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ABSTRACT. Let G be a second countable, locally compact groupoid with Haar
system, and let A be a bundle of C*-algebras defined over the unit space of
G on which G acts continuously. We determine conditions under which the
associated crossed product C*(G;.A) is a continuous trace C*-algebra.

1. INTRODUCTION

Throughout this note, G will denote a second countable, locally compact group-
oid with Haar system {A"}, cqw. Also, we shall fix a bundld] A of (separable)
C*-algebras over the unit space G(?) of G. We shall write p for the projection of A
onto G(©). We shall assume that there is a continuous action, denoted o, of G on A.
This means the following: First of all, ¢ must be a homomorphism from G into the
isomorphism groupoid of A, Iso(.A), so that, in particular, o, : A(s(y)) — A(r(v))
is a C*-isomorphism for each v € G. Second, let s*(A) and r*(A) be the bundles
on G obtained by pulling back A via s and r, so that s*(A) = {(v,a) | a € A(s(7))}
and similarly for 7*(.A). Then o determines a bundle map o* : s*(A) — r*(A) by
the formula 0*(y,a) = (v, 04(a)). The continuity assumption that we make is that
for each continuous section f of s*(A), o* o f is a continuous section of r*(.A).

Let C.(G,r*(.A)) denote the space of continuous sections of 7*(.A) with compact
support and, for f,g € C.(G,r*(A)), set

frgly) = / F(n)aa(g(n1y)) X ()

and

) =oy(f(71)).
Then, with respect to these operations and pointwise addition and scalar multipli-
cation, C.(G, r*(A)) becomes a topological x-algebra in the inductive limit topology
to which Renault’s disintegration theorem [I6] applies. The enveloping C*-algebra
of C.(G,r*(A)) is called the crossed product of G acting on A and is denoted
C*(G; A) [16]. The basic problem we study in this note is
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IWe follow [4] for the general theory of Banach- and C*-bundles. However, we adopt the
increasingly popular convention that bundles are to be denoted by calligraphic letters. The fibres
in a given bundle are then denoted by the corresponding roman letter. Thus, if A is a bundle of
C*-algebras, say, over a space X, then the fibre over z € X will be denoted A(z).
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Question 1. Under what circumstances on G and A is C*(G;.A) a continuous
trace C*-algebra?

The first systematic investigation into questions of this type that we know of
is Green’s pioneering study [5]. There, Green deals with the case where G is the
transformation group groupoid obtained by letting a locally compact group H act
on a locally compact Hausdorff space X and where A is the trivial line bundle over
G = X. His principal result asserts that if H acts freely on X, then C*(G;.A)
is continuous trace if and only if the action of H is proper. In this event, in fact,
C*(G; A) is strongly Morita equivalent to Co(X/H).

Another precedent to this investigation is the work of the second two authors in
[10]. Here, the hypothesis is that G is a principal groupoid and the bundle A is
again the trivial line bundle. It was shown that C*(G;.A) = C*(G) has continuous
trace if and only if the action of G on G(©) is proper. In this event, again, C*(G)
is strongly Morita equivalent to Co(G)/G).

The first example where the bundle A is non-trivial was considered by Raeburn
and Rosenberg in [14]. They considered a locally compact group acting on a contin-
uous trace C*-algebra A and showed that if the natural action of G on the spectrum
of A, A, is free and proper, then the cross product C*-algebra A x G has continuous
trace. In [13], Olesen and Raeburn proved a conditioned converse: if the group G
is abelian and acts freely on A, then if A x G is continuous trace, the action of G
on A must be proper. Quite recently, Deicke [2] used non-abelian duality theory to
remove the hypothesis that G is abelian. Thus, the best result in this direction is:
If G acts on A yielding a free action on A, then A x G is continuous trace if and
only if the action of G on Ais proper.

Our objective in this note, Theorem[], is to prove a result that contains all of
these examples as special cases — and much more, as well. It is based on two
hypotheses and some ancillary considerations that we will elaborate. The first
hypothesis is

Hypothesis 1. The C*-algebra Co(G?), A) is continuous trace.

Here, Co(G(®), A) denotes the C*-algebra of continuous sections of the bundle
A that vanish at infinity on G(?). An hypothesis on the bundle A of this nature
is natural and reasonable, in view of the fact that in the trivial case G = G, we
have C*(G; A) = Co(G(©), A). Furthermore, we note that a compact group can act
on an antiliminal C*-algebra in such a way that the crossed product is continuous
trace [17].

