5,7) 536174892  536174⋆92 = π̂

des(536174⋆92) = 4
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Theorem (E.)

N(π) = 1 + des(π̂) + ǫ(π̂),

where

ǫ(π̂) =

{

1 if π̂ = ⋆1 . . . or π̂ = . . . n⋆,

0 otherwise.
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Theorem (E.)

N(π) = 1 + des(π̂) + ǫ(π̂),

where

ǫ(π̂) =

{

1 if π̂ = ⋆1 . . . or π̂ = . . . n⋆,

0 otherwise.

Example
N(892364157) = 1 + 4 + 0 = 5,

N(1423) = N(2134) = N(2314) = N(3241) = N(3421) = N(4132) = 3,

N(π) = 2 for all other π ∈ S4.
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Theorem (E.)

N(π) = 1 + des(π̂) + ǫ(π̂),

where

ǫ(π̂) =

{

1 if π̂ = ⋆1 . . . or π̂ = . . . n⋆,

0 otherwise.

Example
N(892364157) = 1 + 4 + 0 = 5,

N(1423) = N(2134) = N(2314) = N(3241) = N(3421) = N(4132) = 3,

N(π) = 2 for all other π ∈ S4.

The distribution of the statistic N(π) is related to the distribution
of the number of descents in cyclic permutations.
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Descent sets of 5-cycles

C5

(1, 2, 3, 4, 5) = 2345·1

(2, 1, 3, 4, 5) = 3·145·2
(3, 2, 1, 4, 5) = 4·125·3
(4, 3, 2, 1, 5) = 5·1234

(1, 3, 2, 4, 5) = 34·25·1
(1, 4, 3, 2, 5) = 45·23·1
(3, 1, 2, 4, 5) = 24·15·3
(3, 1, 4, 2, 5) = 45·123
(4, 3, 1, 2, 5) = 25·134

(1, 2, 4, 3, 5) = 245·3·1
(2, 4, 1, 3, 5) = 345·12
(4, 1, 2, 3, 5) = 235·14

C5

(2, 3, 1, 4, 5) = 4·3·15·2
(2, 4, 3, 1, 5) = 5·4·13·2
(4, 2, 3, 1, 5) = 5·3·124

(1, 4, 2, 3, 5) = 4·35·2·1
(2, 1, 4, 3, 5) = 4·15·3·2
(2, 3, 4, 1, 5) = 5·34·12
(3, 4, 2, 1, 5) = 5·14·23
(4, 2, 1, 3, 5) = 3·15·24

(1, 3, 4, 2, 5) = 35·4·2·1
(3, 4, 1, 2, 5) = 25·4·13
(4, 1, 3, 2, 5) = 35·2·14

(3, 2, 4, 1, 5) = 5·4·2·13
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Descent sets of 5-cycles

C5 S4

(1, 2, 3, 4, 5) = 2345·1 1234

(2, 1, 3, 4, 5) = 3·145·2 2·134
(3, 2, 1, 4, 5) = 4·125·3 3·124
(4, 3, 2, 1, 5) = 5·1234 4·123

(1, 3, 2, 4, 5) = 34·25·1 13·24
(1, 4, 3, 2, 5) = 45·23·1 14·23
(3, 1, 2, 4, 5) = 24·15·3 23·14
(3, 1, 4, 2, 5) = 45·123 34·12
(4, 3, 1, 2, 5) = 25·134 24·13

(1, 2, 4, 3, 5) = 245·3·1 124·3
(2, 4, 1, 3, 5) = 345·12 134·2
(4, 1, 2, 3, 5) = 235·14 234·1

C5 S4

(2, 3, 1, 4, 5) = 4·3·15·2 3·2·14
(2, 4, 3, 1, 5) = 5·4·13·2 4·2·13
(4, 2, 3, 1, 5) = 5·3·124 4·3·12

(1, 4, 2, 3, 5) = 4·35·2·1 3·24·1
(2, 1, 4, 3, 5) = 4·15·3·2 2·14·3
(2, 3, 4, 1, 5) = 5·34·12 4·23·1
(3, 4, 2, 1, 5) = 5·14·23 4·13·2
(4, 2, 1, 3, 5) = 3·15·24 3·14·2

(1, 3, 4, 2, 5) = 35·4·2·1 14·3·2
(3, 4, 1, 2, 5) = 25·4·13 24·3·1
(4, 1, 3, 2, 5) = 35·2·14 34·2·1

(3, 2, 4, 1, 5) = 5·4·2·13 4·3·2·1
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The inverse

Main theorem

Theorem
For every n there is a bijection ϕ : Cn+1 → Sn such that if

π ∈ Cn+1 and σ = ϕ(π), then

D(π) ∩ [n − 1] = D(σ).
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; first step

Given π ∈ Cn+1, write it in cycle form with n + 1 at the end:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) ∈ C21.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; first step

Given π ∈ Cn+1, write it in cycle form with n + 1 at the end:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) ∈ C21.

