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ABSTRACT. We examine the structure of central twisted trans-
formation group C∗-algebras C0(X) Ïid,u G, and apply our
results to the group C∗-algebras of central group extensions.
Our methods require that we study Moore’s cohomology group
H2(G,C(X,T)), and, in particular, we prove an inflation result
for pointwise trivial cocyles which may be of use elsewhere.

Twisted transformation group C∗-algebras and Moore’s cohomology group
H2(G,C(X,T)) arise naturally in the study of the group C∗-algebras of group
extensions and have far reaching applications in operator algebras. Packer’s survey
articles [13], and especially [12], give an excellent historical context as well as
providing additional references and the basic definitions for what follows.

In this paper we examine the structure of central twisted transformation group
C∗-algebras C0(X) Ïid,u G, where G is a second countable locally compact group
acting trivially on a second countable locally compact space X, and u ∈
Z2(G,C(X,T)) is a 2-cocycle on G taking values in the center C(X,T) of the
multiplier algebra of C0(X). A primary motivation is the study of the group C∗-
algebra C∗(L) of a central group extension

(∗) 1 -→ N -→ L -→
p
G -→ 1.

It is well-known that C∗(L) is isomorphic to the central twisted transformation
group C0(N̂)Ïid,ηG, where η ∈ Z2(G,N) is a 2-cocycle associated to the extension
(∗) viewed as taking values in C(N̂,T).

Our results apply, in particular, to groups G which are smooth in the sense of
Moore [8], in that there is a central group extension

1 -→ Z -→ H -→ G -→ 1
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(called a representation group for G) such that the transgression map tg : Ẑ →
H2(G,T) is an isomorphism of topological groups. Thus our results apply in par-
ticular to groups G that are either discrete, compact, compactly generated abelian
or connected, simply connected Lie groups. Our results substantially generalize
results in [23, 24, 20], where central twisted group algebras have been studied
for abelian groups and pointwise trivial cocycles u ∈ Z2(G,C(X,T)), and re-
sults in [25], where Smith considers central twisted group algebras for groups with
H2(G,T) discrete (which, for example, is the case whenever G is compact).

The structure of C0(X)Ïid,u G is easiest to describe when u is pointwise triv-
ial; that is, u(x) is trivial in H2(G,T) for each x ∈ X, where u(x)(s, t) :=
u(s, t)(x). As was shown in [23, 20] for abelian G, each pointwise trivial cocy-
cle is naturally associated to a locally compact Ĝab-bundle p : Eu → X, where
Gab := G/[G,G] is the abelianization of G (Definition 1.2). The bundles Eu
and Ev are isomorphic if and only if u and v are equivalent in H2(G,C(X,T)).
Furthermore, the map u , Eu is multiplicative in that Euv � Eu ∗ Ev , where
the Eu ∗ Ev is the usual product of Ĝab-bundles. In the case of abelian G, the
bundles Eu appeared in [24] under the name of characteristic bundles, the isomor-
phism classes of which form an (often proper) subset of the set of all isomorphism
classes of free and proper Ĝ-bundles over X. Moreover, in this case, the alge-
bra C0(X) Ïid,u G is isomorphic to C0(Eu). We shall give a short proof of this
well-known isomorphism below.

When G is not abelian, C0(X) Ïid,u G is still a C0(X)-algebra, and therefore
can be thought of as the (semi-continuous) sections of a C∗-bundle over X. If
A is a C0(X)-algebra admitting a C0(X)-linear Ĝab-action, then we can form the
C∗-analogue of the bundle product above, and obtain a C∗-algebra Eu ∗ A ([4,
Definition 3.3]). One benefit of this construction is that, if u is pointwise trivial
and G is smooth, then we can show that

(†) C0(X) Ïid,u G ∼ME Eu ∗ C0(X,C∗(G)))

(Theorem 2.11). A crucial ingredient in the proof of (†), which may be of in-
dependent interest, is showing that u is equivalent to a cocycle inflated from a
pointwise trivial cocycle on Gab (Proposition 1.7). More generally, we show that

(‡) H2(G,C(X,T)) � C(X,H2(G,T))⊕H2
pt(Gab, C(X,T))

(Proposition 1.10). If u ∈ Z2(G,C(X,T)), then the map x , [u(x)] gives us
an element ϕ ∈ C(X,H2(G,T)) and we can use (‡) to write u = v · ūϕ with
v pointwise trivial. Since H is a representation group for G, C∗(H) is a C0(Ẑ)-
algebra. Since we can view ϕ as a continuous map of X into Ẑ � H2(G,T), we
can form the pull-backϕ∗(C∗(H)). Our main result (Theorem 2.9) implies that

C0(X) Ïid,u G ∼ME Ev ∗ϕ∗(C∗(H)).
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This result is new even in the special situation where H2(G,T) is discrete as is the
case in [25] (see Theorem 2.11 below).

In the case of a central group extension C∗(L) � C0(N̂) Ïid,η G, our results
take a more elegant form as our auxiliary constructions can be formulated in group
theoretic terms. For example, if L is pointwise trivial—that is, the associated cocy-
cle η is pointwise trivial—then res : L̂ab → N̂ is a Ĝab-bundle which is isomorphic
to Eη, and we have

C∗(L) � L̂ab ∗ C0(N̂, C∗(G))

(Corollary 3.3). In general, we prove (Theorem 3.5) that

C∗(L) � L̂′ab ∗ϕ∗(C∗(H)),

where L′ is the quotient of {(`,h) ∈ L × H | p(`) = q(h)} by the subgroup∆(Z) := {(ϕ̂(z), z) | z ∈ Z}, where ϕ̂ : Z → N is the dual to ϕ : N̂ →
H2(G,T) � Ẑ.

The paper is organized as follows. In Section 1, we make a careful study
of pointwise trivial cocycles and prove our results on inflation of pointwise trivial
cocycles, and on the decomposition ofH2(G,C(X,T)). In Section 2, we prove our
structure theorems for general central twisted transformation groups. In Section
3, we show how to apply our results to the group C∗-algebras of central group
extensions.

We should mention that this paper is very much related to the papers [5,
4], where we consider more general systems. However, in the special situations
considered here, the results are much easier to describe, and allow more general
statements.

1. POINTWISE TRIVIAL COCYCLES

If X is a second countable locally compact space, then the set of continuous func-
tions C(X,T) from X into the circle group T is a Polish group when equipped
with pointwise multiplication and the compact-open topology. In this section,
we look carefully at the Moore cohomology group H2(G,C(X,T)) for a second
countable locally compact group G acting trivially on C(X,T).

The definition and basic properties of Moore’s cohomology groups Hn(G,A)
for an arbitrary polish G-module A are laid out in Moore’s original paper [9]. (A
summary with additional references can be found in Section 7.4 of [21].) An
important facet of the theory is that these groups can be computed by using two
different complexes: one can either take the complex

· · · -→
∂
Cn(G,A) -→

∂
Cn+1(G,A) -→

∂
· · ·
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where Cn(G,A) denotes the group of A-valued Borel functions on Gn and ∂
denotes the usual group coboundary, or one can work with the complex

· · · -→
∂
Cn(G,A) -→

∂
Cn+1(G,A) -→

∂
· · ·

where Cn(G,A) is the quotient of Cn(G,A) obtained by identifying Borel func-
tions on Gn which coincide almost everywhere and ∂ is the induced map. Moore
shows in [9, Theorem 5] that the canonical maps Cn(G,A) → Cn(G,A) induce
isomorphisms of Hn(G,A) with Hn(G,A) for all n ≥ 0. One advantage of work-
ing with Cn(G,A) is that Cn(G,A) is a Polish group when equipped with the
topology of convergence in measure (after replacing Haar measure with an equiv-
alent finite measure). Thus we have a topology on Hn(G,A) (and therefore on
Hn(G,A)), although this topology can be non-Hausdorff in general. On the other
hand, elements in Cn(G,A) are not defined everywhere, and this can often be a
nuisance; thus it is useful to work with both definitions simultaneously, and we
shall do so below.

Definition 1.1. Let u ∈ Z2(G,C(X,T)) and define u(x) ∈ Z2(G,T) by
evaluation at x: u(x)(s, t) := u(s, t)(x). We say that u is pointwise trivial if
u(x) is trivial (i.e., u(x) ∈ B2(G,T)) for all x ∈ X. We say that u is locally
trivial if each x ∈ X has an open neighborhood V such that the restriction uV ∈
Z2(G,C(V,T)) of u to V is trivial (i.e., uV ∈ B2(G,C(V,T))).

