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Suppose that G has a representation group H, that Gab :=G�[G, G] is compactly
generated, and that A is a C*-algebra for which the complete regularization of
Prim(A) is a locally compact Hausdorff space X. In a previous article, we showed
that there is a bijection : [ (Z: , f:) between the collection of exterior equivalence
classes of locally inner actions :: G � Aut(A), and the collection of principal
G� ab-bundles Z: together with continuous functions f: : X � H 2(G, T). In this paper,
we compute the crossed products A <: G in terms of the data Z: , f: , and C*(H).
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1. INTRODUCTION

This paper is a continuation of our study of locally inner actions begun
in [7]. In that article we gave a classification up to exterior equivalence of
actions of a smooth group G on a CR-algebra A. In this paper, we want
to consider the structure of the corresponding crossed products.

As in [7], we are motivated by a desire to make progress along the lines
of a research program outlined by Rosenberg in his survey article [29] (see
``Research Problem 1'' in Section 3 of that article). As detailed there, it is
important to obtain information about crossed products of actions with
``single orbit type'' acting on continuous-trace C*-algebras. Using the Packer�
Raeburn stabilization trick, an action of G on a continuous-trace C*-algebra
A with a single orbit type and constant stabilizer N can be decomposed
into a spectrum fixing action of N and an action of G�N which acts freely
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on (A <: N)7. Thus an important first step in this program is to consider
spectrum fixing automorphism groups. Provided that the quotient Gab of G
by the closure of its commutator subgroup [G, G] is compactly generated,
spectrum fixing automorphism groups of continuous-trace C*-algebras A
are necessarily locally inner in that each point in A� has a neighborhood U
such that the action restricts to an inner action of the ideal AU . (This
follows from the proof of [28, Corollary 2.2].) Thus it is natural to try to
classify locally inner actions on arbitrary C*-algebras rather than restricting
ourselves to actions on continuous-trace algebras. In [7], for suitable G, we
were able to do precisely this for a large class of C*-algebras: namely those
algebras whose primitive ideal space Prim(A) has a second countable locally
compact complete regularization X. Following [7, Definition 2.5], such
algebras are called CR-algebras. The collection of CR-algebras whose
primitive ideal spaces have complete regularization (homeomorphic to) X
is denoted by CR(X ). All unital C*-algebras are CR-algebras, as are the
quasi-standard algebras of [1] ([7, Section 2]).

In this paper, we give a precise bundle-theoretic description of the crossed
products corresponding to the dynamical systems classified in [7]. Our
methods require that (virtually) everything in sight be separable; thus we
assume from the onset that all our automorphism groups are second coun-
table, and that the C*-algebras on which they act be separable. If G is
smooth (which, in particular, is true for all connected and simply connected
Lie groups, all compact groups, all discrete groups, and all compactly
generated abelian groups), Gab is compactly generated, and A # CR(X ),
then the collection LIG(A) of exterior equivalence classes of locally inner
actions of G on A is parameterized by

H1(X, G� ab)�C(X, H 2(G, T)),

where G� ab denotes the sheaf of germs of G� ab-valued functions on X and
H2(G, T) denotes the (topologized) second Moore-cohomology group of
G with values T ([7, Theorem 6.3]). If (A, G, :) is such a locally inner
system, our main result gives a description of the crossed product A <: G
in terms of the associated invariants `H(:) # H1(X, G� ab), f: # C(X, H2(G, T)),
and a representation group H for G as described below (Theorem 6.6).

The function f: : X � H2(G, T) arises naturally. A CR-algebra is naturally
a C0(X)-algebra, and therefore admits a fibering over X (see Section 2.1); f:(x)
is defined to be the inverse of the Mackey obstruction for the induced action
:x on the fibre Ax (see Definition 6.1). The construction of `H(:) is more
subtle, although it reduces to the usual Phillips�Raeburn obstruction
([21], [7, Section 2]) when : is locally unitary. As indicated by the notation,
it may depend on the choice of a representation group for G. A summary
of the basic facts about smooth groups and representation groups is given
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in [7, Section 4]. We state some of the basic results here for convenience.
Recall that if

e � C � H � G � e (1.1)

is a locally compact central extension of G by an abelian group C, then any
Borel section c: G � H satisfying c(eC )=e determines a cocycle _(s, t)=
c(s) c(t) c(st)&1 in the Moore group Z2(G, C ). If / # C� , then _/=/ b _ is a
cocycle in Z2(G, T). The resulting map tg: C� � H 2(G, T) is a continuous
homomorphism with respect to the Moore topology on H2(G, T), and
depends only on the extension. The map tg is called the transgression map.
Moore called G smooth if G has a central extension (1.1), called a representa-
tion group, for which the transgression map is an isomorphism of topological
groups. In that case, we can view f: as a continuous map from X to C� .
Since C is central in H, C*(H ) admits a natural C0(C� )-action; that is,
C*(H) is a C0(C� )-algebra. The pull back f:*(C*(H)) :=C0(X )�C0(C� ) C*(H) is
then a C0(X)-algebra. Since A is also a C0(X)-algebra, we can form the balanced
tensor product

A�f C*(H) :=A�C0(X ) f:*(C*(H )). (1.2)

In the special case that `H(:) is trivial, our main theorem implies that
A <: G is isomorphic to (1.2). When `H(:) is nontrivial, then it is necessary
to ``twist'' (1.2) by a principal G� ab-bundle Z over X whose isomorphism
class corresponds to `H(:) in H 1(X, G� ab). The details of this construction
are given in Section 3 (see Definition 3.3). The basic idea is to view a
C0(X )-algebra, such as A�f C*(H ), as a G� ab-bundle over X and form
what corresponds to the usual bundle product: Z V (A�f C*(H )). The
latter is naturally a C0(X )-algebra which admits a G� ab-action which we
denote Z V :. Then our main result goes as follows.

Theorem (Theorem 6.6). Let G be a smooth group with representation
group H. Suppose that Gab is compactly generated, that A # CR(X ), and that
:: G � Aut(A) is a locally inner action. If f: : X � H 2(G, T) and `H(:) are as
above, and if q: Z � X is a principal G� ab-bundle corresponding to `H(:), then
there exists a C0(X )-linear and G� ab-equivariant isomorphism between A <: G
and Z V (A�f:

C*(H )).

A special case of interest arises when : is locally unitary. Then f: is trivial
and `H(:) is the (generalized) Phillips�Raeburn obstruction. (In fact, we do
not require G to be smooth in this event.) Then Theorem 5.5 implies that

A <: G$A�C0 (X ) (Z V (C0(X, C*(G))).
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Our basic motivation, and our basic strategy, for proving our results
involves viewing C0(X )-algebras as the C*-analogue of topological bundles
over X. Thus we begin in Section 2 with a review of some of the basic facts
about bundle operations and their C*-counterparts: C0(X )-algebras, restric-
tions of C0(X )-algebras, balanced tensor products, and pull-backs. In
Section 3, we give our basic product constructions alluded to above.

Section 4 is devoted primarily to crossed products by inner actions.
However, our methods require extensive use of the theory of Busby�Smith
twisted crossed products. Much of the basis of this theory has been worked
out by Packer and Raeburn [17, 19, 18]. We review some of the basic facts
here and then formulate our results for twisted systems.

In Section 5, we consider twisted systems which are ``locally equivalent.''
Our main result here (Theorem 5.3) is crucial and allows us to tie our
analysis of inner systems to locally inner systems. As a rather special case,
we derive the result on locally unitary actions mentioned above (Theorem 5.5).
Our main results on locally inner actions are spelled out in Section 6.

In Section 7, we consider the special case of Rn-actions. Here the special
structure of Rn allows us to give more detailed information about the crossed
products. In a future article, we plan to turn our attention to twisted transfor-
mation groups��such as arise in our study here (see Corollary 4.7). This leads
naturally to the study of the group C*-algebras of central extensions in view
of Lemma 6.3(a).

2. BUNDLE OPERATIONS ON C0(X )-ALGEBRAS

If X is a locally compact Hausdorff space, then the C*-algebra analogue
of a fibre bundle over X is a C0(X )-algebra A; that is, a C*-algebra A
together with a V-homomorphism , from C0(X ) to the center ZM(A) of
the multiplier algebra M(A) of A, which is nondegenerate in that

,(C0(X )) } A :=span[,( f )a : f # C0(X) and a # A]=A.

We will usually suppress the map , and write f } a in place of ,( f )a. If A
and B are C0(X )-algebras, then a homomorphism 9: A � B is called
C0(X )-linear if 9( f } a)= f } 9(a) for all f # C0(X ) and a # A. Two C0(X )-
algebras A and B are isomorphic, if there exists a C0(X )-linear isomorphism
9: A � B.

C0(X)-algebras have enjoyed considerable interest of late, and there are
several nice treatments available [14, 4]. We record some of their basic
properties here for convenience. If A is a C0(X)-algebra, if U is open in X,
and if J is the ideal of functions in C0(X) vanishing off U, then

J } A :=span[ f } a : f # J and a # A] (2.1)
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is an ideal in A. The fibre Ax of A over x is defined to be the quotient
Ax=A�Ix , where Ix :=C0(X"[x]) } A. The spectrum A� can then be written
as a disjoint union ~x # X A� x , and the projection p: A� � X is a continuous
map. Thus A� is a topological bundle over X in the weakest possible sense.
Conversely, if p: A� � X is any continuous map, and if we identify Cb(A� )
with ZM(A) via the Dauns�Hofmann Theorem, then p induces a non-
degenerate V-homomorphism ,: C0(X ) � Cb(A� )$ZM(A) by defining
,( f )= f b p, and then p coincides with the projection corresponding to the
C0(X )-structure on A induced by ,.

A C0(X )-algebra can be viewed as the algebra of sections of an (upper-
semicontinuous) C*-bundle over X as follows. For each x # X and a # A, let
a(x) denote the image of a in the fibre Ax=A�Ix . Then we have a faithful
representation of A into the C*-direct sum �x # X Ax given by a [ (a(x))x # X .
The set of sections x [ a(x) # Ax for a # A, satisfy

(C-1) &a&=supx # X &a(x)&;

(C-2) x [ &a(x)& is upper semicontinuous and vanishes at infinity��
that is,

[x # X: &a(x)&�=] is compact for all =>0;

(C-3) ( f } a)(x)= f (x) a(x) for all f # C0(X ) and a # A;

(C-4) [a(x): a # A]=Ax for all x # X.

Conversely, if [Ax]x # X is a family of C*-algebras (zero or nonzero), then
any C*-subalgebra of �x # X Ax which is closed under pointwise multi-
plication with elements of C0(X ), and which satisfies Conditions (C-2) and
(C-4) above, becomes a C0(X )-algebra by defining the C0(X )-action on A
by pointwise multiplication. A C0(X )-algebra is called a continuous
C0(X )-bundle if the maps x [ &a(x)& are continuous for all a # A. By Lee's
theorem [12], this is equivalent to saying that the projection p: A� � X is
open. If A is a C0(X )-algebra and Y is a nonempty locally compact subset
of X, then we define the restriction AY :=C0(Y ) } A of A to Y by

C0(Y ) } A :={b # �
y # Y

Ay : b(y)=f (y) a(y) for some f # C0(Y) and a # A= .

Lemma 2.1. Suppose that Y is a nonempty locally compact subset of X,
and that A is a C0(X )-algebra. Then the restriction AY is a C0(Y )-algebra
with (AY)y=Ay for all y # Y. If U is open in X, then AU can be identified
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with the ideal C0(U ) } A defined in (2.1). If C is closed in X, then AC is the
image of A by the natural map of �x # X Ax onto �x # C Ax . Moreover,

0 � AX"C � A � AC � 0 (2.2)

is an exact sequence of C*-algebras.

Proof. We identify C0(U ) with an ideal in C0(X). Since C0(U ) } A is a
nondegenerate Banach C0(U)-module, the Cohen Theorem implies that
every element of C0(U ) } A is of the form f } a for f # C0(U ) and a # A. Thus
we can identify AU with C0(U) } A as claimed. The assertion about closed
sets follows from the Cohen Theorem applied to A together with the
observation that restriction defines a surjection of C0(X ) onto C0(C). To
establish (2.2), it suffices to see that if a # A and if a(x)=0 for all x # C,
then a # C0(X"C ) } A. But this is clear from the compactness of

K=[x # X: &a(x)&�=]

for all =>0 so that a can be approximated by elements of the form g } a
with g # Cc(X"C ).

