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Descents

Definition
Let π = π1π2 . . . πr be a sequence of positive integers.

i is a descent of π if πi > πi+1 or i = r .

des(π) = number of descents of π.

Example

des(36522131) = 5
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Eulerian polynomials

Sn = set of permutations of {1, 2, . . . , n}.

Definition
Eulerian polynomials:

An(t) =
∑
π∈Sn

tdes(π)

Example

A1(t) = t

A2(t) = t + t2

A3(t) = t + 4t2 + t3

A4(t) = t + 11t2 + 11t3 + t4

These polynomials appear in work of Euler from 1755.
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Eulerian polynomials
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Eulerian polynomials

Euler was considering the series∑
m≥0

mtm =
t

(1− t)2∑
m≥0

m2tm =
t + t2

(1− t)3∑
m≥0

m3tm =
t + 4t2 + t3

(1− t)4∑
m≥0

m4tm =
t + 11t2 + 11t3 + t4

(1− t)5

In general, ∑
m≥0

mntm =
An(t)

(1− t)n+1 .
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Stirling numbers

Definition
The Stirling number of the second kind S(n, k) is the number of
partitions of the set {1, 2, . . . , n} into k blocks.

In 1978, Gessel and Stanley were interested in the series∑
m≥0

S(m + 1,m) tm =
t

(1− t)3∑
m≥0

S(m + 2,m) tm =
t + 2t2

(1− t)5∑
m≥0

S(m + 3,m) tm =
t + 8t2 + 6t3

(1− t)7∑
m≥0

S(m + 4,m) tm =
t + 22t2 + 58t3 + 24t4

(1− t)9

What are the polynomials in the numerator?
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Stirling permutations

Definition (Gessel–Stanley ’78)

A Stirling permutation is a permutation of the multiset
{1, 1, 2, 2, . . . , n, n} that avoids the pattern 212.

In other words, Stirling permutations π1π2 . . . π2n satisfy that,
if i < j < k and πi = πk , then πj > πi .

Qn = set of Stirling permutations of {1, 1, 2, 2, . . . , n, n}.

Example

Q2 = {1122, 1221, 2211}

We have |Qn| = (2n − 1)!! = (2n − 1) · (2n − 3) · · · · · 3 · 1, since
every permutation in Qn can be obtained by inserting nn into one
of the 2n − 1 spaces of a permutation in Qn−1.
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Stirling polynomials

Definition (Gessel–Stanley ’78)

Stirling polynomials:

Qn(t) =
∑
π∈Qn

tdes(π)

Example

Q1(t) = t

Q2(t) = t + 2t2

Q3(t) = t + 8t2 + 6t3

Theorem (Gessel–Stanley ’78)∑
m≥0

S(m + n,m) tm =
Qn(t)

(1− t)2n+1 .
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some
work relevant to this talk:

Bóna ’08: Qn(t) also gives the enumeration of Qn by the
number of plateaus, that is, positions i such that πi = πi+1.

Brenti ’89, Bóna ’08: Qn(t) has only real roots, and the
distribution of des on Qn is asymptotically normal.
Janson ’08: The joint distribution of ascents, descents and
plateaus on Qn is asymptotically normal.
Haglund and Visontai ’12: The multivariable polynomials
tracking these 3 statistics are stable (i.e., they don’t vanish
when all the variables have a positive imaginary part).
The coefficients of Qn(t) are sometimes called second-order
Eulerian numbers.
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Stirling permutations and trees

In = set of increasing edge-labeled plane rooted trees with n edges.

4 1

7 3

2

5

8

6

−→ 4664112775885332
ϕ

Theorem (Janson ’08)

There is a bijection ϕ : In −→ Qn obtained by traversing the edges
of the tree along depth-first walk from left to right, and recording
their labels.

If we remove the increasing condition on the trees, what is the
image of ϕ?

Sergi Elizalde Descents on quasi-Stirling permutations



Stirling permutations and trees

In = set of increasing edge-labeled plane rooted trees with n edges.