We denote by Z2
pt(G,C(X,T)) and Z2

loc(G,C(X,T)), respectively, the subsets
of pointwise trivial cocycles and locally trivial cocycles in Z2(G,C(X,T)). Simi-
larly, we let H2

pt(G,C(X,T)) and H2
loc(G,C(X,T)), respectively, be the images of

Z2
pt(G,C(X,T)) and Z2

loc(G,C(X,T)) in H2(G,C(X,T)).
Pointwise trivial cocycles have been studied extensively in the literature. A par-

ticularly important example—having applications in the study of C∗-dynamical
systems—is Rosenberg’s [22, Theorem 2.1], which shows that

Z2
pt(G,C(X,T)) = Z2

loc(G,C(X,T)),

whenever H2(G,T) is Hausdorff and the abelianization Gab is compactly gener-
ated. However, Rosenberg’s Theorem can fail without the assumptions on Gab

and H2(G,T) (see [5] and Example 1.8 below).
We shall study pointwise trivial cocycles u ∈ Z2

pt(G,C(X,T)) via a canonical
Ĝab-space Eu. Our construction of Eu is identical to that in [20] where the group
G was assumed to be abelian. It follows from [9, Theorem 3] that H1(G,T), and
therefore H1(G,T), can be identified with Ĝab. Since there are natural maps of
Ĝab into C1(G,T) and C1(G,T), we always have algebraic short exact sequences
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of groups

1 -→ Ĝab -→ C1(G,T) -→
∂
B2(G,T) -→ 1

and

1 -→ Ĝab -→ C1(G,T) -→
∂
B2(G,T) -→ 1

which are related to each other via the inclusions Cn → Cn. Although the homo-
morphisms in the second sequence are always continuous, the second sequence
may fail to be a short exact sequence of topological groups as the associated quo-
tient map C1(G,T)/Ĝab → B2(G,T) may fail to be a homeomorphism. In fact,
this quotient map is a topological isomorphism if and only if B2(G,T) is a Polish
subgroup of C2(G,T). This happens exactly when B2(G,T) is closed, which is
equivalent to H2(G,T) being Hausdorff (cf. e.g. [9, Section 5]).

Definition 1.2. Let u ∈ Z2
pt(G,C(X,T)). Then we define

Eu = {(f ,x) ∈ C1(G,T)×X | ∂(f ) = u(x)}.

Similarly, if u denotes the image of u in Z2(G,C(X,T)), we define

Eu = {(f ,x) ∈ C1(G,T)×X | ∂(f ) = u(x)}.

It follows from the short exact sequences mentioned above that both, Eu
and Eu are free Ĝab-spaces, and that Eu becomes a topological Ĝab-space when
equipped with the relative topology from C1(G,T)×X. Moreover, the canonical
projections

p : Eu → X and p : Eu → X

induce bijections between the quotient spaces Eu/Ĝab and Eu/Ĝab and X, respec-
tively. However, there are cases where p : Eu → X fails to be open (e.g. Example
1.8 below).

Proposition 1.3. Let u ∈ Z2
pt(G,C(X,T)). Then the following are true:

(a) The map (f ,x), (f ,x) is a bijection ϕ : Eu → Eu.
(b) If we topologize Eu via the identification with Eu of (a), then the topology on

Eu ⊂ C1(G,T) × X is given by pointwise convergence in the first variable, and
the given topology on X.

(c) If [u] = [v] ∈ H2
pt(G,C(X,T)), then Eu � Ev as (topological) Ĝab-spaces.

(d) Eu is isomorphic to the trivial Ĝab-bundle Ĝab × X (as a Ĝab-space) if and only
if u is trivial.
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Proof. For the proof of (a), it is enough to show that the given map induces
bijections between the Ĝab-orbits in Eu and Eu. But, by the above discussion, the
orbits are just the sets p−1({x}) and p−1({x}), respectively, and it is clear that
p−1({x}) is mapped into p−1({x}). The result then follows from the freeness of
the Ĝab-actions.

For (b), we have to show that a sequence {(fn,xn)} converges to (f ,x) in Eu
if and only if fn → f pointwise onG and xn → x. Since pointwise convergence of
{fn} in C1(G,T) implies convergence of {fn} in C1(G,T), it is enough to show
that convergence of {(fn,xn)} in Eu implies pointwise convergence of {fn}. But
this follows from part (a) and [20, Lemma 3.6].

For (c), let g ∈ C1(G,C(X,T)) be a Borel cochain such that v = ∂(g)u.
Then Eu → Ev : (f ,x) , (g(x)f ,x) is an isomorphism which is bicontinuous
by part (b).

The last assertion follows from the proof of [20, Proposition 3.4], which did
not make use of the assumption that G was abelian. ❐

Remark 1.4. It follows from part (d) of the proposition that Eu is a locally
trivial Ĝab-bundle if and only if u is locally trivial. In particular, when u is locally
trivial, Eu is a free and proper locally compact Ĝab-bundle.

If G is abelian, then [20, Proposition 3.1] implies that Eu is locally compact,
and p : Eu → X is a free and proper Ĝ-bundle. A careful look at the proof
reveals that the hypothesis that G be abelian was only used to guarantee that the
coboundary map ∂ : C1(G,T) → B2(G,T) is open.1 Thus we get the following
result.

Proposition 1.5. Assume that H2(G,T) is Hausdorff and

u ∈ Z2
pt(G,C(X,T)).

Then Eu is locally compact and p : Eu → X is a free and proper Ĝab-bundle.

We shall also need the following lemma, which can be proved along the lines
of the final part of the proof of [20, Proposition 3.4].

Lemma 1.6. Let Y be a second countable topological space and let g : Y →
C(X,T) be a map such that for each x ∈ X the map g(x) : Y → T : g(x)(y) =
g(y,x) is Borel. Then g : Y → C(X,T) is Borel.

We are now ready for our lifting result for pointwise trivial cocycles.

Proposition 1.7. Assume that u ∈ Z2
pt(G,C(X,T)). Then the following are

equivalent:

1IfG is abelian, thenH2(G,T) is Hausdorff [10, Theorem 7], and this is equivalent to the openness
of ∂.
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(a) There exists a cocycle ũ ∈ Z2
pt(Gab, C(X,T)) such that u is cohomologous to the

inflation inf ũ of ũ to G.
(b) The projection p : Eu → X is open.
(c) Eu is locally compact and p : Eu → X is a free and proper Ĝab-bundle.

Moreover, if (a) holds, then Eu is isomorphic to Eũ as a Ĝab-space.

Proof. We will first show the last statement: indeed, if u ∼ inf ũ, we can use
part (c) of Proposition 1.3 to assume without loss of generality that u = inf ũ. It
is then easy to check that the map from Eũ → Eu given by

(f ,x), (inff ,x)

is a Ĝab-equivariant bijection, which is bicontinuous by part (b) of Proposi-
tion 1.3.

We now show (a)⇒(c)⇒(b)⇒(a). In fact (a)⇒(c) follows from the isomor-
phism Eu � Eũ together with [20, Proposition 3.1] (see the discussion preceding
Proposition 1.5 above), and (c)⇒(b) follows by definition.

We now check (b)⇒(a). Choose a Borel section c : Gab → G with c(ė) = e
and define a map µ : Gab ×Gab ×Eu → T by

µ
(
ṡ, ṫ, (f , x)

) = ∂Gab(f ◦ c)(ṡ, ṫ).

This map is continuous in (f ,x) by Proposition 1.3(b), and since

∂Gab

(
γ · (f ◦ c)) = ∂Gab(f ◦ c) for all γ ∈ Ĝab,

it follows that µ induces a map ũ : Gab ×Gab ×X → T which is continuous on X
(since part (b) implies that p : Eu → X induces a homeomorphism Eu/Ĝab � X).
Thus we may view ũ as a map from Gab ×Gab to C(X,T). Since for each x ∈ X,
ũ(x) = ∂Gab(f ◦ c) for any (f ,x) ∈ Eu, it follows that all evaluations ũ(x) are
Borel. Therefore, ũ is Borel by Lemma 1.6.

It remains to check that u ∼ inf ũ. For this we define a map ν : G ×Eu → T
by

ν(s, (f , x)) = f(s) · (f ◦ c)(ṡ).
Then ν is continuous on Eu, and since ν(s, (γ · f ,x)) = ν(s, (f , x)) for all
γ ∈ Ĝab, it follows that ν factors through a map g : G × X → T which is
continuous on X � Zu/Ĝab. Lemma 1.6 implies that g, viewed as a map from G
to C(X,T), is Borel. Moreover, if (f ,x) ∈ Eu, then

∂g(s, t)(x) = ∂f̄ · ∂(f ◦ c) = u(x) · inf ũ(x).

This completes the proof. ❐
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Example 1.8 (cf. [5, Example 7.3]). There exist groups G with cocycles u ∈
Z2

pt(G,C(X,T)) such that p : Eu → X fails to be open; it follows that such u are
not lifted from pointwise trivial cocycles on Gab. Let θ be an irrational number
and let G = R2 × T2 with multiplication given by the formula

(s1, t1, z1,w1)(s2, t2, z2,w2) = (s1 + s2, t1 + t2, eis1t2z1z2, eiθs1t2w1w2).

This is the example of a group with non-Hausdorff H2(G,T) presented by Moore
in [8, p. 85] (see also [5, Example 7.2]).