It is now now shown that the first assertion is true if Y is either open or
closed. Since a subset of a locally compact space is locally compact only if
it is locally closed, the result follows. K

The following lemma will be useful in the sequel.

Lemma 2.2. Let A be a C0(X )-algebra and let B/�x # X Ax be such
that each b # B satisfies condition (C-2), and such that for each x # X and
b # B there exists an open neighborhood U of x such that C0(U ) } b=
[ f } b: f # C0(U )]/A. Then B�A. If, in addition, B is a C0(X )-submodule
of �x # X Ax such that for each x # X there exists an open neighborhood U
of x satisfying C0(U ) } B=AU , then B is a dense subspace of A.

Proof. Let b # B and let g # Cc(X ). Then, using condition (C-2) and a
partition of unity for supp( g), it is not hard to show that g } b # A. Then,
by taking an approximate unit in C0(X ) which lies in Cc(X ), we see that
condition (C-1) implies b # A. Assume now that B satisfies the additional
assumptions. Again using a partition of unity, it follows that each a # A
with supp(a) compact is a linear combination of elements in B. Thus B
contains the set of all elements a # A with compact support. Therefore B is
dense in A. K

If A and B are C*-algebras, we let iA : M(A) � M(A�max B) and iB : M(B)
� M(A�max B) denote the natural injections. If A is a C0(X)-algebra and B
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is a C0(Y )-algebra, then A�max B becomes a C0(X_Y )-algebra via the
composition of maps

C0(X_Y ) � ZM(A)�ZM(B) � ZM(A�max B).

Moreover, just as is shown in [4, Corollaire 3.16], the nice behavior of the
maximal tensor product with respect to quotients implies that the fibres
(A�max B)(x, y) of A�max B are isomorphic to Ax�max Ay . For any elemen-
tary tensor a�b we have (a�b)(x, y)=a(x)�b( y) # Ax�max Ay .

If A and B are both C0(X )-algebras, then composition with iA and iB

gives A�max B two C0(X )-algebra structures. Since any quotient of a
C0(X )-algebra is a C0(X )-algebra, the two C0(X )-algebra structures will
coincide on a given quotient exactly when elementary tensors of the form
f } a�b&a� f } b are mapped to zero.

Definition 2.3 (cf., [4]). Let A and B be two C0(X )-algebras and let
I be the closed ideal of A�max B generated by

[a } f�b&a� f } b: a # A, b # B, f # C0(X )].

Then A�X B :=(A�max B)�I equipped with the C0(X )-action given on the
images a�X b of elementary tensors a�b by f } (a�X b)= f } a�X b=
a�X f } b is called the (maximal) C0(X )-balanced tensor product of A
and B.

It is possible to form other balanced tensor products. (A detailed account
may be found in [3].) However, the maximal tensor product has good
functorial properties which will be useful in the sequel. As in the above
definition, we will denote the image of an elementary tensor a�b in A�X B
by a�X b. Notice that A�max B also has a C0(X)-algebra structure arising
from viewing C0(X ) as a the quotient of C0(X_X ) by the ideal C2 of
functions vanishing on the diagonal 2 :=[(x, x): x # X]. Our next result
shows that this structure also induces the given structure on A�X B, and
that A�max B coincides with Blanchard's A� M

C(X ) B when X is compact.

Lemma 2.4 (cf., [3, Proposition 2.2]). Let A and B be C0(X )-algebras.
Then A�X B is C0(X )-isomorphic to the restriction (A�max B)2 of A�max B
to 2=[(x, x): x # X], where the C0(X )-structure on (A�max B)2 is defined
via the canonical homeomorphism x [ (x, x) between X and 2.

In particular, each fibre (A�X B)x is isomorphic to Ax�max Bx and the
elementary tensor a�X b in A�X B is given by the section x [ a(x)�
b(x) # Ax �max Bx .
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Proof. Since 2 is closed in X_X, it follows from Lemma 2.2 that
(A�max B)2 is the quotient of A�max B by the ideal J=C2 } (A�max B).
Since

(a } f�b&a� f } b)(x, x)= f (x)(a(x)�b(x)&a(x)�b(x))=0

for all f # C0(X ), a # A, and b # B, it follows that the balancing ideal I given
in Definition 2.3 is contained in J. Conversely, since C2 is the closed ideal
of C0(X_X ) generated by [hf�g& f�hg: h, f, g # C0(X )] and since
(hf�g& f�hg) } (a�b) # I for all elementary tensors a�b, it follows that
the quotient map A�max B � A�X B maps C2 } (A x B) to [0]. But this
implies that J�I. K

Remark 2.5. (a) Suppose that C is a C*-algebra and that A and B are
C0(X )-algebras. Using the universal property of the maximal tensor
product A�max B (see [31, Proposition 4.7]), it follows that if 8A : A � M(C)
and 8B : B � M(C ) are nondegenerate homomorphisms such that 8A( f } a)
8(b)=8A(a) 8B( f } b) for all a # A and b # B, then there is a unique non-
degenerate homomorphism 8A�X 8B : A�X B � M(C ) such that 8A=
(8A�X 8B) b iA and 8B=(8A�X 8B) b iB . Conversely, if 8: A�X B � M(C)
is any nondegenerate homomorphism, then 8=8A�X 8B with 8A=8 b iA ,
8B=8 b iB . Moreover, if C is a C0(X )-algebra, then it is not to hard to check
that 8=8A�X 8B is C0(X )-linear if and only if 8A and 8B are C0(X )-linear.

(b) If A and B are nuclear (and separable) C0(X )-algebras, then the
balanced tensor product A�X B coincides with the construction given by
Iain Raeburn and the second author in [24]. In particular, it follows that
if p: Prim(A) � X and q: Prim(B) � X are the projections determined by
the C0(X )-structures of A and B, then Prim(A�X B) is homeomorphic to
the fibre product

Prim(A)_X Prim(B) :=[(P, Q) # Prim(A)_Prim(B): p(P)=q(Q)]

[24, Lemma 1.1]. If A or B is type I, then we also have (A�X B)7$
A� _X B� .

(c) An important special case occurs when B=C0(Y ) for a locally
compact space Y. If p: Y � X is a continuous map, (so that C0(Y ) becomes
a C0(X )-algebra via the homomorphism ,: C0(X ) � Cb(Y ) defined by
,(g)= g b p), then A�X C0(Y ) is not only a C0(X )-algebra, but there is
also a canonical C0(Y )-action on the balanced tensor product given by
the canonical embedding of C0(Y ) into M(A�X C0(Y )). We will write
A�p C0(Y ) for the balanced tensor product p*A :=A�X C0(Y ) viewed as
a C0(Y )-algebra; this is the pull-back of A along p as defined in [24]. If
y # Y, then the fibre (A�p C0(Y ))y is equal to Ap( y) , and the projection
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q: (A�p C0(Y ))7$Y_X B� � Y is given by q( y, ?)= p( y). The justifica-
tion for the pull-back terminology is [24, Proposition 1.3] where is shown
that if A is the section algebra of a C*-bundle, then p*A is the section
algebra of the pull-back bundle.

(d) More generally, suppose that B is a C0(X )-algebra and that A is
a C0(Y ) algebra. Then if p: Y � X is continuous, we can view B as a
C0(Y )-algebra via composition with p. Since B�Y A$(B�p C0(Y ))�Y A,
we will write B�p A in place of B�Y A.

3. THE BUNDLE PRODUCT CONSTRUCTIONS

A topological bundle with group G is a topological bundle p: Y � X such
that Y is a G-space in such a way that each s # G acts as a bundle isomor-
phism of p: Y � X. The C*-algebraic analogue of a bundle with group G,
is a C*-dynamical system (A, G, :) in which A is a C0(X )-algebra, and
each :s is a C0(X)-automorphism. More simply, : is a strongly continuous
homomorphism of G into AutC0(X )(A).

As mentioned in the introduction, we want to build a dynamical system
(Z V A, G, Z V :) from a ``product'' of a C0(X )-system (A, G, :) and a
principal G-space Z. By a principal G-bundle we understand a locally trivial
G-bundle p: Z � X over X such that all fibres are isomorphic to G. Notice
that X then has an open cover [Ui] i # I such that there are G-homeomor-
phisms hi : Ui_G � p&1(Ui) for each i # I. On overlaps Uij :=Ui & Uj we
obtain continuous transition functions #ij : U ij � G such that

h&1
j b hi (x, s)=(x, s#ij (x)) for x # U ij and s # G. (3.1)

Then, if x belongs to a triple overlap Uijk :=Ui & Uj & Uk ,

#ij (x) #jk(x)=#ik(x).

Therefore # :=[#ij] i, j # I defines a 1-cocycle in Z1(X, G), and the class of #
in the sheaf cohomology group H1(X, G) depends only on the isomorphism
class of the principal bundle p: Z � X. This gives the well known classifica-
tion of principal G-bundles over X (cf., e.g., [32, Section 5.33] or [30]). (If
G is a topological group, we use the caligraphic letter G to denote the
corresponding sheaf of germs of G-valued functions.) If G is abelian, H1(X, G)
is a group under pointwise product and the bundle product we want to
investigate is analogous to the construction on the principal G-bundles
corresponding to the product in H1(X, G).

The class of principal G-bundles is a subclass of the class of proper
G-bundles. Suppose that Y is a locally compact G-space such that G acts
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freely and properly on Y; that is, s } y= y implies s=e, and the map (s, y)
[ (s } y, y) is proper as a map from G_Y to Y_Y. Then X=G"Y is a
locally Hausdorff space and we say that Y is a proper G-bundle over X.
A proper G-bundle is a principal G-bundle exactly when there are local
(continuous) sections for p: Y � X [25, Proposition 4.3(3)]. If G is a Lie
group, then it follows from Palais's slice theorem [20] that the proper
G-bundles are precisely the principal G-bundles. Of course, there are groups G
for which there exist non-principal proper G-bundles [26, Remark 2.5].

Definition 3.1. Let G be an abelian locally compact group and let
q: Z � X be a proper G-bundle over X.

(a) If Y is any G-space, then we define Z_G Y to be the orbit space
G"(Z_Y ), where the G-action is defined by s } (z, y) :=(sz, s&1y). We
define a continuous map i: Z_G Y � X by i([z, y]) :=q(z). We define a left
G-action on Z_G Y by s } [x, y] :=[s } x, y], where [z, y] denotes the
orbit of (z, y) # Z_Y.

(b) If p: Y � X is any topological bundle over X with group G, we
define r: Z V Y � X to be the topological bundle over X with group G such
that Z V Y :=[[z, y] # Z_G Y: q(z)= p( y)] and r :=i | Z V Y . The G-action
is induced from the G-action on Z_G Y. We call r: Z V Y � X the G-fibre
product of Z and Y.

Remark 3.2. (a) Notice that the above definitions of Z_G Y and
Z V Y only make sense when G is abelian. For non-abelian G one could
define similar spaces by taking the quotient of Z_Y by the diagonal
action. However, there would be no analogue of the G-actions on Z_G Y
and Z V Y. It is straightforward to check that Z_G Y is a fibre bundle over
X with group G and fibre Y and that Z V Y is a topological bundle with
group G, which has the same fibres as Y. We view Z V Y as the bundle Y
twisted by Z. The G-isomorphism classes of Z_G Y and Z V Y depend only
on those of Z and Y.

(b) If Z and Y are proper G-bundles, then it was shown in [26,
Lemma 2.4] that Z V Y is a proper G-bundle and that [Z][Y] [ [Z V Y]
defines an abelian group structure on the set HP(X, G) of all isomorphism
classes of proper G-bundles over X. If q: Z � X and p: Y � X are principal
bundles corresponding to the classes [#1] and [#2] in H 1(X, G), then
r: Z V Y � X is a principal G-bundle corresponding to [#1 } #2]. Thus
H1(X, G) can be viewed as a subgroup of HP(X, G) [27, Remark 2.7].