Delete n + 1 and split at the “left-to-right maxima”:

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17) ∈ S20.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; first step

Given π ∈ Cn+1, write it in cycle form with n + 1 at the end:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) ∈ C21.

Delete n + 1 and split at the “left-to-right maxima”:

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17) ∈ S20.

This map π 7→ σ is a bijection
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; first step

Given π ∈ Cn+1, write it in cycle form with n + 1 at the end:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) ∈ C21.

Delete n + 1 and split at the “left-to-right maxima”:

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17) ∈ S20.

This map π 7→ σ is a bijection, but unfortunately it does not
always preserve the descent set:

π(7) = 16 > π(8) = 13 but σ(7) = 11 < σ(8) = 13.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; first step

Given π ∈ Cn+1, write it in cycle form with n + 1 at the end:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21) ∈ C21.

Delete n + 1 and split at the “left-to-right maxima”:

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17) ∈ S20.

This map π 7→ σ is a bijection, but unfortunately it does not
always preserve the descent set:

π(7) = 16 > π(8) = 13 but σ(7) = 11 < σ(8) = 13.

We say that the pair {7, 8} is bad. We will fix the bad pairs.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)

z := 7.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)

{7, 6} and {7, 8} are bad; and σ(6) = 14 > 13 = σ(8) ⇒ ε := −1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 7)(16, 9, 3, 5, 12)(20, 2, 6, 14, 18, 8, 13, 19, 15, 17)

z := 7. ε := −1.
Switch 7 and 6.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)

z := 7. ε := −1.
Switch 7 and 6.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 1, 6)(16, 9, 3, 5, 12)(20, 2, 7, 14, 18, 8, 13, 19, 15, 17)

z := 7. ε := −1.
Switch 7 and 6. Switch 1 and 2.
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Non-bijective proof
Final remarks

The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 7. ε := −1.
Switch 7 and 6. Switch 1 and 2.
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Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 7. ε := −1.
Switch 7 and 6. Switch 1 and 2.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. {6, 5} is bad. ε := −1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 6)(16, 9, 3, 5, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 2, 5)(16, 9, 3, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5. Switch 2 and 3.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5. Switch 2 and 3.
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Origin of the problem and background
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Non-bijective proof
Final remarks

The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 10, 3, 5)(16, 9, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 6. ε := −1.
Switch 6 and 5. Switch 2 and 3. Switch 10 and 9.

Sergi Elizalde Descent sets of cyclic permutations
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Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 5. ε := −1.

Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 5. {5, 4} is OK, so we move on to the second cycle.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 12.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 12. {12, 11} is OK but {12, 13} is bad ⇒ ε := 1.

Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
Final remarks

The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 12)(20, 1, 7, 14, 18, 8, 13, 19, 15, 17)

z := 12. ε := 1.
Switch 12 and 13.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)

z := 12. ε := 1.
Switch 12 and 13.
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Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)

z := 12. ε := 1.
Switch 12 and 13.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
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Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)

z := 13. {13, 14} is bad. ε := 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 13)(20, 1, 7, 14, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 6, 14)(20, 1, 7, 13, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14. Switch 6 and 7.
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Non-bijective proof
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14. Switch 6 and 7.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 2, 7, 14)(20, 1, 6, 13, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)

z := 13. ε := 1.
Switch 13 and 14. Switch 6 and 7. Switch 2 and 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)

z := 14. ε := 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)

z := 14. {14, 15} is bad. ε := 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 14)(20, 2, 6, 13, 18, 8, 12, 19, 15, 17)

z := 14. ε := 1.
Switch 14 and 15.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

z := 14. ε := 1.
Switch 14 and 15.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

z := 14. ε := 1.
Switch 14 and 15.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

z := 15. ε := 1.
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The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

z := 15. {15, 16} is OK, so we are done.

Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
Final remarks

The bijection
The inverse

The bijection ϕ : Cn+1 → Sn; fixing bad pairs

For each but the last cycle of σ, from left to right:

◮ z := rightmost entry of the cycle.
If {z , z−1} or {z , z+1} are bad, let ε = ±1 be such that
{z , z+ε} is bad and σ(z+ε) is largest.