Let X = { 1
n | n ∈ N}∪{0} and choose a continuous map λ : X → Z+θZ ⊆ R

such that λ0 = 0 and such that λ1/n ≠ 0 for all n ∈ N. Define a cocycle v ∈
Z2(R2, C(X,T)) by

v((s1, t1), (s2, t2))(x) = eiλ(x)s1t2 , s, t ∈ G, x ∈ X.

Since the v(x) are non-trivial cocycles on R2 = Gab if x ≠ 0, it follows that v is
not pointwise trivial. However, the inflation infv ∈ Z2(G,C(X,T)) is pointwise
trivial. Indeed, a short computation shows that if we define λ(x) = `(x) +
θm(x) where `, m : X → Z, and if we define fx ∈ C1(G,T) by fx(s, t, z,w) =
z`(x)wm(x), then infv(x) = ∂fx .

We now show that the projection p : Einfv → X is not open. If it were, then
Proposition 1.7 would imply that Einfv would be a locally compact free and proper
Ĝab � R2-space. Since every free and proper R2-bundle is locally trivial by Palais’s
Slice Theorem [16, Theorem 4.1], and therefore trivial since Ȟ1(X,R2) = {0},
this would imply that Einfv would be a trivial bundle. In that case, there exists a
continuous section ϕ : X → Einfv . Then we could find elements γx ∈ R̂2 such
that

ϕ(x) = (γx · fx,x), with γ0 = 1G,

and where fx is defined as above. This would imply that γ1/n · f1/n converges
pointwise to 1G, and hence, that f1/n|T2 converges pointwise to 1T2 . But this
is impossible since for all x ≠ 0, fx|T2 is a non-trivial character of T2, T̂2 �
Z2 is discrete, and pointwise convergence of characters implies convergence [9,
Theorem 8].

Corollary 1.9. Assume that H2(G,T) is Hausdorff. Then the inflation map

inf : H2
pt(Gab, C(X,T))→ H2

pt(G,C(X,T))

sending [v], [infv] is an isomorphism of abelian groups.
Similarly, if G is any second countable locally compact group, then the inflation

map inf : H2
loc(Gab, C(X,T)) → H2

loc(G,C(X,T)) is an isomorphism.
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Proof. It follows from Propositions 1.5 and 1.7 that

inf : H2
pt(Gab, C(X,T))→ H2

pt(G,C(X,T))

is surjective. Injectivity follows since [infv] = [1] in H2
pt(G,C(X,T)) if and only

if Einfv is the trivial bundle (Proposition 1.3(d)). But Einfv � Ev by Proposition
1.7, and this implies [v] = 1. The second statement is proved similarly using
Remark 1.4 and Proposition 1.7. ❐

The above results can be used to give a description of H2(G,C(X,T)) along
the lines of [5, Section 5]. We restrict our attention to groups which are smooth
in the sense of Moore (see [8]—an extensive discussion of smooth groups is also
given in [5, Section 4]). Recall that if 1 → Z → H → G → 1 is a central group
extension, then the transgression map tg : Ẑ → H2(G,T) is defined by composing
the characters of Z with a cocycle η ∈ Z2(G,Z) corresponding to the extension
(recall that such an η is given by η = ∂c for any Borel section c : G → H). A group
G is called smooth if there exists a central extension as above such that tg : Ẑ →
H2(G,T) is bijective, which automatically implies that it is an isomorphism of
topological groups. The extension H is then called a representation group for G. In
particular, if G is smooth, then H2(G,T) is Hausdorff. The list of smooth groups
is quite large; it contains all discrete groups, all compact groups, all compactly
generated abelian groups, and all simply connected and connected Lie groups (see
[9, 5]).

Suppose now that G is smooth and that 1 → Z → H → G → 1 is a representa-
tion group of G. Let η ∈ Z2(G,Z) be a corresponding cocycle. Then any contin-
uous map ϕ : X → H2(G,T) � Ẑ determines a cocycle uϕ ∈ Z2(G,C(X,T)) by
defining uϕ(s, t)(x) =ϕ(x)◦η(s, t). It is easy to check (and it follows from the
proof of [5, Theorem 5.4]) that ϕ , [uϕ] determines a well defined group ho-
momorphism ΨH : C(X,H2(G,T)) → H2(G,C(X,T)), which depends only on
the particular choice of the representation group, but not on the particular choice
of η ∈ Z2(G,Z) corresponding to this extension.

Proposition 1.10. Suppose that G is smooth with representation group H. Then
the map

inf⊕ΨH : H2
pt(Gab, C(X,T))⊕ C(X,H2(G,T))→ H2(G,C(X,T)),

sending (v,ϕ) , infv ·uϕ, is an isomorphism of groups.

Proof. Let Φ : H2(G,C(X,T)) → C(X,H2(G,T))

be the evaluation map given by Φ([u])(x) := [u(x)]. Then Φ is a group homo-
morphism and kerΦ = H2

pt(G,C(X,T)). SinceH2(G,T) is Hausdorff, we can ap-
ply Corollary 1.9 to see that inf : H2

pt(Gab, C(X,T)) → H2
pt(G,C(X,T)) = kerΦ
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is an isomorphism. The result then follows from the fact that ΨH : C(X,H2(G,T))
→ H2(G,C(X,T)) is a splitting homomorphism for Φ (see the proof of [5, Theo-
rem 5.4] for more details). ❐

Remark 1.11.
(1) If H2(G,T) is discrete, then every continuous map ϕ : X → H2(G,T) is
locally constant. Thus, together with the classification of characteristic bundles
given in [24], the above result subsumes [25, Corollary 9]—without having to
assume that G is abelian as in [25]!

(2) Since every countable discrete group G has a representation group by [8,
Theorem 3.1] (see also [15, Corollary 1.3]), the above decomposition applies to
such groups. If, in addition, Gab is free abelian, then it follows from the clas-
sification of characteristic bundles in [24, Lemma 3] (but see also [13]), that
H2

pt(Gab, C(X,T)) = {0}. Thus Proposition 1.10 implies that

(1.1) H2(G,C(X,T)) � C(X,H2(G,T))

in these cases. Notice that if G is a non-abelian free group, then H2(G,T) = {0}.
Then (1.1) implies the well know result that H2(G,C(X,T)) = {0}.

2. CENTRAL TWISTED TRANSFORMATION GROUP ALGEBRAS

In this section, we want to describe the central twisted transformation group al-
gebra C0(X) Ïid,u G corresponding to a cocycle u ∈ Z2(G,C(X,T)). The basic
properties of twisted crossed products are given in [14]. We recall some of the
fundamentals here. A (Busby-Smith) twisted action (α,u) of G on a C∗-algebra
A consists of a strongly measurable map α : G → AutA together with a strictly
measurable map u : G ×G → UM(A) such that

αsαt = Adu(s, t) ◦αst and αr(u(s, t))u(r , st) = u(r , s)u(rs, t),

for all s, t, r ∈ G. We also require that αe = id and u(e, s) = u(s, e) = 1 for
all s ∈ G. The twisted crossed product AÏα,u G is a completion of L1(G,A) with
convolution defined by

f ∗ g(s) =
∫
G
f(t)αt(g(t−1s))u(t, t−1s)ds.

The covariant representations of the twisted system (A,G,α,u) are the pairs (π,U)
in which π : A → B(H ) is a nondegenerate ∗-representation of A and U : G →
U(H ) is a measurable map such that

Ue = 1, π(αs(a)) = Usπ(a)U∗s , and UsUt = π(u(s, t))Ust.
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There is a natural one-to-one correspondence between covariant representations
(π,U) of (A,G,α,u) and nondegenerate ∗-representations of AÏα,u G associat-
ing (π,U) to its integrated form

π ÏU(f) =
∫
G
π(f(s))us ds, f ∈ L1(G,A).

The dual action (α,u)∧ of Ĝab on AÏα,u G is defined on the L1-functions via

(α,u)∧γ (f )(s) = γ(s)f (s).

(Just as with the Fourier transform, there is a choice to be made when defining the
dual action, and it is a matter of convenience whether one multiplies with γ(s)
or γ(s) in the formula above. It should be noted that our convention here is the
opposite of that in [4]). There are canonical embeddings iA : A → M(A Ïα,u G)
and iG : G → UM(AÏα,u G) given on f ∈ L1(G,A) by

(iA(a)f)(t) = a · f(t) and (iG(s)f )(t) = αs(f (s−1t))u(s, s−1t).

Then (iA, iG) is a covariant homomorphism of (A,G,α,u) into M(A Ïα,u G),
and for f ∈ L1(G,A), iA × iG(f ) is the image of f in A Ïα,u G under the
embedding of L1(G,A) into its completion AÏα,u G.

If u ∈ Z2(G,C(X,T)), with C(X,T) regarded as a trivial G-module, then
(id, u) is a twisted action of G on C0(X), and the central twisted transformation
group algebras are precisely the crossed products C0(X)Ïid,u G which arise in this
way. For a good survey article on twisted transformation group algebras we refer
to [12]. Since we usually have α = id in this section, we shall often write û for
the dual action (id, u)∧ of Ĝab.