Now we introduce the analogous C*-algebraic constructions. Suppose
that q: Z � X is a proper G-bundle and that (A, G, :) is a C*-dynamical
system with G abelian. Then s [ :&1

s is also a homomorphism and we can
therefore employ the well-known construction of induced systems [23, 22, 24]
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to (A, G, :&1). In particular, we define Z_G A to be IndZ
G(A, :&1) (in the

notation of [22]); that is, Z_G A is the set of all bounded continuous
functions F: Z � A satisfying

:s(F(z))=F(s&1 } z), for all s # G and z # Z,

and such that z [ &F(z)& vanishes at infinity on X=G"Z. Equipped with
the pointwise operations and the supremum norm, Z_G A becomes a
C*-algebra. We define a strongly continuous action Ind : of G on Z_G A
by

(Ind :)s (F )(z)=:s(F(z))=F(s&1 } z).

Strong continuity follows from straightforward compactness arguments
using the fact that z [ & f (z)& vanishes at infinity on G"Z. Note that
C0(X ) acts on Z_G A via (g } F )(z)= g(q(z)) F(z), g # C0(X ), so that
(Z_G A, G, Ind :) is actually a C0(X )-system with fibres (Z_G A)x $A.

If (A, G, :) is itself a C0(X )-system, then there is a C0(X_X )-action on
Z_G A given by

(h } F )(z)(x)=h(q(z), x) F(z)(x), h # C0(X_X ).

We define Z V A to be the restriction of Z_G A to the diagonal 2 of X_X.
Identifying X with 2 gives Z*A the structure of a C0(X )-algebra with fibres
(Z*A)x $Ax . Lemma 2.1 implies that Z V A may be written as the set of
sections

{ f : Z � �
x # X

Ax : f(z)=F(z)(q(z)) # Aq(z) for some F # Z_G A= .

Since Ind : is C0(X_X )-linear, it follows that it restricts to a C0(X )-linear
action Z V : of G on Z V A. If F # Z_G A, and f (z)=F(z)(q(z)), then

(Z V :)s ( f )(z)=:s(F(z))(q(z))=:q(z)
s ( f (z)),

where :q(z) is the induced action on the fibre Aq(z) .

Definition 3.3. Suppose that G is an abelian group and q: Z � X is a
proper G-bundle over X.

(a) If (A, G, :) is a C*-dynamical system then (Z_G A, G, Ind :) is
called the C0(X )-system induced from (A, G, :) via Z.

(b) If (A, G, :) is a C0(X )-system, then (Z V A, G, Z V :) is called the
G-fibre product of q: Z � X with (A, G, :).
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Remark 3.4. (a) If # is the diagonal action on C0(Z, A) given by
#s(F )(z) :=:&1

s (F(s&1 } z)), then Z_G A was denoted by GC(Z, A)# in [24]
and can be viewed as a generalized fixed point algebra for #. The algebra
Z V A defined above first appeared in [24, Section 2] as GC(Z, A)#�I,
where I is the kernel of the quotient map Z_G A � Z V A. What is new
with our construction are the actions Ind : and Z V :.

(b) Our definitions of Z_G A and AZ only make sense if G is abelian,
since we need :&1 to be an action of G on A. Of course, we could have defined
Z_G A as the algebra IndZ

G(A, :). This would have the advantage of working
for nonabelian G, and would lead to a sensible definition of Z V A in the
general case. However, there would be no analogues for the actions Ind :
and Z V : in the nonabelian case. In any event, our definition more closely
parallels the classical bundle product, and leads to more elegant statements
of our main results.

(c) If (A, G, :) is a system with G abelian, and if q: Z � X is a proper
G-bundle, then (Z V C0(X, A), G, Z V (id�:)) is canonically isomorphic to
(Z_G A, G, Ind :). The isomorphism is given by the map 9: Z_G C0(X, A)
� Z_G A; 9(F )(z)=F(z, q(z)).

We now turn to the basic properties of the C0(X )-systems (Z_G A, G, Ind :)
and (Z V A, G, Z V :). In so doing, we will see that these C*-constructions
from Definition 3.3 parallel the topological constructions of Definition 3.1.
If (A, G, :) is a C0(X )-system, then A� is a topological bundle over X with
group G with respect to the projection p: A� � X and the action of G defined
by s } ?=? b :&1

s . If (z, ?) # Z_A� , then it was shown in [24, Proposition 3.1]
that (z, ?) determines an irreducible representation M(z, ?) # (Z_G A)7

defined by M(z, ?)(F)=?(F(z)). Moreover M(z1 , ?1) is equivalent to M(z2 , ?2)
if and only if there exist an s # G such that z2=s } z1 and ?2=s&1 } ?1 (note that
s&1 appears in the latter formula as we have replaced : by :&1 in the formulae
from [24]). The representations of Z V A are then given by those M(z, ?)
which satisfy q(z)= p(?). Thus we obtain

Proposition 3.5 ([24, Proposition 3.1]). Let q: Z � X be a proper
G-bundle with G abelian.

(a) If (A, G, :) is a system, then (Z_G A)7 is naturally isomorphic to
Z_G A� as a fibre bundle over X with group G.

(b) If (A, G, :) is a C0(X )-system, then (Z V A)7 is naturally
isomorphic to Z V A� as topological bundles over X with group G.

The next corollary follows immediately from the Gelfand theory.
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Corollary 3.6. Let Y be a locally compact G-space, and define {: G �
Aut(C0(Y )) by {s( f )( y)= f (s&1y). Then Z_G C0(Y ) is equivariantly isomorphic
to C0(Z_G Y ). Moreover, if p: Y � X is a locally compact topological bundle over
X with group G, then Z V C0(Y ) is G-equivariantly isomorphic to C0(Z V Y ).

Proposition 3.7 (cf., [11, Proposition 2.15]). Suppose that (A, G, :) is
a C0(X )-system such that A is actually a continuous C0(X)-bundle; that is,
A is the section algebra C0(X; A) of a C*-bundle p: A � X. Then A is a
(continuous) G-space with the action characterized by s } a(x)=:s(a)(x)=
:x

s (a(x)), Z V A is a C*-bundle over X, and Z*A is canonically isomorphic
to C0(X, Z V A).

Proof. We omit the proof that A is a continuous G-space with respect
to the above given action and that Z V A is a C*-bundle over X (for more
details see [11, Proposition 2.15]). In order to see that Z V A is isomorphic
to C0(X, Z V A) let F # Z_G A. Then F defines a section fF # C0(X; Z V A)
by fF (q(z))=[z, F(z)(q(z))]. The collection 1=[ fF : F # Z_G A] is dense
in C0(X; Z V A) by [8, Corollary II.14.7], and it follows from the discus-
sion preceeding Definition 3.3 that Z V A$C0(X; Z V A). K

We start to investigate the structure of (Z V A, G, Z V :) with some inter-
esting special cases. First notice that if :: G � Aut(A) is the trivial action,
then (Z V A, G, Z V :) is isomorphic to (A, G, :) for all proper G-spaces
q: Z � X (for a proof see [24, Proposition 3.2]). A similar result holds
when Z is a trivial bundle:

Lemma 3.8 (cf., [24, Proposition 3.2]). Let (A, G, :) be a C0(X )-system
and let q: Z � X be a trivial G-bundle. Let .: X � Z be a continuous section
for q: Z� X, and let s(z) be the unique element in G which satisfies z=s(z).(q(z))
for each z # Z. Then 8( f )(x)= f (.(x)) defines an equivariant C0(X)-isomor-
phism of the systems (Z V A, G, Z V :) and (A, G, :), with inverse given by
8&1(a)(z)=:x

s(z)&1 (a(q(z))).

Proof. Define 9 : Z_G A � C0(X, A) by 9(F )(x)=F(.(x)). Then it is
easy to check that 9 is a C0(X_X )-linear isomorphism with inverse given
by 9&1(g)(z)=:&1

s(z) ( g(q(z))). If s # G and F # Z_G A, then

9((Ind :)s (F ))(x)=(Ind :)s (F )(.(x))=:s(F(.(x)))=:s(8(F )(x)).

Thus 9 carries Ind : to id�:. Since 9 is C0(X_X )-linear and the restric-
tion (C0(X, A)2 , G, (id�:)2) of (C0(X, A), G, id�:) to the diagonal 2
is isomorphic to (A, G, :), it follows that 9 induces a G-equivariant and
C0(X )-linear isomorphism 8: Z V A � A. Evaluation at the fibres reveals
that 8 and 8&1 are given by the formulas in the lemma. K
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Remark 3.9. The isomorphism of Z V A and A given in Lemma 3.8
depends on the choice of section. If 81 and 82 are induced from two
different continuous sections .1 and .2 : X � Z, then let #12 : X � G denote
the transition function defined by .1(x)=#12(x) .2(x). Then, for all x # X,
we get

82( f )(x)= f (.2(x))=F(.2(x))(x)=F(#12(x)&1 .2(x))(x)

=:x
#12(x)(F(.1(x))(x)=:x

#12 (x)( f (.1(x)))

=:x
#12(x)(81( f )(x)).

Again, suppose that q: Z � X is a proper G-bundle over X. If W is any
locally compact subset of X, then the restriction ZW :=q&1(W ) is a proper
G-bundle over W, and our next result shows that Z V A behaves well with
respect to restrictions.

Lemma 3.10. Let (A, G, :) be a C0(X )-system and let q: Z � X be a
proper G-bundle over X. If W is a locally compact subset of X, then
((Z V A)W , G, (Z V :)W) and (ZW V (AW), G, ZW V (:W)) are isomorphic as
C0(W )-systems. In particular, ((Z V A)x , G, (Z V :)x) is isomorphic to
(Ax , G, :x) for all x # X.

Proof. The second assertion is a consequence of the first and Lemma 3.8.
The first assertion is straightforward when W is open or closed. Since Y is
always the intersection of an open and a closed set, the result follows by
iteration. K

When Z is a principal G-bundle, it will be convenient to have a descrip-
tion of Z V A in terms of a representative # # Z1(X, G) for the class in
H1(X, G) corresponding to Z.

Proposition 3.11. Let (A, G, :) be a C0(X )-system with G abelian and
X paracompact. Let q: Z � X be a principal bundle and let [Ui]i # I be a
locally finite cover of X such that #=[#ij] i, j # I represents the class in
H1(X, G) corresponding to Z. Then a C0(X )-system (B, G, ;) is C0(X )-
isomorphic to (Z V A, G, Z V :) if and only if there exist isomorphisms
8i : BUi

� AUi
satisfying

(a) for all i # I, 8i is C0(U i)-linear and G-equivariant, and

(b) for all i, j # I, b # B, and x # Uij , 8 j (b)(x)=:x
#ij (x) (8 i (g)(x)).

Proof. Since # is a representative for q: Z � X in Z1(X, G), there exist
local sections .i : Ui � q&1(Ui) such that .i (x)=#ij (x) .j (x) for all x # Uij .
It follows then from Remark 3.9 that the isomorphisms 8i : (Z V A)Ui

� AUi
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of Lemma 3.8 corresponding to the local sections .i satisfy conditions (a)
and (b).

Suppose now that (B, G, ;) is an arbitrary C0(X )-system and let
8i : BUi

� AUi
be isomorphisms satisfying (a) and (b). For each z # q&1(Ui)

define si (z) # G by the equation z=si (z) .i (q(z)). It follows from Lemma 3.8
that

9i (b)(z)=:q(z)
si(z)&1 (8 i (b)(q(z)))

defines a C0(Ui)-linear and G-equivariant isomorphism 9i : BUi
� (Z V A)Ui

for all i # I. Moreover, if q(z) # Uij , then z=si (z) .i (q(z))=sj (z) #ij (q(z))
.j (q(z)) which implies that sj (z)=si (z) #ij (q(z)) for all z # Z. It follows that

9i (b)(z)=:q(z)
si (z)&1(8 i (b)(q(z)))=:q(z)

si(z)&1(:q(z)
#ij (q(z))&1(8 j (b)(q(z))))

=:q(z)
(si (z) #ij (q(z)))&1 (8j (b)(q(z)))=:q(z)

sj (z)&1(8j (b)(q(z)))

=9j (b)(z),

for all z # q&1(Uij), b # BUij
. Thus, if we define 9: B � Z V A by the formula

9(b)(q(z))=9i (b)(q(z)), whenever z # q&1(U i), it follows from Lemma 2.2
that 9 is an isomorphism between the C0(X )-systems (B, G, ;) and
(Z V A, G, Z V :). K

We close this section with the following useful result which we will need
later. It will be helpful to keep in mind that if A is a C0(X )-algebra, and
B any C*-algebra, then B�max A is a C0(X )-algebra with fibres (B�max A)x

$B�max Ax .