4 1

7 3

2

5

8

6 −→ 4664112775885332
ϕ

Theorem (Janson ’08)

There is a bijection ϕ : In −→ Qn obtained by traversing the edges
of the tree along depth-first walk from left to right, and recording
their labels.

If we remove the increasing condition on the trees, what is the
image of ϕ?

Sergi Elizalde Descents on quasi-Stirling permutations



Stirling permutations and trees

In = set of increasing edge-labeled plane rooted trees with n edges.

4 1

7 3

2

5

8

6 −→ 4664112775885332
ϕ

Theorem (Janson ’08)

There is a bijection ϕ : In −→ Qn obtained by traversing the edges
of the tree along depth-first walk from left to right, and recording
their labels.

If we remove the increasing condition on the trees, what is the
image of ϕ?

Sergi Elizalde Descents on quasi-Stirling permutations



Quasi-Stirling permutations and trees

Tn = set of edge-labeled plane rooted trees with n edges.

4 6

7

3

25

8

1

−→ 4114663775885223
ϕ

Definition (Archer–Gregory–Pennington–Slayden ’19)

A quasi-Stirling permutation is a permutation of the multiset
{1, 1, 2, 2, . . . , n, n} that avoids the patterns 1212 and 2121.

In other words, it does not have four positions i < j < k < ` with
πi = πk and πj = π` (i.e., it is non-crossing).
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Quasi-Stirling permutations

Qn = set of quasi-Stirling permutations of {1, 1, 2, 2, . . . , n, n}.

Example

Q2 = {1122, 1221, 2211, 2112}

Theorem (Archer–Gregory–Pennington–Slayden ’19)

ϕ is a bijection between Tn and Qn.

The number of unlabeled plane rooted trees with n edges is the
Catalan number Cn.

It follows that
|Qn| = n!Cn =

(2n)!
(n + 1)!

.
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Descents on quasi-Stirling permutations

Conjecture (Archer–Gregory–Pennington–Slayden ’19)

The number of π ∈ Qn with des(π) = n is equal to (n + 1)n−1.

Example

Set of π ∈ Q3 with des(π) = 1: {112233} 1

with des(π) = 2: 13
{112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133,
223113, 223311, 233112, 311223, 331122}

with des(π) = 3: 16
{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211,
311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211}

One can show that des(π) ≤ n for all π ∈ Qn.

To prove this conjecture, we look at how descents are transformed
by the bijection ϕ.
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Descents on quasi-Stirling permutations

Lemma

If T ∈ Tn and π = ϕ(T ) ∈ Qn, then

des(π) = cdes(T ),

where cdes(T ) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T .

Example

4 6

7

3

25

8

1 −→ 4114663775885223
ϕ

des(π) = 6
cdes(T ) = 1+ 2+ 1+ 2 = 6
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Quasi-Stirling permutations with most descents

Theorem

The number of π ∈ Qn with des(π) = n is equal to (n + 1)n−1.

Proof sketch.
Equivalent to counting T ∈ Tn with cdes(T ) = n, i.e., trees where
the number of cyclic descents around each vertex equals its number
of children.

Such trees are in bijection with unordered trees:

4 6

7

3

25

8

1

unordered

↔

46

2

3

7 5

8

1

having cdes(T ) = n

By Cayley’s formula, there are (n + 1)n−1 such trees.
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Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on Qn.

Define the quasi-Stirling polynomials

Qn(t) =
∑
π∈Qn

tdes(π).

Example

Q1(t) = t

Q2(t) = t + 3t2

Q3(t) = t + 13t2 + 16t3

Define their exponential generating function (EGF):

Q(t, z) =
∑
n≥0

Qn(t)
zn

n!
.
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EGF for Eulerian polynomials

Recall the Eulerian polynomials

An(t) =
∑
π∈Sn

tdes(π).

Their EGF
A(t, z) =

∑
n≥0

An(t)
zn

n!

has a well-known closed form

A(t, z) =
1− t

1− te(1−t)z
.

Now we are ready to give an expression for Q(t, z).
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Descents on quasi-Stirling permutations

Theorem

The EGF Q(t, z) for quasi-Stirling permutations by the number of
descents satisfies the implicit equation

Q(t, z) = A(t, zQ(t, z)),

that is,

Q(t, z) =
1− t

1− te(1−t)zQ(t,z)
.