To further reduce the notational overhead, we won’t distinguish between v ∈
Z2(Gab, C(X,T)) and its inflation, infv in Z2(G,C(X,T)).

Ifu ∈ Z2(G,C(X,T)) is a productu = v·σ for some v ∈ Z2
pt(Gab, C(X,T))

and σ ∈ Z2(G,C(X,T)), we want to obtain a description of C0(X) Ïid,u G in
terms of the algebras C0(X) Ïid,v Gab and C0(X) Ïid,σ G. (Of course this is mo-
tivated by Proposition 1.10.)

We start by giving a description of C0(X) Ïid,v Gab in terms of the bundle
p : Ev → X. The following result is well known. It follows from the work of
Smith [23] and the discussion given in [20, Remark 3.11]. However, we feel it
worthwhile to include the following direct (and much shorter) proof.

Lemma 2.1. Suppose that G is abelian and v ∈ Z2
pt(G,C(X,T)). Then the

dual system (C0(X) Ïid,v G, Ĝ, v̂) is isomorphic to (C0(Ev), Ĝ, τ), where τ : Ĝ →
AutC0(Ev) is given by τγ(ψ)(f ,x) = ψ(γ · f ,x).

Proof. Since v is pointwise trivial, it is symmetric, i.e., v(s, t) = v(t, s) for
every s, t ∈ G. Using this it is easy to check that convolution on L1(G,C(X)) is
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commutative. Thus, C0(X) Ïid,v G is commutative, and isomorphic to
C0((C0(X) Ïid,v G)∧) via the Gelfand-Naimark theorem.

Thus we have to show that Ev is Ĝ-equivariantly homeomorphic to

(C0(X) Ïid,u G)∧.

It is straightforward to check that the one-dimensional covariant representations
are precisely the pairs (εx, f ) with (f ,x) ∈ Ev , where εx : C0(X) → C denotes
evaluation at x. Thus we get a canonical bijection Φ : Ev → (C0(X) Ïid,u G)∧,
given by

(f ,x), εx Ï f .

Since the action of a character γ ∈ Ĝ on a covariant representations (π,U) is
given by (π, γ ·U), it follows that Φ is Ĝ-equivariant.

So it only remains to check that Φ is continuous and open. For continuity, let
(fn,xn) converge to (f ,x) in Eu. Then εxn Ï fn(h) converges to εx Ï f(h)
for all h ∈ Cc(G × X) by Lebesgue’s dominated convergence theorem. Since
Cc(G × X) is dense in C0(X) Ïid,u G this implies that εxn Ï fn converges to
εx Ï f in the weak-∗ topology. This proves continuity.

To prove openness, we could appeal to some deep results of Olesen and Rae-
burn such as [11, Corollary 2.3]. Instead, we give a more elementary argument.
We suppose that εxn Ï fn converges to εx Ï f in (C0(X) Ïid,u G)∧. In view of
Proposition 1.3, it will suffice to show that {(fn,xn)} converges to (f ,x) in Ev .
Let h ∈ Cc(G×X) be such that εx Ïf(h) = 1. Then if ψ ∈ Cc(X), we note that

εxn Ï fn(iC0(X)(ψ)h) = ψ(xn)(εxn Ï fn(h)).

Since εxn Ï fn(iC0(X)(ψ)h) converges to εx Ï f(iC0(X)(ψ)h), we must have
ψ(xn) → ψ(x) for all ψ ∈ Cc(X). Thus xn → x. Thus we may assume there
is a ψ ∈ Cc(X) such that ψ(xn) = 1 for all n. If ϕ ∈ L1(G) and we define
h ∈ L1(G,C0(X)) by h(s) = ϕ(s)ψ, then for all ϕ ∈ L1(G) we have

(2.1)
∫
G
ϕ(s)fn(s)dµ(s) = εxn Ï fn(h) → εx Ï f(h) =

∫
G
ϕ(s)f (s)dµ(s).

We claim (2.1) implies that fn → f in C1(G,T). In view of [9, Proposition 6], it
will suffice to show that

(2.2)
∫
K
|fn(s)− f(s)|dµ(s)→ 0

for each compact set K ⊂ G. Since |f(s)fn(s)| = 1, we have

|fn(s)− f(s)|2 = |1− f(s)fn(s)|2 ≤ 2− 2 Re(f (s)fn(s)).



Central Twisted Transformation Groups 1289

But then by Hölder’s inequality

(∫
K
|fn(s)− f(s)|dµ(s)

)2
(2.3)

≤ µ(K)
∫
K
|fn(s)− f(s)|2 dµ(s)

≤ 2µ(K)Re
(∫

K
1− f(s)fn(s)dµ(s)

)

= 2µ(K)Re
(∫

G
IK(s)− IK(s)f (s)fn(s)dµ(s)

)
.

Since IK · f ∈ L1(G), (2.1) implies that (2.3) goes to 0, and the result follows. ❐

To state our main result in this section, we want to recall some constructions
from [4, Section 3]. A C0(X)-algebra is a C∗-algebra A equipped with a fixed
nondegenerate ∗-homomorphism Φ from C0(X) into the center ZM(A) of the
multiplier algebra M(A) of A. This allows us to view A as a C0(X)-module,
and we shall usually write ϕ · a in place of Φ(ϕ)a. A twisted action (α,u)
of G on A is called C0(X)-linear if αs(f · a) = f · αs(a) for all s ∈ G, f ∈
C0(X) and a ∈ A. A C0(X)-algebra A should be thought of as an algebra of
(semi-continuous) sections of a bundle of C∗-algebras Ax, x ∈ X, where Ax �
A/(C0(X \{x})·A): the image of a ∈ A in Ax is denoted by a(x). Then C0(X)-
linearity means that α induces compatible twisted actions (αx,ux) on the fibres
Ax . The crossed product A Ïα,u G of a C0(X)-linear twisted action is a C0(X)-
algebra with respect to the composition iA ◦ Φ : C0(X) → M(A Ïα,u G), and the
fibres are just the crossed products Ax Ïαx,ux G. In particular, the dual action of
Ĝab on AÏα,u G is again C0(X)-linear and restricts to the respective dual actions
on the fibres Ax Ïαx,ux G. It is worth mentioning that the dual Â (respectively,
the primitive ideal space PrimA) of a C0(X)-algebra A has an induced bundle
structure q : Â→ X (resp. q : PrimA→ X) with fibres Âx (resp. PrimAx).

Suppose that L is an abelian group, that α : L → AutA is a C0(X)-linear
(untwisted) action and that p : Z → X is a locally compact free and proper L-
bundle. Since L is abelian, α−1 is an action and we can form the induced algebra
IndZL (A,α−1) which is the set of bounded continuous functions F : Z → A satis-
fying

α`(F(z)) = F(`−1 · z), for all s ∈ G and z ∈ Z, and

such that z , ‖F(z)‖ vanishes at infinity on X = Z/L. As in [4], we’ll write
Z ×L A in place of IndZL (A,α−1) to stress the analogy with classical topological
bundle constructions (see [4, Definition 3.1(s)]). Note that Z ×L A is a C∗-
algebra when equipped with the pointwise operations and the supremum norm.
Moreover, Z ×L A carries a strongly continuous action Indα of L given by

(Indα)`(F)(z) = F(`−1 · z) = α`(F(z)).
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If (A, L,α) is a C0(X)-system, then there is a C0(X × X)-action on Z ×L A
given by

(h · F)(z)(x) = h(p(z),x)F(z)(x), h ∈ C0(X ×X),

and the L-fibre product Z∗A is defined as the restriction of Z×LA to the diagonal∆(X) = {(x,x) | x ∈ X}. Identifying X with ∆(X) gives Z ∗A the structure of
a C0(X)-algebra and Indα restricts to a C0(X)-linear action Z ∗α of L on Z ∗A.
Further details on this construction and those in the previous two paragraphs can
be found in [4, Section 3].

Note that the construction of Z ∗A is the C∗-algebraic analogue of the usual
construction of L-fibre products of topological L-bundles given by

Z ∗ Y = {(z,y) ∈ Z × Y | p(z) = q(y)}/L,

where q : Y → X is assumed to be a topological bundle over X equipped with a
compatible L-action on the fibres Yx, and where the quotient space is taken by
the anti-diagonal action ` · (z,y) = (`z, `−1y). In particular, we always have
(Z ∗ A)∧ � Z ∗ Â and Prim(Z ∗ A) � Z ∗ PrimA with respect to the bundle
structures of Â and PrimA (see [4, Proposition 3.5]).