Proposition 3.12. Let q: Z � X be a proper G-bundle with G abelian.
Suppose further that (A, G, :) is a C0(X )-system and that B is a C0(X )-algebra.
Then

(Z V (B�X A), G, Z V (id�X :)) and (B�X (Z V A), G, id� X (Z V :))

are isomorphic C0(X )-systems.

Proof. We first show that for any system (A, G, :) and any C*-algebra
B the induced algebra Z_G (B�max A) is equivariantly isomorphic to
B�max (Z_G A). For this let (iB , iA) denote the natural embeddings
of B and A in M(B�max A), and define homomorphisms 8B : B �
M(Z_G (B�max A)) and 8Z_G A : Z_G A � M(Z_G (B�max A)) by

(8B(b) } H )(z)=iB(b)(H(z)) and (8Z_G A(F ) } H )(z)=iA(F(z)) H(z),
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where b # B, F # Z_G A, and H # Z_G (B�X A). It is then straightforward
to check that 8B and 8Z_G A are commuting nondegenerate V-homomor-
phisms such that [8B(b) 8Z_G A(F ): b # B and F # Z_G A] generates a
dense subalgebra of Z_G (B�max A). Thus, by the universal property of the
maximal tensor product we obtain a surjective V-homomorphism 8B�8Z_G A :
B�max (Z_G A) � Z_G (B�max A) which is clearly G-equivariant and
C0(X )-linear with respect to the C0(X )-structures of the induced algebras.
To see that 8B�8Z_G A is an isomorphism, it suffices to see that the
induced maps

(8B�8Z_G A)x : (B�max (Z_G A))x � (Z_G(B�max A))x

are isomorphisms for all x. To see this, note that both fibres
(B�max (Z_G A))x and (Z_G (B�max A))x are isomorphic to B�max A. If
we do these identifications, then for b # B and a # A we can compute
(8B�8Z_G A)x (a�b) as follows: Choose F # Z_G A and z # Z with
q(z)=x and F(z)=a. Then

(8B�8Z_G A)x (a�b)=8B�8Z_G A(b�F )(z)=b�F(z)=b�a.

Thus (8B�8Z_G A)x is the identity on A�max B for each x # X.
Now let (A, G, :) and B be as in the proposition. Then B�max (Z_G A)

and Z_G(B�max A) are C0(X_X_X )-algebras, and it follows directly
from the definition that 8B�8Z_G A is C0(X_X_X )-linear. If 23(X )=
[(x, x, x): x # X] denotes the diagonal in X_X_X, then B�X Z V A is the
restriction of B�max (Z_G A) to 23(X ) and Z V (B�X A) is the restriction
of Z_G (B�max A) to 23(X ). Thus the result follows from the C0(X_X_X )-
linearity of 8B�8Z_G A .

4. CROSSED PRODUCTS BY INNER ACTIONS

In this section, we start with the investigation of crossed products by
inner actions on CR(X )-algebras. If :: G � Inn(A) is an inner action of a
second countable group G on a CR(X )-algebra A, then it follows from
the discussion following [7, Remark 2.9] that there exists a cocycle
u # Z2(G, C(X, T)) and a Borel map v: G � UM(A) satisfying

:s=Ad vs and vsvt=u(s, t)vst for all s, t # G. (4.1)

Then [23, Corollary 0.12] implies that the cohomology class [u] #
H2(G, C(X, T)) is a complete invariant for the exterior equivalence class of :.
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(Throughout, C(X, T) is the trivial Polish G-module C(X, T) equipped with
the topology of uniform convergence on compact sets.)

To describe the crossed product A <: G in terms of the cocycle u it is
necessary to work with (Busby�Smith) twisted actions and twisted crossed
products. A twisted action (:, u) of a second countable locally compact
group G on a separable C*-algebra A consists of a strongly measurable
map :: G � Aut(A) and a strictly measurable map u: G_G � UM(A)
satisfying

(a) :e=id and u(e, s)=u(s, e)=1 for all s # G;

(b) :s(:t(a))=u(s, t) :st(a) u(s, t)* for all s, t # G;

(c) :r(u(s, t)) u(r, st)=u(r, s) u(rs, t) for all s, t, r # G.

The quadruple (A, G, :, u) is called a (Busby�Smith or Leptin) twisted
C*-dynamical system. If A is a C0(X )-algebra, and :s is C0(X )-linear for all
s # G, then we will call (A, G, :, u) a twisted C0(X )-system.

A covariant homomorphism of (A, G, :, u) into the multiplier algebra of
a separable C*-algebra B is a pair (8, v), where 8: A � M(B) is a non-
degenerate homomorphism and v: G � UM(B) is strictly measurable such
that ve=1, and such that

8(:s(a))=vs8(a)vs*, and vsvt=8(u(s, t))vst for all s, t # G, a # A.

The integrated form 8 < v: L1(G, A) � M(B) is then defined by 8 < v( f )=
�G 8( f (s)) vs ds. The following is a slight reformulation of Packer and
Raeburn's definition of a crossed product for twisted systems.

Definition 4.1 (cf., [18, Theorem 1.2]). Let (A, G, :, u) be a twisted
system. A crossed product for (A, G, :, u) consists of a triple (B, iA , iG)
satisfying

(a) (iA , iG) is a covariant homomorphism of (A, G, :, u) into M(B);

(b) iA < iG(L1(G, A)) is a dense subalgebra of B;

(c) if (8, v) is any covariant homomorphism of (A, G, :, u) into
M(C ), for some separable C*-algebra C, then there exists a nondegen-
erate V-homomorphism 8 < v: B � M(C) such that (8 < v) b iA=8 and
(8 < v) b iG=v.

If (B, iA , iG) and (C, jA , jG) are two different crossed products of (A, G, :, u),
then jA < jG : B � C is an isomorphism with inverse iA < iG : C � B. Thus,
the crossed product is unique up to isomorphism, and we will usually
suppress the maps iA and iG and denote it by A <:, u G. Notice that
ordinary (separable) C*-dynamical systems and their crossed products are
recovered as the special case where u#1, in which case we simply write
(A, G, :) for the system and A <: G for the crossed product.
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Remark 4.2. (a) If (A, G, :, u) is a twisted C0(X )-system, then A <:, u G
is a C0(X )-algebra, where the action of C0(X ) on A <:, u G is defined via
the composition of maps

C0(X ) w�, ZM(A) w�
iA M(A <:, u G).

If W is a nonempty open subset W of X one can deduce from the definition
of a crossed product that ((A <:, u G)W , i W

A , i W
G ) is a crossed product for

AW <:W, uW G, where i W
A denotes the restriction of iA to the ideal AW of A

composed with the natural map 8: M(A <:, u G) � M((A <:, u G)W), and
i W

G =8 b iG . Similarly, if (:x, ux) is the twisted action induced from (:, u) on
the G-invariant quotient Ax , a crossed product for (Ax , G, :x, ux) is given
by ((A <:, u G)x , i x

A , i x
G), where i x

A and i x
G are the compositions of iA and iG

with the quotient map M(A <:, u G) � M((A <:, u G)x). In particular, the
fibres (A <:, u G)x are isomorphic to Ax <:x, ux G. Note that (i x

A_i x
G) b

(i W
A _i W

G )=i x
A_i x

G for x # W (see [14] for more details).

(b) If D is a C0(X )-algebra and (8, v) is a covariant homomorphism
of the C0(X )-system (A, G, :, u) into M(D), then 8 < v is C0(X )-linear if
and only if 8 is C0(X )-linear. This follows immediately from the equality
(8 < v)(iA b ,( f ))=8(,( f )) for f # C0(X ).

If (A, G, :, u) is a twisted system, then there exists a ``dual'' action of the
Pontryagin dual G� ab of the abelianization Gab=G�[G, G] of G on A <:, u G.
This action is defined by

(:, u)7
/ =iA < (/� } iG),

where /� } iG(s)=/(s) iG(s) (here we view / # G� ab as a function on G), and
iA < (/� } iG) denotes the integrated form of the covariant homomorphism
(iA , /� } iG). If (A, G, :, u) is a C0(X )-system, then (A <:, u G, G� ab , (:, u)7) is
also a C0(X )-system since iA is C0(X )-linear.

The following proposition is crucial as it will allow us to untangle certain
diagonal twisted actions. It is the C0(X )-analogue for twisted actions of the
well known isomorphism of (A�max B) <:� idB

G with (A <: G)�max B.

Proposition 4.3. Let (A, G, :, u) be a twisted C0(X )-system, and let
B be a separable C0(X )-algebra. Let (id, 1) denote the trivial G-action on B,
and let (:�X id, u�X 1) denote the diagonal twisted action of G on A�X B.
If iA and iG denote the canonical maps from A and G into M(A <:, u G), then
(iA �X id, iG�X 1) is a covariant homomorphism of (A�X B, G, :�X id,
u�X 1) into M((A <:, u G)�X B). In particular, the integrated form (iA�X id)
< (iG�X 1) is a C0(X )-linear and G� ab-equivariant isomorphism of (A�X B)
<:�X id, u�X 1 G onto (A <:, u G)�X B.
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Proof. Put C :=(A <:, u G)�X B. To show that (C, iA�X id, iG �X 1)
is a crossed product for (A�X B, G, :�X id, u�X 1), we have to verify
conditions (a), (b), and (c) of Definition 4.1. Since (iA , iG) is a covariant
homomorphism of (A, G, :, u), it follows that (iA �X id, iG �X 1) is a
covariant homomorphism of (A�X B, G, :�X id, u�X 1). This proves (a).
For (b), let 8: L1(G, A) xB � L1(G, A�X B) be defined by 8( f�b)(s)=
f (s)�X b. Then

(iA�X id) < (iG�X 1)(8( f�b))=|
G

(iA( f (s))�X b)(iG(s)�X 1) ds

=\|G
iA( f (s)) iG(s) ds+�X b

=(iA < iG( f ))�X b,

and (b) follows from the fact that iA < iG(L1(G, A)) is dense in A <:, u G.
For (c), suppose that (9, v) is a covariant homomorphism of (A�X B,

G, :�X id, u�X 1) into M(D) for some separable C*-algebra D. By
Remark 2.5, we have 9=9A�X 9B such that 9A(a } f ) 9B(b)=9A(a)
9B( f } b) for f # C0(X ), a # A, and b # B. It is straightforward to check that
(9A , v) is a covariant homomorphism of (A, G, :, u) into M(D) which
commutes with 9B . Thus we obtain a homomorphism (9A < v)�9B :
(A <:, u G)�max B � M(D). For g # L1(G, A), b # B, and f # C0(X ) we have

9A < v( f } g) 9B(b)=|
G

9A(g(s) } f ) v(s) ds 9B(b)

=|
G

9A( g(s) 9( f ) v(s) ds 9B(b)

=|
G

9A( g(s)) v(s) ds 9B( f } b)

=9A < v(g) 9B( f } b).

Since L1(G, A) is dense in A <:, u G this extends to all g # A <:, u G. By
Remark 2.5, there is a nondegenerate homomorphism (9A < v)�X 9B :
C � M(D) satisfying (9A < v)�X 9B(g�X b)=9A < v(g) 9B(b) for all
elementary tensors g�X b.

Finally, we compute

(9A < v)�X 9B(iA�X id(a�X b))=(9A < v)(iA(a)) 9B(b)

=9A(a) 9B(b)=9(a�X b),
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which proves that (9 < v) b (iA �X id)=9. Similarly,

(9A < v)�X 9B(iG(s)�X 1)=(9A < v)(iG(s))=vs ,

which proves that (9 < v) b (iG �X 1)=v, as required.
At this point, we have proved that (C, iA �X id, iG �X 1) is a crossed

product for (A�X B, G, :�X id, u�X 1). In particular,

(iA�X id) < (iG�X 1): (A <C0 (X ) B) <:�X id, u�X 1 G � (A <:, u G)�X B

is an isomorphism, which is C0(X )-linear since iA�X id is C0(X )-linear. If
/ # G� ab, then /� } (iG�X 1)=(/� } iG)�X 1, which implies that (iA�X id) <

(iG �X 1) also preserves the dual action of G� ab . K

Remark 4.4. (a) Two twisted actions (:, u) and (;, v) of G on A are
called exterior equivalent if there exists a strictly Borel map w: G � UM(A)
satisfying ;s=Ad ws b :s and v(s, t)=ws :s(wt) u(s, t) w*st for all s, t # G (see
[17, Definition 3.1]). Note that if (A, G, :, u) is a twisted C0(X )-system,
and if (;, v) is exterior equivalent to (:, u), then ;s( f } a)=ws:s( f } a) ws*=
f } (ws:s(a) ws*)= f } ;s(a), so that each ;s is C0(X )-linear. Further, if wx

s

denotes the image of ws in M(Ax), then wx implements an exterior equiv-
alence between (:x, ux) and (;x, vx).