◮ Repeat for as long as {z, z+ε} is bad:
1. Switch z and z+ε (in the cycle form of σ).
2. If the elements preceding the last switched entries have

consecutive values, switch them. Repeat 2.
3. z := new rightmost entry of the cycle.

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

ϕ(π) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

Define ϕ(π) = σ.
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The bijection
The inverse

The descent sets are preserved

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

ϕ(π) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

In one-line notation,

π = 7 · 6 · 5 10 12 14 16 · 13 · 3 · 1 4 20 · 19 · 18 · 16 · 9 21 · 8 15 · 2 11
ϕ(π) = 7 · 6 · 5 9 11 13 15 · 12 · 3 · 1 4 19 · 18 · 17 · 16 ·10 20 · 8 14 · 2
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The bijection
The inverse

The descent sets are preserved

π = (11, 4, 10, 1, 7, 16, 9, 3, 5, 12, 20, 2, 6, 14, 18, 8, 13, 19, 15, 17, 21)

ϕ(π) = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17)

In one-line notation,

π = 7 · 6 · 5 10 12 14 16 · 13 · 3 · 1 4 20 · 19 · 18 · 16 · 9 21 · 8 15 · 2 11
ϕ(π) = 7 · 6 · 5 9 11 13 15 · 12 · 3 · 1 4 19 · 18 · 17 · 16 · 10 20 · 8 14 · 2

In fact, the set of weak excedances is preserved by ϕ as well.
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The bijection
The inverse

The inverse map ϕ
−1 : Sn → Cn+1

Given σ ∈ Sn, write it in cycle form with the largest element of
each cycle first, ordering the cycles by increasing first element:

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) ∈ S20.
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The bijection
The inverse

The inverse map ϕ
−1 : Sn → Cn+1

Given σ ∈ Sn, write it in cycle form with the largest element of
each cycle first, ordering the cycles by increasing first element:

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) ∈ S20.

Remove parentheses and append n + 1:

π = (11, 4, 9, 3, 5 , 16, 10, 1, 7, 15 , 20, 2, 6, 13, 18, 8, 12, 19, 14, 17 , 21) ∈ C21.
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The bijection
The inverse

The inverse map ϕ
−1 : Sn → Cn+1

Given σ ∈ Sn, write it in cycle form with the largest element of
each cycle first, ordering the cycles by increasing first element:

σ = (11, 4, 9, 3, 5)(16, 10, 1, 7, 15)(20, 2, 6, 13, 18, 8, 12, 19, 14, 17) ∈ S20.

Remove parentheses and append n + 1:

π = (11, 4, 9, 3, 5 , 16, 10, 1, 7, 15 , 20, 2, 6, 13, 18, 8, 12, 19, 14, 17 , 21) ∈ C21.

A pair {i , i + 1} is bad if π(i) > π(i + 1) but σ(i) < σ(i + 1), or
viceversa.

To find ϕ−1(π), we fix bad pairs in a similar way as before, now
going from right to left. This undoes the switches performed by ϕ.
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Necklaces

A = {x1, x2, . . . }< linearly ordered alphabet.

A necklace of length ℓ is a circular arrangement of ℓ beads labeled
with elements of A, up to cyclic rotation.
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Necklaces

A = {x1, x2, . . . }< linearly ordered alphabet.

A necklace of length ℓ is a circular arrangement of ℓ beads labeled
with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

◮ its cycle structure is the partition whose parts are the lengths
of the necklaces;
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Necklaces

A = {x1, x2, . . . }< linearly ordered alphabet.

A necklace of length ℓ is a circular arrangement of ℓ beads labeled
with elements of A, up to cyclic rotation.

Given a multiset of necklaces,

◮ its cycle structure is the partition whose parts are the lengths
of the necklaces;

◮ its evaluation is the monomial xe1
1 xe2

2 . . . where ei is the
number of beads with label xi .
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Permutations and necklaces

Theorem (Gessel, Reutenauer ’93)

Let I = {i1, i2, . . . , ik}< ⊆ [n − 1], λ ⊢ n. Then

|{π ∈ Sn with cycle structure λ and D(π) ⊆ I}| =
|{multisets of necklaces with cycle structure λ

and evaluation x i1
1 x i2−i1

2 . . . x
ik−ik−1

k
x

n−ik

k+1 }|.

Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
Final remarks

Permutations and necklaces

Theorem (Gessel, Reutenauer ’93)

Let I = {i1, i2, . . . , ik}< ⊆ [n − 1], λ ⊢ n. Then

|{π ∈ Sn with cycle structure λ and D(π) ⊆ I}| =
|{multisets of necklaces with cycle structure λ

and evaluation x i1
1 x i2−i1

2 . . . x
ik−ik−1

k
x

n−ik

k+1 }|.

This can be used to obtain a non-bijective proof of our result

|{π ∈ Cn+1 : D(π) ∩ [n − 1] = I}| = |{σ ∈ Sn : D(σ) = I}|.
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ⊆ I ′}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ∩ [n − 1] ⊆ I}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ∩ [n − 1] ⊆ I}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.

Choosing first the bead labeled xk+2, the # of such necklaces is
(

n

i1, i2 − i1, . . . , ik − ik−1, n − ik

)

,
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ∩ [n − 1] ⊆ I}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.

Choosing first the bead labeled xk+2, the # of such necklaces is
(

n

i1, i2 − i1, . . . , ik − ik−1, n − ik

)

,

which is precisely |{σ ∈ Sn : D(σ) ⊆ I}|.
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Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ∩ [n − 1] ⊆ I}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.

Choosing first the bead labeled xk+2, the # of such necklaces is
(

n

i1, i2 − i1, . . . , ik − ik−1, n − ik

)

,

which is precisely |{σ ∈ Sn : D(σ) ⊆ I}|. We have shown that

|{π ∈ Cn+1 : D(π) ∩ [n − 1] ⊆ I}| = |{σ ∈ Sn : D(σ) ⊆ I}|.

for all I ⊆ [n − 1].
Sergi Elizalde Descent sets of cyclic permutations



Origin of the problem and background
Main result

Non-bijective proof
Final remarks

Non-bijective proof

Goal : |{π ∈ Cn+1 : D(π)∩ [n−1] = I}| = |{σ ∈ Sn : D(σ) = I}|.

Let I = {i1, i2, . . . , ik}<, I ′ = I ∪ {n}. By the previous theorem,

|{π ∈ Cn+1 with D(π) ∩ [n − 1] ⊆ I}| =

|{necklaces with evaluation x
i1
1 x

i2−i1
2 . . . x

ik−ik−1

k
x

n−ik

k+1 xk+2}|.

Choosing first the bead labeled xk+2, the # of such necklaces is
(

n

i1, i2 − i1, . . . , ik − ik−1, n − ik

)

,

which is precisely |{σ ∈ Sn : D(σ) ⊆ I}|. We have shown that

|{π ∈ Cn+1 : D(π) ∩ [n − 1] ⊆ I}| = |{σ ∈ Sn : D(σ) ⊆ I}|.

for all I ⊆ [n − 1]. Now apply inclusion-exclusion.
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An equivalent statement

Let Tn be the set of n-cycles in one-line notation in which one
entry has been replaced with 0.

T3 = {031, 201, 230, 012, 302, 310}.
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An equivalent statement

Let Tn be the set of n-cycles in one-line notation in which one
entry has been replaced with 0.

T3 = {031, 201, 230, 012, 302, 310}.

Clearly, |Tn| = n!. Descents are defined in the usual way.
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An equivalent statement

Let Tn be the set of n-cycles in one-line notation in which one
entry has been replaced with 0.

T3 = {031, 201, 230, 012, 302, 310}.

Clearly, |Tn| = n!. Descents are defined in the usual way.

Corollary

For every n there is a bijection between Tn and Sn preserving the

descent set.

Example:

S3 123 13·2 2·13 23·1 3·12 3·2·1

T3 012 03·1 3·02 23·0 3·02 3·1·0
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A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)

For any I , J ⊆ [n − 1] with the same associated partition, give a

bijection between derangements of [n] whose descent set is

contained in I and derangements of [n] whose descent set is

contained in J.
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A bijection preserving the cycle structure

Problem (Eriksen, Freij, Wästlund)

For any I , J ⊆ [n − 1] with the same associated partition, give a

bijection between derangements of [n] whose descent set is

contained in I and derangements of [n] whose descent set is

contained in J.

We can solve a generalization of this problem using the work of
Gessel and Reutenauer:

Proposition

For any I , J ⊆ [n − 1] with the same associated partition, there
exists a bijection {π ∈ Sn : D(π) ⊆ I} → {σ ∈ Sn : D(σ) ⊆ J}
preserving the cycle structure.
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THANK YOU
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