If A and B are C0(X)-algebras, and if α : L → AutA and β : L → AutB are
C0(X)-linear actions, then (A, L,α) and (B, L, β) are C0(X)-Morita equivalent if
there exists an A – B imprimitivity bimodule X satisfying2 ϕ · ξ = ξ ·ϕ for all
ϕ ∈ C0(X) and ξ ∈ X, and such that X carries a C0(X)-linear action δ : L→ Aut X
such that

A
〈δ`(ξ) , δ`(η)〉 = α`(A〈ξ , η〉) and 〈δ`(ξ) , δ`(η)〉B = β`(〈ξ , η〉B)

for all ξ, η ∈ X and ` ∈ L. Note that C0(X)-Morita equivalence implies equiva-
lence of the topological L-bundles Â and B̂ (resp. PrimA and PrimB)—see [21,
Proposition 5.7].

We can now state the main result of this section.

Theorem 2.2 (cf. [4, Theorem 5.3]). Suppose that u has the form v · σ with
v ∈ Z2

pt(Gab, C(X,T)) and σ ∈ Z2(G,C(X,T)). Let p : Zv → X be the free and
proper Ĝab-bundle associated to v as in Definition 1.2. Then the systems

(C0(X) Ïid,u G, Ĝab, û) and (Zv ∗ (C0(X) Ïid,σ G), Ĝab, Ev ∗ σ̂ )

are C0(X)-Morita equivalent systems.

2The left and right actions of C0(X) on X are obtained from extending the left and right actions of
A and B to M(A) and M(B), respectively.
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Remark 2.3. If v is actually locally trivial, then a stronger result holds. It
follows from [4, Theorem 5.3] that there exists a Ĝab-equivariant and C0(X)-
linear isomorphism between C0(X)Ïid,u G and Zv ∗ (C0(X)Ïid,σ G). The action
δ appearing in that theorem, and which is used to compare (id, u) with (id, σ),
is the locally unitary action δ : G → AutC0(X,K) corresponding to infv ∈
Z2

loc(G,C(X,T)) as constructed in [6, Proposition 3.1]. However, the proof of [4,
Theorem 5.3] requires localizations of both systems and breaks down if v is only
assumed to be pointwise trivial. We do not know whether the stronger result of
C0(X)-linear isomorphism also holds in the situation of Theorem 2.2 above.

In what follows, we denote byA⊗C0(X)B the maximal balanced tensor product
of C0(X)-algebras A and B (see [2] and [4, Section 2]). It is obtained by restriction
of the C0(X × X)-algebra A ⊗max B to the diagonal ∆(X) and therefore carries
a canonical structure as C0(X)-algebra. If (α,u) and (β, v) are C0(X)-linear
twisted actions on A and B, respectively, then the diagonal twisted action (α ⊗
β,u⊗v) on A⊗max B restricts to a C0(X)-linear twisted action (α⊗X β,u⊗X v)
on A⊗C0(X) B (see [4, Section 4] for more details).

Suppose now that α : L → AutA is a C0(X)-linear (untwisted) action of the
abelian group L, and let p : Z → X be a free and proper L-bundle over X. Let τ
denote the action of L on C0(Z) given by τ`(ψ)(z) = ψ(`−1 ·z). Then it follows
that the crossed product (C0(Z) ⊗ A) Ïτ⊗α−1 L is a C0(X × X)-algebra, and the
restriction to the diagonal ∆(X) is isomorphic to (C0(Z)⊗C0(X) A)Ïτ⊗Xα−1 L. We
define a C0(X ×X)-linear action α of L on (C0(Z)⊗A)Ïτ⊗α−1 L by the formula

α`(f)(s) = id⊗α`(f(s)) for f ∈ L1(L,C0(Z)⊗C0(X) A) and `, s ∈ L.

Note that this extends to an automorphism of the crossed product since id⊗X α`
commutes with τh⊗αh−1 for all `,h ∈ L. Since α is C0(X×X)-linear, it restricts
to a C0(X)-linear action αX of L on (C0(Z) ⊗C0(X) A) Ïτ⊗Xα−1 L. The proof of
Theorem 2.2 depends heavily on the following result.

Proposition 2.4. In the situation above, the systems

((C0(Z)⊗A) Ïτ⊗α−1 L, L, α) and (Z ×L A, L, Indα)

are C0(X ×X)-Morita equivalent, and the systems

((C0(Z)⊗C0(X) A) Ïτ⊗Xα−1 L, L, αX) and (Z ∗A, L, Z ∗α)

are C0(X)-Morita equivalent.

Proof. Note that it is enough to prove the first Morita equivalence, since the
second will follow from the first by restricting to the diagonal ∆(X).

The proof of the first equivalence is based on the proof of [19, Theorem
2.2]. Note that our algebra Z ×L A is equal to the algebra GC(Z,A)τ⊗α−1 in
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the language of [19]. The proof of [19, Theorem 2.2] shows that we obtain a
(C0(Z)⊗A)Ïτ⊗α−1L−Z×LA imprimitivity bimodule X by taking the completion
of Cc(Z,A) with respect to the left and right (C0(Z)⊗A)ÏL- and Z×L A-valued
inner products and left and right actions of Cc(L,C0(Z)⊗A) ⊂ (C0(Z)⊗A)Ï L
and Z ×L A on X given by the formulas

Cc(L,C0(Z)⊗A)
〈ξ , η〉(`, z) = ξ(z)α`−1(η(`−1z)∗),

〈ξ , η〉
Z×LA

=
∫
L
α`(ξ(`z)∗η(`z))dµ(`),

f · ξ(z) =
∫
L
f (`, z)α`(ξ(`z))dµ(`),

ξ · F(z) = ξ(z)F(z),

where F ∈ Z ×L A, f ∈ Cc(L,C0(Z)⊗A) and ξ, η ∈ Cc(Z,A). To see that these
formulas are equivalent to those given in [19], note that our action α−1 plays the
role of the action β in [19], and that we may replace ` by `−1 in all integrals above
since L is abelian and therefore unimodular.

It is now easy to check that the C0(X×X)-actions on both sides of X are given
by the formula

ϕ · ξ(z)(x) = ϕ(p(z),x)ξ(z)(x), ϕ ∈ C0(X ×X) and ξ ∈ Cc(Z,A).

Moreover, if we define

δ`(ξ)(z) = α`(ξ(z)), for ξ ∈ Cc(Z,A), ` ∈ L, and z ∈ Z,

then it is straightforward to check that δ extends to a C0(X × X)-linear action
on the completion X of Cc(Z,A) which is compatible with the actions α and
Indα. ❐

Suppose that (α,u) is a twisted action of G on A and that N is a closed
normal subgroup of G. Then, depending on a choice of a Borel section c : G/N →
G, Packer and Raeburn [14, Theorem 4.1] showed that there is a twisted action
(β,w) of G/N on the crossed product AÏα,u N such that

AÏα,u G � (A Ïα,u N) Ïβ,w G/N.

We want to apply their result in the very special case where G is the direct product
L × N. In this case, we get a particularly nice description of the twisted action
(β,w) and the isomorphism Φ in the following proposition.

Proposition 2.5. Suppose that G = L × N is the direct product of two second
countable locally compact groups L and N and let (α,u) be a twisted action of G on
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A. Then there is a twisted action (β,w) of L on AÏα,u N given by the formulas

β`(f )(n) = α`(f(n))u((`, e), (e,n))u((e,n), (`, e))∗, f ∈ L1(N,A), and

w(`,h) = iA(u((`, e), (h, e))), `, h ∈ L.

With this action, there is an isomorphism between AÏα,u G and (AÏα,u N) Ïβ,w L
which restricts to a homomorphism of L1-algebras Φ : L1(L×N,A) → L1(L, L1(N,A))
given by the formula

Φ(f )(`)(n) = f(`,n)u((e,n), (`, e))∗.
Proof. The proof is basically a consequence of [14, Theorem 4.1]—in partic-

ular, the formula for the action (β,w) directly follows from the formulas as given
in [14] with respect to the cross section L → L × N defined by ` , (`, e). We
only have to check that the isomorphism is given on the L1-algebras by the above
formula. For this let (iA, iN) denote the canonical embeddings of (A,N) into
M(AÏα,uN) and, similarly, let (jAÏN, jL) denote the embeddings of (AÏα,uN, L)
intoM((AÏα,uN)Ïβ,wL). Then it is shown on [14, p. 307] that the pair (kA, kG)
defined by

kA = jAÏN ◦ iA and kG((`,n)) = jAÏN(iA(u((e,n), (`, e))∗)iN(n)jL(`)

is a covariant homomorphism of (A,G,α,u) intoM((AÏα,uN)Ïβ,wL) such that
the integrated form kAÏkG is the desired isomorphism. Thus for f ∈ L1(L×N,A)
we get

kA Ï kG(f)

=
∫
G
kA(f(`,n))kG((`,n))dµL(`,n)

=
∫
L

∫
N
jAÏN(iA(f ((`,n))u((e,n), (`, e))∗)iN(n))jL(`)dµN(n)dµL(`)

=
∫
L
jAÏN(Φ(f )(`))jL(`)dµL(`) = jAÏN Ï jL(Φ(f )).