(b) Suppose that w: G � UM(A) implements an exterior equivalence
between the twisted actions (:, u) and (;, v). Let jA : A � M(A <;, v G)
and jG : G � UM ( A <;, v G) denote the canonical maps and let +G : G �
UM(A <;, v G) be defined by +G(s)= jA(ws*) jG(s). Then ( jA , +G) is a
covariant homomorphism of (A, G, :, u), and jA < +G is an isomorphism of
A <:, u G and A <;, v G (see [17, Lemma 3.3]). Moreover, if (A, G, :, u) is a
twisted C0(X )-system, then the isomorphism jA < +G above is necessarily
C0(X )-linear (since jA is C0(X )-linear) and therefore implements an iso-
morphism between the C0(X )-systems (A <:, u G, G� ab , (:, u)7) and (A <;, v G,
G� ab , (;, v)7). Further, if / # G� ab , then it follows from the definition of the dual
actions that

( jA < +G) b (:, u)7
/ = jA < (/� } +G)=(( jA < (/� } (( jA b w) } jG))

= jA < (( jA b w) } (/� } jG))=(;, v)7
/ b ( jA < +G), (4.3)

so that jA < +G is G� ab-equivariant.

Twisted crossed products with A=C0(X ) abelian and : trivial play a
central rôle in our analysis. Such a crossed product is called a twisted
transformation group C*-algebra and is denoted by C*(G, X, u); a nice
survey article is [15]. For our purposes, we need only remark that the
condition on the twist u implies that u is a cocycle in the Moore cohomology
group Z2(G, C(X, T)) for the trivial action of G on C(X, T). Moreover, if
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u, v # Z2(G, C(X, T)), then (id, u) is exterior equivalent to (id, v) if and
only if [u]=[v] in H2(G, C(X, T)). In what follows we shall write û
(instead of (id, u)7 as in (4.2)) for the dual action of G� ab on C*(G, X, u).
It follows from Remark 4.4 that (C*(G, X, u), G� ab , u) only depends on the
cohomology class of u.

Definition 4.5. Suppose that A is a separable C0(X )-algebra, and
that u # Z2(G, C(X, T)). A u-homomorphism is a strictly measurable map
v: G � UM(A) satisfying

ve=1 and vs vt=u(s, t) } vst for all s, t # G

(where we extended the action of C0(X ) on A to the multiplier algebra
Cb(X )=M(C0(X ))). If :: G � Aut(A) is an action, then we say that : is
implemented by the u-homomorphism v: G � UM(A) if :s=Ad vs for all
s # G.

Notice that if v is a u-homomorphism and if ,: C0(X ) � ZM(A) is the
homomorphism determined by the C0(X )-action on A, then (,, v) is a
covariant homomorphism of (C0(X ), G, id, u) into M(A). We will write u�
for the inverse of the cocycle u # Z2(G, C(X, T)). If :: G � Inn(A) is
implemented by the u-homomorphism v: G � UM(A), then it follows from
:s=Ad vs and 1=vsvtu� (s, t)v*st for s, t # G, that v implements an exterior
equivalence between the twisted actions (:, 1) and (id, u� ). We use this
observation for the proof of

Proposition 4.6. Suppose that A is a C0(X)-algebra, that u # Z2(G, C(X, T)),
and that :: G� Aut(A) is implemented by a u-homomorphism v: G � UM(A).
Then A <: G is isomorphic to C*(G, X, u� )�X A. In particular, if iG : G �
UM(C*(G, X, u� )) is the canonical map, then (1�X idA , iG�X v) is a
covariant homomorphism of (A, G, :) into M(C*(G, X, u� )�X A) whose
integrated form is a C0(X )-linear covariant isomorphism of (A <: G, G� ab , :̂)
onto (C*(G, X, u� )�X A, G� ab , u�^ �X id).

Proof. It follows from Proposition 4.3 that (iC0(X )�X idA , iG�X 1)
is a covariant homomorphism of (C0(X )�X A, G, id�X id, u� �X 1) into
M(C*(G, X, u� )�X A) whose integrated form is a C0(X )-linear and G� ab-equiv-
ariant isomorphism of (C0(X )�X A) <id� id, u� �1 G onto C*(G, X, u� )�X A.

Let 8: C0(X )�X A � A be the isomorphism defined on elementary
tensors by 8( f �X a)= f } a. Then 8 carries the trivial action id� id to the
trivial action on A and we have 8(u� (s, t)�X 1)a=u� (s, t) } a for all a # A.
Thus, regarding u� as a map u� : G_G � UM(A) via the C0(X )-action on A,
we see that 8 induces a C0(X )-linear and G� ab-equivariant isomorphism
between (C0(X )�X A) < id�X id, u� �X 1 G and A <id, u� G. Moreover, 8 carries
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the covariant homomorphism (iC0(X )�X idA , iG�X 1) to the covariant homo-
morphism (1�X idA , iG�X 1), which implies that (1�X idA) < (iG�X 1)
is a C0(X )-linear and G� ab-equivariant homomorphism of A <id, u� G onto
C*(G, X, u� )�X A. Since v is a u-homomorphism, it follows that v implements
an exterior equivalence between the twisted actions (:, 1) and (id, u� ). Thus the
result follows from Remark 4.4. K

If :: G � Inn(A) is any inner action of G on the CR(X )-algebra A,
then as we observed at the beginning of this section, there exists a unique
class [u] # H2(G, C(X, T)) and a u-homomorphism v: G � UM(A) which
implements :. Thus we get

Corrolary 4.7. Let A be a CR(X )-algebra and let :: G � Inn(A) be an
inner action of G on A. Let u # Z2(G, C(X, T)) be associated to : as above.
Then (A <: G, G� ab, :̂) is C0(X )-isomorphic to (C*(G, X, u� )� XA, G� ab, u�^ � Xid).

Remark 4.8. It is shown in [9, Proposition 3.1] that for every
u # Z2(G, C(X, T)), there exists a u-homomorphism v of G into UM(C0(X, K)).
From this it follows that for any stable C0(X )-algebra A, there exists
a u-homomorphism w: G � UM(A): simply identify A$A�K with A�X

C0(X, K) and define w=1�X v. Thus, if A # CR(X ) is stable, then there
exists a natural one-to-one correspondence between the exterior equiv-
alence classes of inner G-actions on A and H2(G, C(X, T)), and by the
above results the crossed products can be described in terms of the central
twisted transformation group algebras C*(G, X, u� ).

5. G� ab-FIBRE PRODUCTS AND LOCALLY UNITARY
ACTIONS ON C0(X, K)

The exterior equivalence classes of locally unitary actions on A are classified
by the isomorphism classes of principal G� ab-bundles, or equivalently, by
classes in H1(X, G� ab) as described in Section 3 [7, Section 3]. If A # CR(X ),
then an action :: G � Aut(A) is called locally unitary if each point in X has
an open neighborhood W such that the restriction :W of : to the ideal AW

of A is unitary. The class corresponding to a locally unitary action is deter-
mined as follows. Choose any locally finite open cover (Wi) i # I of X such
that each restriction :i :=:Wi is unitary. For each i # I, set A i :=AWi

and
let wi : G � UM(Ai) be a strictly continuous map such that :i=Ad wi. If
wi (s, x) denotes the element of M(Ax) induced by wi, then there exist
continuous functions #ij : Wij � G� ab satisfying

(a) wi (s, x)=#ij (x)(s) w j (s, x) for all x # Wij :=Wi & Wj ,

(b) #ij (x) #jk(x)=#ik(x) for all x # Wijk :=W i & Wj & Wk .
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The last property implies that (#ij) i, j # I is a cocycle in Z1(X, G� ab), and by
[7, Proposition 3.3] the class `(:) of this cocycle in H1(X, G� ab) is a
complete invariant for the exterior equivalence class of :. If A is stable,
then all classes in H 1(X, G� ab) appear this way. In order to state the main
result of this section we need

Definition 5.1. Let (:, u) and (;, v) be two twisted C0(X )-linear
actions of G on a C0(X )-algebra A. Then we say that (:, u) is locally
exterior equivalent to (;, v) if every point in X has an open neighborhood
W such that (:W, uW) is exterior equivalent to (;W, vW).

Remark 5.2 (a) If A # CR(X ), then :: G � Aut(A) is locally unitary if
and only if : is locally exterior equivalent to the trivial action idA .

(b) Let (:, u) be a twisted action of G on A and let ZUM(A)=
UM(A) & ZM(A). Then it follows from the definition of exterior equivalence
that a strictly measurable map *: G � UM(A) implements an exterior equiv-
alence of (:, u) with itself if and only if *s # ZUM(A) and *st=*s:s(*t) for
all s, t # G.

(c) Let A be a C*-algebra. Then the isomorphism ZM(A) �
ZM(A�K) given by z [ z�1 induces a homeomorphism between
ZUM(A) and ZUM(A�K) with respect to the strict topologies. To see
this assume that zi � z strictly in ZUM(A). Then zi a�c � za�c for every
elementary tensor a�c # A�K. Since ZUM(A�K) is a bounded subset
of M(A�K) this is enough to prove that zi�1 � z�1 in ZUM(A�K).
Conversely, if zi �1 � z�1 strictly in ZUM(A), then choose any c # K

with &c&=1 to deduce that &zi a&za&=&zi a�c&za�c& � 0 for all a # A.

Theorem 5.3. Let (:, u) and (;, v) be two locally exterior equivalent
twisted C0(X )-linear actions of G on a C0(X )-algebra A. Suppose further
that $: G � Aut(C0(X, K)) is locally unitary and that q: Z � X is a principal
G� ab-bundle corresponding to `($) # H 1(X, G� ab). If (;� id, v�1) is exterior
equivalent to (:� X $, u� X 1) as actions on A�K$A�X C0(X, K), then
(A<;, vG,G� ab , (;, v)7) is C0(X )-isomorphic to the G-fibre product (Z*(A <:, u G),
G� ab , Z V (:, u)7).

Proof. Since the isomorphism class of (Z V (A <:, u G), G� ab , Z V (:, u)7)
only depends on the isomorphism class of q: Z � X, it follows from the
assumptions and the discussion at the beginning of this section that we can
find a locally finite open cover (Wi) i # I of X and a cocycle (# ij) i, j # I in
Z1(X, G� ab) (with respect to this cover) satisfying the conditions:

(a) There exist strictly continuous maps wi: G � UM(C0(W i , K))
such that $i=Ad wi for all i # I, and wi (s, x)=#ij (x)(s) w j (s, x) for all x # Wij .
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(b) There exist continuous local sections .i : Wi � q&1(Wi) such that
.i (x)=#ij (x) .j (x) for all x # Wij .

(c) There exist strictly measurable maps }i: G � UM(Ai), Ai :=AWi
,

implementing exterior equivalences between (;i, vi) and (:i, ui); that is,
;i=Ad }i b :i and vi (s, t)=} i

s: i
s(}

i
t) u i (s, t)(} i

st)* for all s, t # G.

We want to use these data to define C0(Wi)-linear and G� ab-equivariant
isomorphisms 8i: (A <;, v G)Wi

� (A <:, u G)Wi
which satisfy

8 j (d )(x)=(:x, ux)7
#ij (x) (8 i (d ))(x) for all d # A <;, v G and x # W ij .

(5.1)

If this can be done, then since the bundle q: Z � X has transition functions
(#ij) i, j # I , the result follows from Proposition 3.11 and the observation that
the action on Ax <:x, ux G induced by (:, u)7 is (:x, ux)7.