Its coefficients satisfy

Qn(t) =
n!

n + 1
[zn]A(t, z)n+1.

Here [zn]F (z) denotes the coefficient of zn in F (z).
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Proof ideas

By the bijection ϕ,

Q(t, z) =
∑
n≥0

∑
T∈Tn

tcdes(T ) z
n

n!
.

Decompose trees in Tn as

· · ·

a1 a2 ar

T1 T2 Tr

T =

and use that

cdes(T ) =
r∑

i=1

(cdes(

ai

Ti )− 1) + des(a1a2 . . . ar ).
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Proof ideas

The EGF for each piece

ai

Ti is zQ(t, z).

Combining the pieces while keeping track of cdes and using the
Compositional Formula, we get

Q(t, z) = A(t, zQ(t, z)).

Finally, extracting its coefficients using Lagrange inversion gives

Qn(t) =
n!

n + 1
[zn]A(t, z)n+1.
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Consequences

Recall the formulas:∑
m≥0

mntm =
An(t)

(1− t)n+1 (Eulerian)

∑
m≥0

S(m + n,m) tm =
Qn(t)

(1− t)2n+1 (Stirling)

Open: Find a combinatorial proof.
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Properties of quasi-Stirling polynomials

Recall: i is a plateau of π if πi = πi+1,
i is an ascent of π if πi < πi+1 or i = 0.

Theorem (Bóna ’08)

On average, Stirling permutations in Qn have (2n + 1)/3 ascents,
(2n + 1)/3 descents, and (2n + 1)/3 plateaus.

Theorem

On average, quasi-Stirling permutations in Qn have (3n + 1)/4
ascents, (3n + 1)/4 descents, and (n + 1)/2 plateaus.
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials An(t) are real, distinct, and
nonpositive.

Theorem (Brenti’89, Bóna’08)

The same holds for the Stirling polynomials Qn(t).

Theorem

The same holds for the quasi-Stirling polynomials Qn(t).

Corollary

The coefficients of Qn(t) are unimodal and log-concave.
The distribution of the number of descents on Qn converges
to a normal distribution as n→∞.
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Properties of quasi-Stirling polynomials

Proving real-rootedness of Qn(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating Qn and Qn−1.

Our proof expresses Qn(t) in terms of r -Eulerian polynomials,
defined by Riordan and Foata–Schützenberger.

In the process, we show that

#{π ∈ Qn with m + 1 descents}
= #{injections [n − 1]→ [2n] with m excedances}.

Open: Find a bijective proof.

Sergi Elizalde Descents on quasi-Stirling permutations



Properties of quasi-Stirling polynomials

Proving real-rootedness of Qn(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating Qn and Qn−1.

Our proof expresses Qn(t) in terms of r -Eulerian polynomials,
defined by Riordan and Foata–Schützenberger.

In the process, we show that

#{π ∈ Qn with m + 1 descents}
= #{injections [n − 1]→ [2n] with m excedances}.

Open: Find a bijective proof.

Sergi Elizalde Descents on quasi-Stirling permutations



Properties of quasi-Stirling polynomials

Proving real-rootedness of Qn(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating Qn and Qn−1.

Our proof expresses Qn(t) in terms of r -Eulerian polynomials,
defined by Riordan and Foata–Schützenberger.

In the process, we show that

#{π ∈ Qn with m + 1 descents}
= #{injections [n − 1]→ [2n] with m excedances}.

Open: Find a bijective proof.

Sergi Elizalde Descents on quasi-Stirling permutations



Properties of quasi-Stirling polynomials

Proving real-rootedness of Qn(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating Qn and Qn−1.

Our proof expresses Qn(t) in terms of r -Eulerian polynomials,
defined by Riordan and Foata–Schützenberger.

In the process, we show that

#{π ∈ Qn with m + 1 descents}
= #{injections [n − 1]→ [2n] with m excedances}.

Open: Find a bijective proof.