This completes the proof. ❐

Remark 2.6. Note that it follows directly from the formula of the isomor-
phism A Ïα,u G � (A Ïα,u N) Ïβ,w L given in the proposition that this isomor-
phism is L̂ab × N̂ab-equivariant. Moreover, if A is a C0(X)-algebra and (α,u) is
C0(X)-linear, then it follows from the definition of (β,w), that it is C0(X)-linear
and the formula for the above isomorphism shows that it is C0(X)-linear, too.

We shall also need the following result.
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Proposition 2.7. Suppose that (α,u) and (β, v) are C0(X)-linear twisted ac-
tions of L and N on the C0(X)-algebras A and B, respectively. Define the twisted
action (α⊗X β,u⊗X v) of L×N on A⊗C0(X) B in the obvious way. Then there exists
a C0(X)-linear and L̂ab × N̂ab-equivariant isomorphism between

(A⊗C0(X) B) Ïα⊗Xβ,u⊗Xv L×N and (A Ïα,u L)⊗C0(X) (B Ïβ,v N).

Proof. Restricting the twisted action (α⊗X β,u⊗X v) to the subgroup N �
{e}×N of L×N gives the action (id⊗X β,1⊗X v) of N on A⊗C0(X) B. It follows
from [4, Proposition 4.3] that (A ⊗C0(X) B) Ïid⊗Xβ,1⊗Xv N is C0(X)-linearly and
N̂ab-equivariantly isomorphic to A⊗C0(X) (B Ïβ,v N). Using the formula for this
isomorphism as given [4, Propsition 4.3], it follows from Proposition 2.5 that
the decomposition action of L on (A⊗C0(X) B) Ïid⊗Xβ,1⊗Xv N corresponds to the
twisted action (α ⊗X id, u ⊗X 1) of L on A ⊗C0(X) (B Ïβ,v N). The result then
follows from another application of [4, Proposition 4.3]. ❐

We are now ready for the proof of Theorem 2.2. The proof relies on the above de-
composition results, and the Takesaki-Takai duality for twisted actions of abelian
groups.

Proof of Theorem 2.2. We consider the diagonal twisted action (id⊗X id, v⊗X
σ) of Gab × G on C0(X) ⊗C0(X) C0(X) � C0(X). If we restrict this action to the
diagonal ∆(G) = {(ṡ, s) | s ∈ G} ⊂ Gab × G and identify G with ∆(G) via
s , (ṡ, s), then it follows that the isomorphism C0(X) ⊗C0(X) C0(X) → C0(X),
given on elementary tensors by ϕ ⊗ψ → ϕ ·ψ, carries (idĜab

⊗X idG,v ⊗X σ)
to the twisted action (idG,v · σ) = (idG,u). Thus we get a natural C0(X)-linear
isomorphism

C0(X) Ïid,u G � (C0(X)⊗C0(X) C0(X)) Ïid⊗X id,v⊗Xσ ∆(G),
which transforms the dual action of Ĝab to the dual action of ∆(G)∧ab.

For the crossed product by the full group Gab × G, it follows from Proposi-
tion 2.5 that we have a C0(X)-linear and Ĝab × Ĝab-equivariant isomorphism

(C0(X)⊗C0(X) C0(X)) Ïid⊗X id,v⊗Xσ Gab ×G
� (C0(X) Ïid,v Gab)⊗C0(X) (C0(X) Ïid,σ G).

By Lemma 2.1, the algebra C0(X) Ïid,v Gab is Ĝab-equivariantly isomorphic to
C0(Ev), and this isomorphism is clearly C0(X)-linear. Thus we obtain a C0(X)-
linear and Ĝab × Ĝab-equivariant isomorphism between

(C0(X)⊗C0(X) C0(X)) Ïid⊗X id,v⊗Xσ Gab ×G and

C0(Ev)⊗C0(X) (C0(X) Ïid,σ G).
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We now split Gab × G as the product Gab × ∆(G) via the isomorphism (ṡ, t) ,
(ṫ−1ṡ, (ṫ, t)). Iterating the crossed product with respect to this decomposition of
Gab ×G now provides C0(X)-linear isomorphisms

C0(Ev)⊗C0(X) (C0(X) Ïid,σ G)
� (C0(X)⊗C0(X) C0(X)) Ïid⊗X id,v⊗Xσ Gab ×G
� ((C0(X)⊗C0(X) C0(X)) Ïid⊗X id,v⊗Xσ ∆(G)) Ïβ,w Gab

� (C0(X) Ïid,u G) Ïβ,w Gab.

We need to compare the natural Ĝab × Ĝab-action on (C0(X) Ïu G) Ïβ,w Gab

with the Ĝab × Ĝab-action on C0(Ev) ⊗C0(X) (C0(X) Ïid,σ G) under the above
isomorphism. Indeed, if we identify Ĝab with ∆(G)∧ab via χ(ṫ, ṫ) = χ(ṫ) (as
we do in the last isomorphism above), we see that our given isomorphism ψ :
Gab×G → Gab ×∆(G) induces the isomorphism ψ̂ : Ĝab×∆(G)∧ab → Ĝab× Ĝab

given by
ψ̂(γ, χ)(ṡ, ṫ) = γ(ṫ−1ṡ)χ(ṫ).

It follows from this that the dual action û of Ĝab on C0(X) Ïid,u G (and then
extended to (C0(X)Ïu G)Ïβ,w Gab) corresponds to the action id⊗X σ̂ of Ĝab on
C0(Ev)⊗C0(X) (C0(X) Ïid,σ G), while the dual action (β,w)∧ of Ĝab on
(C0(X)ÏuG)Ïβ,wGab corresponds to the action τ⊗Xσ̂−1 ofGab on C0(Ev)⊗C0(X)
(C0(X)Ïid,σ G). Thus it follows from Proposition 2.4 that we get a C0(X)-Morita
equivalence between the systems

(((C0(X) Ïid,u G) Ïβ,w Gab) Ï(β,w)∧ Ĝab, Ĝab, û)

� ((C0(Ev)⊗C0(X) (C0(X) Ïid,σ G)) Ïτ⊗σ̂−1 Ĝab, Ĝab, σ̂
X)

and

(Ev ∗ (C0(X) Ïid,σ G), Ĝab, Ev ∗ σ̂ ),

where û denotes the canonical action induced by û on ((C0(X) Ïu G) Ïβ,w
Gab) Ï(β,w)∧ Ĝab. Now the Takesaki-Takai theorem for twisted actions (see [17,
Theorem 3.1]) implies that

((C0(X) Ïid,u G) Ïβ,w Gab) Ï(β,w)∧ Ĝab � (C0(X) Ïid,u G)⊗K(L2(Gab)),

and this isomorphism carries the action û to û⊗ idK. Since the systems

((C0(X) Ïid,u G)⊗K(L2(Gab)), Ĝab, û⊗ idK) and

(C0(X) Ïid,u G, Ĝab, û)

are clearly C0(X)-Morita equivalent, the result follows. ❐
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We are now going to use Theorem 2.2 to give a bundle theoretic description of
C0(X) Ïid,u G when G is smooth. Then Proposition 1.10 implies that we obtain
a factorization u = v · uϕ, where v ∈ Z2

pt(Gab, C(X,T)) and uϕ is obtained
by pulling back a given cocycle η ∈ Z2(G,Z) corresponding to a representation
group 1 → Z → H → G → 1 for G via the continuous mapϕ : X → H2(G,T) � Ẑ
defined by x , [u(x)]. Recall from [19, 4] that if A is a C0(Y)-algebra and
if ϕ : X → Y is a continuous map, then the pull-back ϕ∗(A) is defined as the
balanced tensor product C0(X)⊗C0(Y)A, where C0(X) is viewed as a C0(Y)-algebra
via ϕ : X → Y . Note that ϕ∗(A) becomes a C0(X)-algebra via the canonical
embedding C0(X)→ M(C0(X)⊗C0(Y) A). Moreover, if α : L → AutA is a C0(Y)-
linear action on A, then ϕ∗(α) = id ⊗Y α is a C0(X)-linear action on ϕ∗(A).
The following description of C0(X) Ïid,uϕ G follows from [4, Lemmas 6.3 and
6.5].

Proposition 2.8. Let 1 → Z → H → G → 1 be a representation group for
G. Let C∗(H) be viewed as a C0(Ẑ)-algebra via the canonical embedding C0(Ẑ) �
C∗(Z) → ZM(C∗(H)) given by convolution. Let ϕ : X → H2(G,T) � Ẑ be a
continuous map, and let uϕ ∈ Z2(G,C(X,T)) be the cocycle defined in Proposition
1.10 (with respect to any cocycle η ∈ Z2(G,Z) corresponding to H). Further, let δ
denote the dual action of Ĝab = Ĥab on C∗(H). Then the systems

(C0(X) Ïid,uϕ G, Ĝab, ûϕ) and (ϕ∗(C∗(H)), Ĝab, ϕ∗(δ))

are C0(X)-isomorphic.