We claim that we may assume that the exterior equivalences }i : G �
UM(Ai) satisfy the relation

}i (s, x)=#ij (x)(s) }j (s, x) for all i, j # I, x # Wij and s # G.

(5.2)

To make notation easier we think of (:�X $, u�X 1) as the family of
actions (:x�$x, ux�1)x # X , and we identify Ai�K with (A�X C0(X, K))Wi

$Ai �Wi
C0(Wi , K). Then (by committing a criminal abuse of notation) we

denote the restriction of (:�X $, u�X 1) to Ai�K by (:i�$i, ui�1). By
assumption there exists a strictly measurable map +: G� UM(A�K) which
implements an exterior equivalence between (;�id, v�1) and (:�X$,u�X1),
and we denote by +i the restriction of + to Ai�K. Since on each Wi the
map wi : G � UM(C0(Wi , K)) implements an exterior equivalence between
$i and the trivial action on C0(Wi , K), we can combine this with + i in
order to obtain exterior equivalences _i between (;i� id, vi �1) and
(:i� id, ui �1) given by

_i (s, x)=+i (s, x)(1�wi (s, x)), (s, x) # G_Wi . (5.3)

At this point we have two exterior equivalences between (;i� id, vi�1)
and (:i � id, ui�1), namely _i and }i �1. But then s [ * i (s)=(} i (s)�1)*
_i (s) is an exterior equivalence for (: i�1, ui �1) with itself. Thus,
Remark 5.2(b) implies that *i takes values in ZUM(Ai�K) and satisfies
*i (st)=* i (s)(:i� id)s (*i (t)). It follows from Remark 5.2(c) that there
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exists a strongly measurable map *� i: G � ZUM(Ai) such that *i (s)=
*� i(s)�1 for all s # G, and which satisfies *� i (st)=*� i (s) : i

s(*�
i (t)) for all s, t # G.

Therefore, *� i is an exterior equivalence between (:i, ui) and itself. Thus,

}~ i (s)=}i (s) *� i (s) for all s # G

defines a new exterior equivalence between (; i, vi) and (:i, u i). Since
+i (s, x)=+ j (s, x) if x # W ij , we get

}~ i (s, x) }~ j (s, x)*�1=} i (s, x) *� i (s, x) *� j (s, x)* } j (s, x)*�1

=(}i (s, x)�1) *i (s, x) * j (s, x)* (} j (s, x)*�1)

which, by (5.3), is

=_i (s, x) _ j (s, x)*=+i (s, x)(1�w i (s, x))(1�w j (s, x)*) + j (s, x)*

=+i (s, x)(1�wi (s, x) w j (s, x)*) + j (s, x)*

=#ij (x)(s) + i (s, x) + j (s, x)*=#ij (x)(s)�1.

Thus we see that the }~ i (x, s)=#ij (x)(s) }~ j (x, s) for all i, j # I and x # Wij .
Thus we can replace }i by }~ i so that (5.2) holds. This proves the claim.

We now identify (A <;, v G)Wi
and (A <:, u G)Wi

with A i <; i, v i G and
Ai <: i, ui G as in Remark 4.2, and we let j i

A= j Wi
A and j i

G= j Wi
G denote the

natural embeddings of Ai and G in M(A <:i, ui ). Then it follows from
Remark 4.4 that

8i := j i
A < ( j i

A b (} i)) } j i
G : Ai <; i, v i G � Ai <:i, ui G

is indeed a C0(Wi)-linear and G� ab-equivariant isomorphism for all i # I.
Moreover, for all x # Wij and d # A <;, v G we get (again using Remark 4.2)

8 j (d )(x)=( j x
A < ( j x

A b } j ( } , x)) } j x
G )(d(x))

=( j x
A < #ij (x)&1 } ( j x

A b }i ( } , x)) } j x
G )(d(x))

=(:x, ux)7
#ij (x) (( j x

A < ( j x
A b }i ( } , x)) } j x

G)(d(x)))

=(:x, ux)7
#ij (x) (8i (d )(x)).

Thus the 8i satisfy equation (5.1) which completes the proof. K

Corrolary 5.4. Let (:, u) be a twisted C0(X )-linear action of G on A
and let $: G � Aut(C0(X, K)) be locally unitary. Let q: Z � X be a princi-
pal G� ab-bundle corresponding to `($). Then there is a C0(X )-linear and
G� ab-equivariant isomorphism between (A�X C0(X, K)) <:� X $, u�X 1 G and
Z V (A <:, u G)�K.
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Proof. First recall that there exists a C0(X )-linear and G� ab-equivariant
isomorphism between (A <:, u G)�K and (A�K) <:� id, u�1 G, and it
follows from Proposition 3.12 that this isomorphism induces a C0(X )-linear
and G� ab-equivariant isomorphism between ZV (A<:, uG)�K and ZV ((A�K)
<:� id, u�1 G) (with respect to the G� ab-actions Z V (:, u)7� id and
Z V ((:� id, u�1)7)). Since (:�X $, u�X 1) is locally exterior equivalent
to (:� id, u�1) we can apply Theorem 5.3 and the result follows. K

As a consequence of Theorem 5.3, we get a general description of crossed
products by locally unitary actions.

Theorem 5.5. Let A # CR(X ) and let :: G � Aut(A) be locally
unitary. Let q: Z � X be a principal G� ab-bundle corresponding to `(:),
and let +: G� ab � Aut(C*(G)) denote the dual action of G� ab on C*(G)=
C <id G. Then (A <: G, G� ab , :̂) is isomorphic to the C0(X )-system (A�X (Z_G� ab

C*(G)), G� ab , id�X Ind +).

Proof. Since C0(X, K) is stable, we can choose a locally unitary action
$: G � Aut(C0(X, K)) such that `(:)=`($). Then it follows from [7,
Lemma 3.5] and Remark 5.2 that :� id is exterior equivalent to id�X $
and that : is locally exterior equivalent to id. Thus, Theorem 5.3 implies
that (A <: G, G� ab , :̂) is isomorphic to (Z V (A <id G), G� ab , Z V id@). But
(A <id G, G� ab , id@) is C0(X )-isomorphic to (A�max C*(G), G� ab , id�+), and
the latter may be written as (A�X (C0(X, C*(G)), G� ab , id�X +). But then
we can apply Remark 3.4(c) and Proposition 3.12 to see that (A <: G, G� ab , :̂)
is C0(X )-isomorphic to (A�X (Z_G� ab

C*(G)), G� ab , id�X Ind +). K

Remark 5.6. (a) Suppose that A # CR(X ), :: G � Aut(A) is locally
unitary and q: Z � X is a G� ab-principal bundle corresponding to `(:). If
either A or C*(G) is nuclear (in particular, if A is type I or G is amenable),
then Prim(A <: G) is isomorphic to Prim(A) _X (Z_G� ab

Prim(C*(G))) as a
topological bundle over X with group G� ab . This follows at once from
Theorem 5.5 together with Remark 2.5 and Proposition 3.2. In particular,
if Prim(A) is Hausdorff (so that Prim(A)=X ), then Prim(A <: G) is
isomorphic to Z_G� ab

Prim(C*(G)) as a topological bundle over X with
group G� ab .

(b) If in addition, A is of type I, then (A <: G) is isomorphic to
A� _X (Z_G� ab

G� ) as a topological bundle over X with group G� ab . In
particular, if A� is Hausdorff (so that A� =X ), then (A <: G)7 is isomorphic
to Z_G� ab

G� as a topological bundle over X with group G� ab . Thus we get a
complete bundle theoretic description of (A <: G) in terms of the Phillips�
Raeburn obstruction `(:). Of course, if G is abelian, this coincides with the
description given by Phillips and Raeburn in [21].
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6. CROSSED PRODUCTS BY LOCALLY INNER ACTIONS OF
SMOOTH GROUPS

In addition to our separability proviso, we shall want some additional
assumptions and notations to be in effect throughout this section.

Standing Assumptions. We assume that G is a smooth second countable
locally compact group such that Gab is compactly generated. We fix a
representation group

e � C � H � G � e,

and identify C with H2(G, T)7. Therefore, we may assume that the trans-
gression map tg: C� =H2(G, T) � H2(G, T) is the identity map [7, Remark 4.4].
We let _ # Z2(G, H2(G, T)7) be the corresponding cocycle in Moore cohomol-
ogy. When convenient, we will view _ as an element of Z2(G, C(H2(G, T), T)).
Finally, X will be a second countable locally compact space, and A # CR(X ). As
in previous sections, we will identify A�K and A�X C0(X, K).

Under these assumptions we were able to extend some results of Packer
[16] and give a classification of the exterior equivalence classes LIG(A) of
locally inner actions of G on A in terms of the cohomology groups
H1(X, G� ab) and H2(G, T) [7, Theorem 6.3]. As a special case, it is useful to
note that it follows from the argument in [28, Corollary 2.2] that if A has
continuous trace, then the locally inner actions of G on A coincide with the
C0(X )-linear actions on A. In particular, LIG(C0(X, K)) coincides with
the abelian group EG(X ) of exterior equivalence classes of C0(X )-linear
actions of G on C0(X, K). The group operation in EG(X ) is given by
[#] } [$] :=[#�X $] [7, Section 5].

In this section, we want to use our classification of locally inner actions
to describe the C0(X )-bundle structures of the crossed products A <: G in
terms of C*(H ). To do this we have to recall the basic ingredients of our
classification theory.

If [:] # LIG(A), then [:] determines a continuous map .: : X � H2(G, T)
such that the action :x : G � Aut(Ax) is implemented by an .:(x)-homo-
morphism vx : G � UM(Ax) (compare with Definition 4.5). Now let
_ # Z2(G, C(H2(G, T), T)) be the cocycle as in our standing assumptions.
Then we can pull back _ to a cocycle .:*(_) # Z2(G, C(X, T)) given by

.:*(_)(s, t)(x)=_(s, t)(.:(x)).

By [9, Proposition 3.1], there exists an inner action #: G � Aut(C0(X, K))
which is implemented by a .:*(_)-homomorphism v: G � UM(C0(X, K)).
If [#o] denotes the inverse of [#] in EG(X ), then :�X #o is locally unitary
and, therefore, we obtain a class `H(:) :=`(:� X#o) # H1(X, G� ab) which
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determines the exterior equivalence class of :�X #o (compare with the
discussion in the previous section). It follows from [7, Theorem 6.3] that
[:] [ `H(:)�.: defines an injection

8H : LIG(A) � H1(X, G� ab)�C(X, H 2(G, T)).

Furthermore, 8 is a bijection whenever A is stable. (When A=C0(X, K),
the map 8H : EG(X ) � H 1(X, G� ab)�C(X, H2(G, T)) is an isomorphism of
abelian groups [7, Theorem 5.4].)

Definition 6.1 ([7, Theorem 5.4 and Lemma 6.1]). Let

.: # C(X, H2(G, T)) and `H(:) # H1(X, G� ab)

be as above. Then we say that .: : X � H2(G, T) is the Mackey obstruction
map for : and we say that `H(:) is the Phillips�Raeburn obstruction of :
with respect to H.

Remark 6.2. (a) Notice that the class of the cocycle _ in
H2(G, C(H 2(G, T), T)) in our standing assumptions depends on the choice
of the representation group H. This implies that in general, the action #
constructed above, and therefore the class `H(:) # H1(X, G� ab), depends on
the choice of H. However, the class of _ is uniquely determined by the
choice of H, which implies that the class of .:*(_~ ) in H 2(G, C(X, T)) and
hence the exterior equivalence class of # is also uniquely determined by H
(compare with Remark 4.8).

(b) If $: G � Aut(C0(X, K)) is a locally unitary action with `($)=
`H(:) :=`(:�X #o), then it follows from the above constructions and the
classification of locally inner actions via H1(X, G� ab), that :�#o is exterior
equivalent to idA�X $ as actions on A�K. Further, since [#o] is the
inverse of [#] in EG(X ), it follows that #o�X # is exterior equivalent to the
trivial action on C0(X, K). Hence we see that :� idK is exterior equiv-
alent to both idA�X $�X # and idA�X #�X $.

The main idea in our description of crossed products by locally inner
actions is to use the group C*-algebra C*(H ) as a universal bundle over
the locally compact space H2(G, T) with fibres isomorphic to the twisted
group algebras C*(G, |), [|] # H2(G, T). The fact that a representation
group H of G does provide a bundle over H2(G, T) with fibres C*(G, |)
was first observed by Packer and Raeburn in [18, Section 1].