Sergi Elizalde Descents on quasi-Stirling permutations



k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel–Stanley ’78)

A k-Stirling permutation is a permutation of the multiset
{1k , 2k , . . . , nk} that avoids the pattern 212.

Qk
n = set of k-Stirling permutations.

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition
A k-quasi-Stirling permutation is a permutation of the multiset
{1k , 2k , . . . , nk} that avoids the patterns 1212 and 2121.

Qk
n = set of k-quasi-Stirling permutations.

For k = 1, Q1
n = Q1

n = Sn. For k = 2, Q2
n = Qn and Q2

n = Qn.
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Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in
Qk

n can be obtained by inserting the string nk = nn . . . n into one of
the (n − 1)k + 1 spaces of a permutation in Qk

n−1, so

|Qk
n | = (k + 1)(2k + 1) · · · · · ((n − 1)k + 1).

Theorem
For n ≥ 1 and k ≥ 1,

|Qk
n | =

(kn)!

((k − 1)n + 1)!
= n!Cn,k ,

where

Cn,k =
1

(k − 1)n + 1

(
kn

n

)
is the nth k-Catalan number.
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k-quasi-Stirling permutations and trees

Gessel’94 & Janson–Kuba–Panholzer’11 describe bijections between
k-Stirling permutations and two kinds of decorated increasing trees.

We have extended them to bijections between k-quasi-Stirling
permutations and certain trees.

Example
A bijection between compartmented trees and 3-quasi-Stirling
permutations:

5

6

2 1

3

4

7 −→ 622266355537744471113
φ
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Ascents, descents and plateaus on k-quasi-Stirling
permutations

Let asc(π) and plat(π) be the number of ascents and plateaus of π.

Consider the homogenization of the Eulerian polynomials

Ân(q, t) =
∑
π∈Sn

qasc(π)tdes(π),

and their EGF

Â(q, t; z) =
∑
n≥0

Ân(q, t)
zn

n!
= 1− q +

q(q − t)

q − te(q−t)z
.

Define the multivariate k-quasi-Stirling polynomials

P
(k)
n (q, t, u) =

∑
π∈Qk

n

qasc(π)tdes(π)uplat(π),

and their EGF
P
(k)

(q, t, u; z) =
∑
n≥0

P
(k)
n (q, t, u)

zn

n!
.

Sergi Elizalde Descents on quasi-Stirling permutations



Ascents, descents and plateaus on k-quasi-Stirling
permutations

Let asc(π) and plat(π) be the number of ascents and plateaus of π.

Consider the homogenization of the Eulerian polynomials
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Ascents, descents and plateaus on k-quasi-Stirling
permutations

This is the most general version of our main result:

Theorem

P
(k)

(q, t, u; z) satisfies the implicit equation

P
(k)

(q, t, u; z) = Â(q, t; z(P
(k)

(q, t, u; z)− 1+ u)k−1).

Extracting its coefficients using Lagrange inversion,

P
(k)
n (q, t, u) =

n!

(k − 1)n + 1
[zn]

(
Â(q, t; z)− 1+ u

)(k−1)n+1
.

The proof follows ascents, descents and plateaus through the
bijection φ, and it uses a decomposition of compartmented trees.
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Ascents, descents and plateaus on k-Stirling permutations

For k-Stirling permutations, similar ideas give a nice differential
equation for the EGF

P(k)(q, t, u; z) =
∑
n≥0

∑
π∈Qk

n

qasc(π)tdes(π)uplat(π)
zn

n!
.

Theorem

P(z) := P(k)(q, t, u; z) satisfies the differential equation

P ′(z) = (P(z)− 1+ q)(P(z)− 1+ t)(P(z)− 1+ u)k−1,

with initial condition P(0) = 1.
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Ascents, descents and plateaus on k-Stirling permutations

Proof idea:

φ restricts to a bijection between k-Stirling permutations and
increasing compartmented trees.

These trees can be decomposed as

1

T0 Tk+1

T1 Tk

P − 1+ q

P − 1+ u · · · P − 1+ u

P − 1+ t
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h a n

y o
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