We can now gather our results to obtain a general description of the bundle
structure of C0(X) Ïid,u G in terms of a given representation group H for G.

Theorem 2.9. Suppose that G is smooth with representation group 1 → Z →
H → G → 1, and that u ∈ Z2(G,C(X,T)). Let uϕ ∈ Z2(G,C(X,T)) be as above
with ϕ(x) = [u(x)] for all x ∈ X. If v := u · uϕ, then v ∈ Z2

pt(G,C(X,T))
and there exists a C0(X)-Morita equivalence between the systems

(C0(X) Ïid,u G, Ĝab, û) and (Ev ∗ϕ∗(C∗(H)), Ĝab, Ev ∗ (ϕ∗(δ))).

Proof. The proof is now a direct consequence of Propositions 1.10 and 2.8,
and Theorem 2.2. ❐

Remark 2.10.
(1) If the cocycle v = u·uϕ in the above theorem is actually locally trivial, then it
follows from Remark 2.3 that the C0(X)-Morita equivalence in the theorem can
be replaced by C0(X)-isomorphism. By [22, Theorem 2.1], this is automatically
the case whenever Ĝab is compactly generated.

(2) If A is a CR(X)-algebra in the sense of [5, 4] (e.g. if A is unital and X is the
complete regularization of PrimA as in [5, Definition 2.5]), then any inner action
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of G on A determines a unique class [u] ∈ H2(G,C(X,T)) (see [18, Section 0]
and [5, Section 2]). It is shown in [4, Corollary 4.7] that the crossed product
AÏα G is then C0(X)-linearly and Ĝab-equivariantly isomorphic to (C0(X) Ïid,u
G)⊗C0(X) A, so Theorem 2.9 also gives new insights into the structure of crossed
products by inner actions.

We end this section by giving a description of C0(X)Ïid,uG, whereu is a cocy-
cle in Z2(G,C(X,T)) with constant evaluation map [u(x)] = [ω] ∈ H2(G,T).
Note that if H2(G,T) is discrete (as considered by Smith in [25]), then every co-
cycle u ∈ Z2(G,C(X,T)) has a direct sum decomposition into cocycles ui ∈
Z2(G,C(Xi,T)) such that X is a disjoint union of the open subsets Xi ⊆ X, and
each ui has constant evaluation map. It is then easy to see that we get a decompo-
sition

C0(X) Ïid,u G �
⊕
i
C0(Xi) Ïid,ui G.

As is standard, C∗(G,ω) will denote the twisted group algebra C Ïid,ω G of G
with respect toω ∈ Z2(G,T). Of course, ifω is trivial, then C∗(G,ω) is the full
group C∗-algebra C∗(G) of G.

Theorem 2.11. Assume that u ∈ Z2(G,C(X,T)) has constant evaluation map
x , [u(x)] := [ω] ∈ H2(G,T). Suppose further that v = u·ω ∈ Z2

pt(G,C(X,T))
satisfies one of the equivalent conditions of Proposition 1.7 (which is automatic if
H2(G,T) is Hausdorff). Then the system (C0(X)Ïid,u G, Ĝab, v̂) is C0(X)-Morita
equivalent to

(Ev ×Ĝab
C∗(G,ω), Ĝab, Indδ),

where δ : Gab → Aut(C∗(G,ω)) denotes the dual action, and the C0(X)-structure
of Ev ×Ĝab

C∗(G,ω) is given by (ψ · F)(z) = ψ(p(z))F(z).

Proof. If we apply Theorem 2.2 to the factorization u = v ·ω, we obtain a
Ĝab-equivariant C0(X)-Morita equivalence between C0(X) Ïid,u G and

Ev ∗ (C0(X) Ïid,ω G) � Ev ∗ (C0(X)⊗ C∗(G,ω)) � Ev ×Ĝab
C∗(G,ω)

(with respect to the obvious identifications), where the last isomorphism follows
from [4, Remark 3.4(c)]. ❐

If v ∈ Z2
loc(G,C(X,T)), then the conditions of Proposition 1.7 are automat-

ically satisfied (Remark 1.4), and Remark 2.3 implies that for such u we may re-
place C0(X)-Morita equivalence by C0(X)-isomorphism in the statement of The-
orem 2.11.
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3. THE GROUP C∗-ALGEBRAS OF CENTRAL GROUP EXTENSIONS

In this section we use our methods to study the group C∗-algebra C∗(L) of a
central extension 1 → N → L → G → 1. Of course, the study of such algebras
and their dual spaces is one of the main motivations for studying central twisted
transformation group algebras.

To each central extension as above, we can associate a cocycle η ∈ Z2(G,N)
of the form η = ∂c for a Borel cross-section c : G → L satisfying c(e) = e.
Viewing N as the dual of N̂, η can be viewed as a cocycle in Z2(G,C(N̂,T)), and
it follows from [14, Theorem 4.1] (but see also [4, Lemma 6.3(a)]), that C∗(L)
is C0(N̂)-linearly and Ĝab-equivariantly isomorphic to C0(N̂) Ïid,η G, where the
C0(N̂)-structure on C∗(L) is given by the canonical inclusion C0(N̂) � C∗(N)→
ZM(C∗(L)) given by convolution (compare with the discussion preceding Propo-
sition 2.8). Thus the results of the preceding sections are directly applicable to
the study of C∗(L). However, for central twisted transformation group algebras
associated to central group extensions, many of the abstract constructions in the
preceding sections, like the bundleEv , can be realized quite naturally on the group
level (e.g. Remark 3.2(5)).

Definition 3.1. A central extension 1 → N → L → G → 1 of G by N is
called pointwise trivial if every character χ ∈ N̂ can be extended to a character
of L; that is, if the restriction map res : H1(L,T) → H1(N,T) = N̂ is surjective.
We denote by Z2

pt(G,N) the cocycles, and by H2
pt(G,N) the classes in H2(G,N),

corresponding to pointwise trivial extensions.

Remark 3.2. We collect some straightforward observations on pointwise triv-
ial extensions, which are no doubt well known to the experts.

(1) A central extension 1 → N → L → G → 1 is pointwise trivial if and only if
any corresponding cocycle η, viewed as an element of Z2(G,C(N̂,T)) is pointwise
trivial in the sense of Definition 1.1. This follows directly from the Hochschild-
Serre exact sequence

1 -→ H1(G,T) -→
inf
H1(L,T) -→

res
H1(N,T) -→

tg
H2(G,T)

(see [7, Chap. I Section 5]), but can easily be computed directly.

(2) If G is abelian, then the pointwise unitary extensions of G by N are precisely
the abelian extensions. Indeed, if 1 → N → L → G → 1 is a pointwise trivial
extension with G abelian, then one easily checks that the characters of L separate
the points of L. It follows that [L, L] is trivial and L is abelian. Thus if G is abelian,
then H2

pt(G,N) = H2
ab(G,N), where H2

ab(G,N) denotes the set of cohomology
classes corresponding to the abelian extensions.

(3) If 1 → N → L → G → 1 is a pointwise trivial extension, then the quotient
map L , Lab is injective on N (since the characters of L separate the points of
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N). Thus we obtain an abelian exact sequence 1 → N → Lab → Gab → 1, and the
extension 1 → N → L → G → 1 is actually inflated from this abelian extension.
Recall that if 1 → N → M p→ Gab → 1 is any extension of Gab, then the inflation
of this extension is the extension 1 → N → inf(M) → G → 1 obtained as follows.
We set inf(M) = {(m, s) ∈ M × G | p(m) = q(s)}, where q : G → Gab is
the quotient map. The inclusion N → infM sends n , (n, e), and the quotient
map infM → G sends (m, s) , s. The isomorphism L � inf(Lab) is given by
` , (p(`), q(`)), where p : L→ Lab and q : L→ G are the quotient maps.

(4) Of course, inflation of extensions in the above sense corresponds to the infla-
tion of the corresponding group cocycles. Indeed, if 1 → N → M → Gab → 1
is as above and if c : Gab → M is a Borel section, then we obtain a Borel sec-
tion d : G → inf(M) by defining d(s) = (c(q(s)), s). Of course we then get
∂Gd = inf ∂Gabc. Combining this with (3), we see that inflation determines an
isomorphism inf : H2

ab(Gab, N)→ H2
pt(G,N).

(5) If η ∈ Z2
pt(G,C(N̂,T)) is a cocycle corresponding to a pointwise trivial exten-

sion 1 → N → L → G → 1, then the Ĝab-bundle p : Eη → N̂ is isomorphic to
the bundle res : L̂ab = H1(L,T) → N̂. Indeed, if η = ∂c for some cross section
c : G → L, then we define a map Ψ : Eη → L̂ab by

Ψ(f , χ)(c(s)n) = f(s)χ(n).
This is well defined, since

∂L(Ψ(f , χ))(c(s)n, c(t)m) = f(s)χ(n)f(t)χ(m)f(st)χ(c(st)−1c(s)c(t)nm)

= ∂G(f )(s, t)η(s, t)(χ) = 1,

so Ψ(f , χ) ∈ L̂ab. Since pointwise convergence of characters implies uniform
convergence on compact sets (see [9, Theorem 8]), the map Φ is continuous, and
it is certainly Ĝab-equivariant. The assertion follows from the fact that L̂ab → Eη
defined by µ , (µ ◦ c, µ|N) is a continuous inverse for Ψ .