More generally, let e � N � L � G � e be any locally compact central
extension of G by an abelian group N. Let iL : L � UM(C*(L)) denote the
canonical map and let ,: C*(N ) � M(C*(L)) denote the integrated form
of the restriction of iL to N. Since, by assumption, N is central in L it
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follows that , takes image in ZM(C*(L)). Thus, if we identify C*(N ) with
C0(N� ) via the Gelfand transform, we see that C*(L) has a canonical struc-
ture as a C0(N� )-algebra. In order to see that the fibres are exactly what we
want, it is convenient to write C*(L) as a central twisted crossed product
as in the following lemma. Note that for any abelian locally compact group
N, we may view N as a closed subgroup of C(N� , T) by identifying N with
the Pontryagin dual of N� .

Lemma 6.3. Let e � N � L � G � e be a second countable central exten-
sion of G by the abelian group N, and let _ # Z2(G, N )�Z2(G, C(N� , T)) be
given by

_(s, t)(/)=/(c(s) c(t) c(st)&1)

for some Borel section c: G � L satisfying c(eN ) = e. Let , : C0 (N� ) �
ZM(C*(L)) denote the canonical map described above and let v: G �
UM(C*(L)) be given by v(s)=iL(c(s)). Then the following assertions are
true:

(a) (,, v) is a covariant homomorphism of the twisted system
(C0(N� ), G, id, _) whose integrated form , < v is a C0(N� )-isomorphism from
C*(G, N� , _) onto C*(L).

(b) For each / # N� , the fibre C*(L)/ is isomorphic to the twisted group
algebra C*(G, tg(/)).

(c) If +: Gab � Aut(C*(L)) is given via restriction of the dual action
of L� ab to the closed subgroup G� ab of L� ab , then , < v intertwines _̂ and +.

(d) If G is amenable, then C*(L) is a continuous C0(N� )-bundle.

Proof. Part (a) of is a very special case of [17, Theorem 4.1], and can
also be deduced from [17, Proposition 5.1] using the decomposition of
group algebras by Green's twisted crossed products. Parts (b) and (d)
follow from [19, Theorem 1.2], and (c) follows from the definitions of v
and the dual actions.

Remark 6.4 (cf., [19, Section 1]). Let G, H and _ be as in our standing
assumptions. Since the representation group is a central extension of G by
C and since C� has been identified with H2(G, T), it follows immediately
from the lemma that C*(H) is a C0(H2(G, T))-algebra which is C0(H2(G, T))-
linearly and G� ab-equivariantly isomorphic to C*(G, H2(G, T), _). The fibres
C*(H)[|] are isomorphic to C*(G, |) for each [|] # H2(G, T), and, if G is
amenable, then C*(H ) is a continuous C0(H2(G, T))-bundle.

Recall that if A is a C0(X )-algebra, B is a C0(Y )-algebra and f : X � Y
is a continuous map, then A becomes a C0(Y )-algebra via composition
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with f. Thus we can form the balanced tensor product A�f B :=A�Y B
which becomes a C0(X )-algebra via composition with the natural map
iA : A � M(A�f B). Therefore, for any C0(X )-algebra A we have

A�X f *B=A�X (C0(X )�f B)$(A�X C0(X ))�f B$A�f B, (6.1)

where f *B is the usual pull-back C0(X )�f B (Remark 2.5). Moreover, if
;: G � Aut(B) is a C0(Y )-linear action of a group G on B, then we obtain
a C0(X )-linear action id�f ; (resp., f *;) of G on A�f B (resp., f *B), and
the isomorphisms in Eq. (6.1) are C0(X )-linear and G-equivariant.

Lemma 6.5. Let f : X � Y be a continuous map between the second
countable locally compact spaces X and Y, and let u # Z2(G, C(Y, T)). Let
f *(u) # Z2(G, C(X, T)) be defined by f *(u)(s, t)(x)=u(s, t)( f (x)). Then
there exists a C0(X )-linear and G� ab-equivariant isomorphism between
C*(G, X, f *(u)) and f *(C*(G, Y, u)).

Proof. Let 8: C0(X )�Y C0(Y ) � C0(X ) denote the isomorphism given
on elementary tensors by 8(h�Y g)(x)=h(x) g( f (x)). Then 8(1�Y u(s, t))(x)
=u(s, t)( f(x))= f *(u)(s, t), which implies that 8 transforms the twisted action
(id�Y id, 1�u) to (id, f *(u)). Thus Proposition 4.3 implies that

C*(G, X, f *(u))=C0(X ) <id, f*(u) G$(C0(X )�Y C0(Y )) <id�Y id, 1�Y u G

$C0(X )�Y (C0(Y ) < id, u G)= f *(C*(G, Y, u)).

Each of the above isomorphisms is C0(X )-linear and G� ab-equivariant; the
first because 8 is clearly C0(X )-linear and the second due to Proposition 4.3.

K

We are now prepared to state our main result.

Theorem 6.6. Let A, G and H be as in our standing assumptions and let
:: G � Aut(A) be a locally inner action. Let .: # C(X, H2(G, T)) be the
Mackey obstruction map for : and let q: Z � X be a principal G� ab-bundle
corresponding to the Phillips�Raeburn obstruction `H(:) # H1(X, G� ab). Then
there exists a C0(X )-linear and G� ab-equivariant isomorphism between A <: G
and Z V (A�f C*(H )), where f : X � H2(G, T) is defined by f (x)=.:(x)&1

for all x # X.

Proof. Let _ # Z2(G, C(H2(G, T), T)) be as in our standing assump-
tions, and let .:*(_) # Z2(G, C(X, T)) denote the pull-back of _ via .: .
Choose a .:*(_)-homomorphism v: G � UM(C0(X, K)) and let #: G �
Aut(C0(X, K)) denote the inner action implented by v. Further let
$: G � Aut(C0(X, K)) be a locally unitary action such that `($)=`(:).
Then it follows from Remark 6.2 that :� idK and idA�X #�X $ are
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exterior equivalent as actions on A�K. The discussion following Definition
4.5 implies that v implements an exterior equivalence between #=(#, 1) and
the twisted action (idC0(X, K) , .:*(_)) . If we identify C0(X, K) and C0(X )
�X C0(X, K) and view f *(_) as taking values in UM(C0(X )), then # is
exterior equivalent to (idC0 (X)�X idC0(X, K) , f *(_)�X 1). If we let f� *(_) be
the cocyle taking values in UM(A) corresponding to 1�X f *(_) via the
identification of A with A�X C0(X ), then we conclude that the action
:� idK is exterior equivalent to the twisted action (idA�X $, f� *(_))

We claim that : is locally exterior equivalent to the twisted action
(idA , f *(_)). To see this let x # X and choose an open neighborhood W
of x such that :W : G � Aut(AW) is inner. Then there exists a cocycle
u # Z2(G, C(W, T)) and a u-homomorphism w: G � UM(AW) such that
:W=Ad w, and w implements an exterior equivalence between :W and
(idA , u� ). We want to show that there exists a possibly smaller neighborhood
W1 of x such that the restrictions of u� and f *(_) to W1 are cohomologous, or,
equivalently, such that the product u } f *(_) restricted to W1 is cohomologous
to the trivial cocycle. This would imply the claim since the twisted actions
(idA , u� ) and (idA , f *(_)) would then be exterior equivalent when restricted
to AW1

. Since evaluation of [u( y)] # H 2(G, T) of u at a given point y # W
must coincide with .:( y) (since both correspond to the same inner action
on the fibre Ay), and since [ f *(_)( y)]=.:( y)&1, it follows that (u } f *(_))( y)
is cohomologous to the trivial cocycle for every y # W, hence u } f *(_) is
pointwise trivial. Thus, by Rosenberg's theorem [28, Theorem 2.1], it
follows that u } f *(_) is locally trivial, which is precisely what we want.

Since :� id is exterior equivalent to (idA�X $, f� *(_)�1) we can apply
Theorem 5.3 to obtain a C0(X )-linear and G� ab-equivariant isomorphism
between A <: G and Z V (A <id, f� *(_) G). But A < id, f� *(_) G is C0(X )-linearly
and G� ab-equivariantly isomorphic to A�X C*(G, X, f *(_)) by Proposition
4.3 (since A <id, f� *(_) G$(C0(X)�X A) <id�X id, f *(_)�X 1G). Finally, it follows
from Remark 6.4 and Lemma 6.5 that C*(G, X, f *(_)) is C0(X )-linearly
and G� ab-equivariantly isomorphic to f *(C*(H )). Since A�f C*(H )=
A�X f *(C*(H )), this completes the proof. K

Remark 6.7. (a) Note that our theorem applies to all C0(X )-linear
actions of a smooth group G (with Gab compactly generated) on a separable
continuous trace algebra A with spectrum X.

(b) Since A�f C*(H ) is isomorphic to A�X f *(C*(H )), since
Z V (A�X f *(C*(H )) is isomorphic to A�X (Z V f *(C*(H ))) by Proposi-
tion 3.12, and since all the isomorphisms are C0(X )-linear and G� ab-
equivariant, we see that the crossed product A <: G is obtained via the
iteration of the following basic bundle operations: First take the pull-back
f *(C*(H )) of the universal bundle C*(H ) via the continuous map f =.: :
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G � H2(G, T). Then construct the G-fibre product Z V f *(C*(H )). Finally
take the fibre product (i.e., the balanced tensor product) of Z V f *(C*(H ))
with A.

(c) If A is type I, then this bundle-theoretic description of A <: G
gives a bundle theoretic description of the spectrum (A <: G)7 : it is
isomorphic (as a topological bundle with group G� ab) to A� _X (Z V ( f *H� )),
and if A� =X we get (A <: G)=Z*( f *H� ). If A is nuclear (non-type I), we
obtain a similar description of Prim(A <: G).

We close this section with some corollaries of Theorem 6.6 for certain special
cases. For example, combining Theorem 6.6 with Lemma 3.8 immediately
yields the following corollary. Note that H1(X, G� ab) is always trivial if Gab is a
vector group, or if X is contractible (cf., e.g., [10, Corollary 4.10.3]).

Corrolary 6.8. Suppose that H1(X, G� ab) is trivial, and let A, G and H
be as in our general assumptions. Then A <: G is isomorphic to A�X f *(C*(H))
for any locally inner action :: G � Aut(A), where f (x)=.:(x)&1 for x # X.

So in the case where H1(X, G� ab) is trivial we get a description of A <: G
by pulling back the universal bundle C*(H ) via f and then taking the fibre
product with A.

Another interesting situation occurs when .: is constant. If A has
continuous trace, such systems were called pointwise projective unitary
in [6]. Here the class `(:) does not depend on the choice of the representa-
tion group H; if [|] # H2(G, T) is the constant value of .: , then the
pull-back of _ via .: would always give a cocycle cohomologous to the
cocycle .:*(|) defined by .:*(|)(s, t)(x)=|(s, t).

Corrolary 6.9. Let G be smooth, A # CR(X ), and let :: G � Aut(A) be
a locally inner action of G on A so that there is a class [|] # H2(G, T) with
.:(x)=[|] for all x # X. Let q: Z � X be a principal bundle corresponding
to `(:). Then A <: G is C0(X )-linearly and G� ab-equivariantly isomorphic to
A�X (Z_G� ab

C*(G, |� )). Moreover, if A is type I, then (A <: G) is
isomorphic to A� _X (Z_G� ab

G� |� ), where G� |� denotes the set of equivalence
classes of irreducible |� -representations of G.

Proof. If H is any representation group of G as in our standing assump-
tions, then since f (x)=.:(x)&1, it is easily seen that f *(C*(H ))=
C0(X, C*(G, |� )). Thus the result follows from Theorem 6.6 and Proposi-
tion 3.12. K

Note that the above result also holds true under the weaker assumption
that : is locally projective unitary in the sense that there exists an action
;: G � Aut(K) with Mackey obstruction [|� ] # H2(G, T) such that :�;:
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G � Aut(A�K) is locally unitary (compare with [6, p. 38]). The proof is
similar to the proof of Theorem 5.5 and we omit the details.

7. SOME APPLICATIONS TO ACTIONS OF Rn

As an application of our results, we want to consider locally inner actions
of Rn on C*-algebras A with Hausdorff spectrum X. (Since A is assumed to be
separable, it is necessarily type I if its spectrum is Hausdorff.) When A has
continuous-trace, this is equivalent to requiring that (A, Rn, :) is a
C0(X )-system. A representation group H for Rn was explicitly constructed
in [7, Example 4.7]. H is a simply connected and connected two-step nilpotent
Lie group (in fact it is the universal two-step nilpotent group with n gener-
ators), and by [7, Proposition 4.8] it is unique up to isomorphism. Notice
that in case n=2, H is just the real Heisenberg group of dimension three.
Since H1(X, R� n) is trivial for all second countable locally compact spaces
X, the following is a consequence of Corollary 6.8.

Theorem 7.1. Let A be a separable type I C*-algebra with Hausdorff
spectrum X and let :: Rn � Aut(A) be a locally inner action of Rn on A. Let
.: : X � H2(Rn, T) denote the Mackey obstruction map and let f (x)=.:(x)&1

for x # X. Then A <: Rn is C0(X )-linearly and R� n-equivariantly isomorphic to
A� X f *(C*(H )) and (A <: Rn) is isomorphic to f *(H� ) as a topological bundle
over X with group R� n.

We want to use our result to obtain a more detailed description of A <: Rn

and its spectrum. Recall that if G is an abelian group and | # Z2(G, T), then
the symmetry group 7| of | is defined as 7| :=[s # G: |(s, t)=|(t, s) for all
t # G], and 7| only depends on the cohomology class [|] # H2(G, T). If
G=Rn then any cocycle of G is cohomologous to a cocycle of the form |(s, t)
=eiJ(s, t), where J is a skew symmetric form on Rn. It follows that the
symmetry group equals the radical of J, so that 7| is actually a vector
subgroup of Rn. The symmetry groups play an important rôle in the
representation theory of two-step nilpotent groups and crossed products by
abelian groups (see for instance [2, 6, 5]). For example, if A is a separable
(type I) C*-algebra with Hausdorff spectrum A� =X and if :: G � Aut(A)
is a C0(X )-linear action of the second countable abelian group G on A,
then each fibre Prim(Ax <:x G) of Prim(A <: G) over x # X is G� -equiv-
ariantly homeomorphic to 7� x , where 7x denotes the symmetry group of
the Mackey-obstruction .:(x) (see [9, Theorem 1.1]).

Thus, if we view Prim(A <: G) as a topological bundle over X with group G� ,
then there is a nice description of the fibres. The problem is to get the global
picture of the bundle. When G=Rn, we will deduce a description from the
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following fact, which was observed by Baggett and Packer in [2, Remark 2.5],
and which can be deduced from Kirillov theory for nilpotent Lie groups.

Proposition 7.2 (cf, [2]). Let H be a connected and simply connected
two-step nilpotent Lie group with center Z and quotient G=H�Z. Let tg: Z�
� H2(G, T) denote the transgression map and let 7/ denote the symmetry
group of tg(/) for all / # Z� . Then the topological bundle H� over Z� with group
G� is isomorphic to the quotient space (G� _Z� )�t, where t denotes the equiv-
alence relation

(+, /)t(+$, /$) � /=/$ and +� +$ # 7 =
/ ,

and where (G� _Z� )�t is equipped with the canonical structure as a topological
bundle over X with group G� .

Combining this and Theorem 7.1 we get:

Corrolary 7.3. Let :: Rn � Aut(A) be a locally inner action of Rn on
a separable (type I) C*-algebra with Hausdorff spectrum A� =X. For each
x # X let 7x denote the symmetry group of .:(x) # H2(G, T). Then (A <:R

n)7

is isomorphic to (R� n_X )�t as a topological bundle over X with group R� n,
where t is the equivalence relation

(+, x)t(+$, x$) � x=x$ and +� +$ # 7=
x .

Proof. Let H be the representation group of Rn. Since H is a connected
and simply connected two-step nilpotent Lie group with center H 2(Rn, T),
it follows from Proposition 7.2 that H� is isomorphic (as a bundle) to
(R� n_H2(Rn, T))�t. Moreover, by Theorem 7.1 we know that (A <: Rn) is
isomorphic to f *H� $f *((R� n_H 2(Rn, T))�t). Since f (x)=.:(x)&1 and
the symmetry groups of [|] and [|]&1 coincide for all [|] # H 2(G, T),
it is follows that [+, x] [ (x, [+, f (x)]) is an isomorphism between
(R� n_X )�t and f *((R� n_H2(Rn, T))�t). K

The previous result can fail for an arbitrary second countable compactly
generated abelian group G; we know from the work of Phillips�Raeburn
and Rosenberg that if :: G � Aut(A) is any C0(X )-linear action of G on a
continuous trace algebra A with spectrum X such that the Mackey obstruc-
tion map vanishes (i.e., : is pointwise unitary) that (A <: G) can be any
principal G� -bundle, while (G� _X )�t is just the trivial bundle G� _X in this
case. On the other hand, it would be interesting to see whether the result
remains to be true if we replace G� _X with an appropriate principal G� -bundle
q: Z � X. That is, it would be interesting to know under what circumstances
the following question has a positive answer (see also [2, Remark 2.5]).
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Open Question. Let :: G � Aut(A) be a C0(X )-linear action of the
second countable compactly generated abelian group G on the continuous
trace algebra A with spectrum X. Does there always exist a principal
G� -bundle q: Z � X such that Prim(A <: G) is isomorphic to Z�t as a
bundle over X? Here t denotes the equivalence relation

ztz$ � q(z)=q(z$) and z� z$ # 7=
x ,

where z� z$ denotes the unique element / of G� which satisfies / } z=z$.

It is straightforward to check that Z�t is just the twisted bundle
Z*(G� _X )�t. Clearly, the above problem is strongly related to the problem
of describing the primitive ideal space of the group C*-algebra of a two-step
nilpotent group H with center Z and quotient H�Z=G as a quotient space
of a principal G� -bundle over Z� , as considered by Baggett and Packer in [2]. On
the one hand, the problem for two-step nilpotent groups is a special case of the
above, since by the Packer�Raeburn stabilization trick [17, Corollary 3.7], we
can write C*(H)�K as a crossed product C0(Z� , K) <; G, for some C0(Z� )-
linear action ;. On the other hand, if the result is true for the representation
group H of G, which is always two-step nilpotent, then as in the proof of
Corollary 7.3, one could get the same result for all C0(X )-linear actions of
G on separable continuous trace algebras with spectrum X (or, more generally,
for locally inner actions on type I algebras with Hausdorff spectrum X ).

We want to illustrate this for the special case G=Z2, where the (unique)
representation group is the discrete Heisenberg group of rank three.

Theorem 7.4. Let :: Z2 � Aut(A) be a C0(X )-linear action of Z2 on the
separable continuous trace algebra A with spectrum X. Let `(:) be the Phillips�
Raeburn obstruction of : as defined in Definition 6.1, and let q: Z � X denote
the corresponding principal T2=Z� 2-bundle. Then Prim(A <: Z2) is isomorphic
to Z�t as a topological bundle over X with group T2.

Proof. Recall that the discrete Heisenberg group H is the set Z3 with
multiplication given by (n1 , m1 , l1)(n2 , m2 , l2)=(n1+n2 , m1+m2 , l1+
l2+n1m2). The center C of H is given by [(0, 0, l ): l # Z]. For each
t # [0, 1) let /t(l )=ei2?tl denote the character corresponding to t under the
identification of C� with T=R�Z. Using the section c: Z2 � H; c(n, m)=
(n, m, 0), we easily compute that the cocycle |t # Z2(Z2, T) corresponding
to /t # C� is given by

|t((n1 , m1), (n2 , m2))=ei2?tn1m2.

If t is irrational, then the symmetry group 7t=7|t
is trivial, and if t=p�q,

where p and q have no common factors, then it is not hard to show that
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7t=qZ_qZ�Z2. Thus it follows that |t is identically 1 when restricted to
the symmetry groups, and we can use [2, Theorem 2.3] to deduce that
Prim(C*(H )) is isomorphic to (Z� 2_C� )�t as a bundle over C� , where t

is the usual equivalence relation.
By Theorem 6.6 we have A <: Z2=Z V ( f *C*(H )), where f (x) is the

inverse of the Mackey obstruction [|x] for all x # X. Hence

Prim(A <: Z2)=Z V ( f * Prim(C*(H)))=Z V ( f *((Z� 2_C� )�t)))

=Z V ((Z� 2_X )�t)=Z�t. K

Finally, we point out that our results are also helpful to the investigation
of the structure of continuous trace subquotients of the crossed products
A <: Rn, where : is a C0(X )-linear action on the continuous trace algebra
A with spectrum X. For this we first recall the following result due to the
first author:

Proposition 7.5 ([5, Theorem 6.3.3]). Let A be a separable continuous-
trace algebra with spectrum A� =X and let :: Rn � Aut(A) be a C0(X )-linear
action. Further, let dim : X � Z+ be defined by letting dim(x) be the vector
space dimension of 7x . Then A <: Rn has continuous trace if and only if
dim: X � Z+ is continuous.

More generally, if :: Rn � Aut(A) is any C0(X )-linear action of Rn on
a continuous trace algebra A with spectrum X, then there exists a finite
decomposition series of ideals

[0]=I0�I1� } } } �Il=A <: Rn,

with l � (n�2) + 1 and all subquotients Ik �Ik & 1 , 1 � k � l, given by
crossed products with continuous trace as in the proposition above
([5, Theorem 6.3.3]). We are now going to use our results together with a
recent result of Lipsman and Rosenberg to compute explicitly the Dixmier�
Douady invariant of these subquotients.

Theorem 7.6. Let :: Rn � Aut(A) be a C0(X )-linear action of Rn on
the separable continuous-trace C*-algebra A with spectrum X, such that
dim: X � Z+ is continuous. Let Y :=(A <: Rn)7 and let p: Y � X denote the
canonical projection. Then $(A <: Rn)= p*$(A), where $(A <: Rn) # H3(Y, Z)
and $(A) # H3(X, Z) denote the Dixmier�Douady invariants of A and A <: Rn,
respectively.
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Proof. First, since dim(x)�n for all x, X decomposes into a finite
disjoint union of open subsets such that dim is constant on each subset.
Therefore, we may assume that dim is constant with value k, say, on all of
X. Let H be the representation group of Rn and let

Dk :=[[|] # H 2(Rn, T): dim (7[|])=k].

Then it follows from [5, Theorem 6.3.3] that Dk is a locally closed (and
hence locally compact) subset of H2(Rn, T), and that the restriction
C*(H )k :=C*(H )Dk

of C*(H ) to Dk is a continuous trace subquotient
of C*(H ). Thus, by Lipsman's and Rosenberg's result [13, Theorem 3.4],
the Dixmier�Douady invariant of C*(H )k is trivial and C*(H )k is stably
isomorphic to C0(H� k , K), where H� k denotes the restriction of the topological
bundle H� over H2(Rn, T) to Dk .

Since we already assumed that dim has constant value k on all of X,
it follows that .: , and hence also the map f : X � H2(Rn, T) given by
f (x)=.:(x)&1 takes values in Dk . Thus by Theorem 7.1 we get

(A <: Rn)�K$(A�X f *(C*(H )))�K$A�X C0( f *H� k , K).

Now if p: f *H� k � X denotes the projection, we have

A�X C0( f *H� k , K)$p*A�f *H� k
C0( f *H� k , K)$p*A�K.

Thus, [24, Proposition 1.4] implies that $(A <: Rn)=$( p*A)= p*($(A)).

Remark 7.7. Similar to the proof of [13, Lemma 3.3] one can show
that if :: Rn � Aut(A) is a C0(X )-linear action of Rn on the separable
continuous trace algebra A with spectrum X, then any continuous trace
subquotient B of A <: Rn decomposes into a finite direct sum of ideals such
that all these ideals are subquotients of some ADk

<: Rn, where Dk is a the
locally closed subset of X such that the dimension function is constantly
equal to k on Dk . From this and the above result it follows that if $(A) is
trivial, then any continuous trace subquotient of A <: Rn has also trivial
Dixmier�Douady invariant. We omit the details.
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