Thus, as a direct corollary of item (5) of the above remark and Theorem 2.11
we obtain the following result.

Corollary 3.3. Suppose that 1 → N → L → G → 1 is a pointwise trivial central
group extension and let δ : Ĝab → AutC∗(G) denote the dual action. Then C∗(L) is

C0(N̂)-Morita equivalent to L̂ab ×Ĝab
C∗(G) � IndL̂ab

Ĝab
(C∗(G), δ−1). (In fact, the

corresponding Ĝab-systems are C0(N̂)-Morita equivalent.)

Again, if the bundle res : L̂ab → N̂ is locally trivial (which is automatic if
Gab is compactly generated), then we can replace C0(N̂)-Morita equivalence by
C0(N̂)-isomorphism.
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We are now going to discuss the group algebra of general central extensions of
a smooth group G with a fixed representation group 1 → Z → H → G → 1. Let
µ ∈ Z2(G,Z) be a corresponding cocycle. Then, identifyingH2(G,T) with Ẑ, the
transgression map for 1→ N → L → G → 1 (which is just the evaluation map χ ,
[η(χ)] ∈ H2(G,T), if η ∈ Z2(G,C(N̂,T)) is a cocycle corresponding to the given
extension) determines a homomorphism ϕ : N̂ → Ẑ. Let ϕ̂ : Z → N denote the
dual homomorphism defined by ϕ̂(z)(χ) = z(ϕ(χ)) (where we identify Z with
the dual of Ẑ and N with the dual of N̂ via Pontryagin duality). Then we obtain
a cocycle ϕ̂∗(µ) ∈ Z2(G,N) by defining ϕ̂∗(µ)(s, t) = ϕ̂(µ(s, t)). A short
computation shows that this cocycle, viewed as a cocycle in Z2(G,C(N̂,T)), is
precisely the one we obtain from the evaluation map for η via the process described
in Proposition 1.10. It follows in particular that η · ϕ̂∗(µ)−1 ∈ Z2

pt(G,N). Thus,
a small variation on the proof of Proposition 1.10 gives us the following result.

Proposition 3.4. Let 1 → Z → H → G → 1 be a representation group for G and
let µ ∈ Z2(G,Z) be a corresponding cocycle. Then, for any locally compact abelian
group N, viewed as a trivial G-module, we get an isomorphism

H2
ab(Gab, N)×Hom(Z,N) � H2(G,N),

defined by ([η],ψ), [infη ·ψ∗(µ)].
As a consequence of the above discussion and Theorem 2.9 we obtain the next

theorem.

Theorem 3.5. Let 1 → N → L → G → 1, η ∈ Z2(G,N), ϕ : N̂ → Ẑ and
η · ϕ̂∗(µ) ∈ Z2

pt(G,N) be as in the discussion preceding Proposition 3.4, and let
1 → N → L′ → G → 1 be the central extension corresponding to the pointwise trivial
cocycle η·ϕ̂∗(µ)−1. Then C∗(L) is C0(N̂)-Morita equivalent to L̂′ab∗ϕ∗(C∗(H)).
(Again, if we consider the Ĝab-actions, the Morita equivalence passes to the dynamical
systems.)

It is actually easy to give a direct construction of the pointwise trivial extension
1 → N → L′ → G → 1 corresponding to the cocycle η · ϕ̂∗(µ)−1 without even
mentioning the cocycles. For this let 1 → N → L

p→ G → 1 be the original
extension corresponding to η. Let q : H → G denote the quotient map for the
representation group H. Define

L′ = {(`,h) ∈ L×H | p(`) = q(h)}/∆(Z),
where ∆(Z) = {(ϕ̂(z), z) | z ∈ Z}. Then we obtain a central extension

1 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ N n,[n,e]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ L′

[`,h],p(`)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------→ G -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 1 .

We claim that this extension corresponds to the cocycle η·ϕ̂∗(η) of the theorem.
Indeed, if we choose Borel sections c : G → L and d : G → H such that η = ∂c
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and µ = ∂d, then we get a Borel section c × d : G → L′ by defining (c × d)(s) =
[c(s), d(s)]. We then compute

∂(c × d)(s, t) = [c(s), d(s)][c(t), d(t)][c(st), d(st)]−1

= [η(s, t), µ(s, t)]
= [η(s, t)ϕ̂(µ(s, t))−1, e],

which clearly proves the claim.
We finish with some straightforward examples which illustrate our results.

Example 3.6. Let G = Z2. Recall that the discrete Heisenberg group Hd is
the set Z3 with multiplication given by

(n1,m1, `1)(n2,m2, `2) = (n1 +n2,m1 +m2, `1 + `2 +n1m2).

It is easy to check that

1 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Z -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Hd -----------------------------------------------------------------------------------------------------------------------------------------------------------→ Z2 -----------------------------------------------------------------------------------------------------------------------------------------------------------→ 1

is a representation group for G and that Ẑ = T � H2(Z2,T) via z , [ωz], where

ωz
(
(n1,m1), (n2,m2)

) = zn1m2 .

Since every abelian extension of Z2 by some group N splits, it follows from Propo-
sition 3.4 that H2(Z2, N) � Hom(Z, N) = N. Thus each n ∈ N determines
a central extension 1 -→ N -→ L -→ Z2 -→ 1, and Theorem 3.5 gives an iso-
morphism between C∗(L) and the pull-back n∗(C∗(Hd)) (where we identify n
with the character of N̂ given by evaluation). Recall from [1] that C∗(Hd) is a
continuous bundle over T with fibers Az given by the rotation algebras Aθ where
z = e2πiθ for some θ ∈ [0,1]. Hence C∗(L) is a continuous bundle over N̂
with fibre Aχ(n) at the base point χ ∈ N̂, whose global structure is completely
determined by the global structure of C∗(Hd) as a bundle over Ẑ = T.

In [5] we gave explicit constructions for the representation groups for Zn and
Rn. Using these, we can also apply our results to these groups. In all these cases,
the abelian extensions vanish, so that we have H2(G,N) � Hom(Z,N), where Z
denotes the center of the corresponding representation group H. Therefore, the
group algebras of central extensions of Zn and Rn by N are isomorphic to the
pull-backs of C∗(H) via the corresponding dual maps ϕ : N̂ → Ẑ.

Example 3.7. Let G = Z × Z2, where Z2 = Z/2Z. Then an easy application
of [4, Proposition 4.5] shows that H = Z× Z2 × Z2 with multiplication given by

(n, [i], [j])·(m, [`], [k]) = (n+m,[i+`], [j+k+n·`]), n,m, i, j, k, ` ∈ Z,



1302 SIEGFRIED ECHTERHOFF & DANA P. WILLIAMS

is a representation group for G with center Z = Z2. In particular, we have
H2(G,T) � Ẑ2 = Z2. As there are many non-trivial abelian extensions of G by
locally compact abelian groups N, we have, in general, a nontrivial decomposition
H2(G,N) = H2

ab(G,N) ⊕ Hom(Z,N). It is then an straightforward exercise to
apply our results to the group algebras of the corresponding central extensions of
G by N.

It is also interesting to revisit Example 1.8 to illustrate some differences be-
tween the general situation of central twisted crossed products compared to central
group extensions for possibly non-smooth groups.

Example 3.8. Let G = R2 × T2 with multiplication given by

(s1, t1, z1,w1)(s2, t2, z2,w2) = (s1 + s2, t1 + t2, eis1t2z1z2, eiθs1t2w1w2),

where θ is any fixed irrational real number. In Example 1.8 we constructed a
pointwise unitary cocycle u ∈ Z2(G,C(X,T)), with X = { 1

n | n ∈ N} ∪
{0}, which is not inflated from Gab = R2. In particular, H2

pt(G,C(X,T)) ≠
H2

pt(R2, C(X,T)) = {0}. On the other hand, it follows from part (4) of Re-
mark 3.2 that for every abelian locally compact group N we do have an inflation
isomorphism

inf : H2
ab(R2, N) = H2

ab(Gab, N) → H2
pt(G,N),

from which it follows thatH2
pt(G,N) = {0} for allN. Thus, the transgression map

tg : N̂ → H2(G,T) is the only obstruction for a central extension 1 → N → L →
G → 1 to be non-trivial. With a little bit of extra work one can show thatH2(G,T)
is isomorphic to the nasty non-Hausdorff group R/(Z + θZ). In particular, G is
not smooth, and the general structure theorem for the group algebras of central
extensions of G as given in Theorem 3.5 does not apply. However, some weaker
results can be deduced from [3].
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