To state our second hypothesis, we need a couple of remarks about the spectrum
of Co(G®, A). We shall denote it by X throughout this note. Observe that X
may be expressed as the disjoint union of spectra HueG<0> A(u)A and the natural
projection p from X to G(©) is continuous and open [§], [I2]. The groupoid G acts
on X (using the map p) as follows. If z € X, we shall write z = [r,] in order to
specify a particular irreducible representation in the equivalence class represented
by x. Thus, if X % G denotes the space {(z,7) € X x G | p(z) = r(z)} and if
(z,7) € X * G, then « - v is defined to be [m; 0 0,]. The fact that the action of G
on X is well defined and is continuous is easily checked (as in [I5] Lemma 7.1] for
example). Our second hypothesis is

Hypothesis 2. The action of G on X is free.
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For z € X, we shall write K(z) for the quotient A(p(x))/ ker(w,). Then K(x) is
well defined (i.e., it is independent of the choice of 7,,) and is an elementary C*-
algebra. Hypothesis [[l guarantees that the collection {K(x)},ex may be given the
structure of an elementary C*-algebra bundle over X satisfying Fell’s condition [3|
Proposition 10.5.8]. As a result, we find that Co(G(® | A) is naturally isomorphic
to Co(X, K). The action of G on X induces one on K that we shall use. We find it
preferable to express this in terms of the action groupoid X * G defined as follows.

As aset, X«G := {(z,7) | p(z) = r(v)} and the groupoid operations are defined
by the formulae

(z, @) (za, B) := (z, ) and
(x,oz)71 = (za, a7 t),

(z,a), (z,0) € X x G. Note, in particular, that the unit space of X * G may be
identified with X via: (x,p(z)) «— . Note, too, that the range and source maps
on X * G, denoted 7 and 3§, are given by the equations 7(z,a) = (z,r(a)) and
5(z, @) = (za, s(a)). The groupoid X x G in the product topology is clearly locally
compact, Hausdorff, and separable. It has a Haar system {5\’” }zex given by the
formula A\* = &, x AP(*). Observe that the action of G on X is free (resp. proper)
iff X x G is principal (resp. proper).

The groupoid X * G acts on K via the formula

&(x,'y) (k) = 0—“/(0’) + ker(ﬂ—x)a

where k = a + ker m, lies in K (5(x,~y)). Note that this action is well defined since
Ty © 0y = Tz.. We promote this action of X * G on K to one on X * K := {(z, k) |
ke Kx)}: (z,k) (z,7) = (z- 7’&(;%7)(16))' If the action of G on X is free and
proper, then the action of X * G on X x K is also free and proper. In this case,
we write KX for the quotient space X * /X * G. Then KX is naturally a bundle
of elementary C*-algebras over X/G. In fact, using the methods of Theorem 1.1
of [14], it is easy to see that KX satisfies Fell's condition. Thus, in particular,
Co(X/G,K*) has continuous trace, if G acts on X freely and properly.

With these preliminaries at our disposal, we are able to state the main result of
this paper as

Theorem 1. Under Hypotheses Ol and @, C*(G; A) has continuous trace if and
only if the action of G on X is proper. In this event, C*(G; A) is strongly Morita
equivalent to Co(X/G,KX), where KX is the elementary C*-bundle over X/G,
satisfying Fell’s condition, that was just defined.

2. SUFFICIENCY IN THEOREM [1]

First we reduce the proof of Theorem[Ilto the case when G is a principal groupoid.
This reduction is accomplished with the aid of

Theorem 2. In the notation established above, C*(G;A) is isomorphic to
C*(X xG;K).

Proof. For u € G, identify A(u) with Co(p~"(u),K). Also, set Ceo(G,7*(A)) :=
{f € C(G,r*(A)) | (x,7) — || f(v)(x)] has compact support in X * G}. Recall
that 7*(A) = {(v,a) | a € A(r(7))} and, likewise, 7 (K) = {((x,7),a) | a € K(z)}.
So, in the definition of Cco(G,r*(A)), f(y), which nominally is in A(r(y)), is to
be viewed in Co(p~*(u),K). In particular, f(v)(x) lies in K(x), when p(x) =
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r(y). Now it is straightforward to check that C..(G,r*(A)) is a subalgebra of
C.(G,r*(A)) that is dense in C.(G,r*(A)) in the inductive limit topology. Further,
if we define ¥ : C.(X * G,7(K)) — Cee(G, r*(A)) by the formula

W) = @),

f€C(X xG,7(K)), then VU is an algebra *-homomorphism that is continuous in
the inductive limit topologies on C.(X G, 7*(K)) and C..(G,7*(A)). Hence by Re-
nault’s disintegration theorem [16] Theorem 4.1], ¥ extends to a C*-homomorphism
from C*(X * G; K) into C*(G; A).

The inverse @ : Ceo(G,17%(A)) — Co(X G, 7 (K)) to W is given formally by the
formula

O(f)(x,v) = f(1)(2),

f € Cee(G,1r*(A)); i.e., at the level of C., ® o U and ¥ o ® are the identity maps
on the appropriate algebras. The problem is that a priori ® is not continuous in
the inductive limit topologies. However, ® is manifestly continuous with respect
to the so-called L!-norms on C..(G,7*(A)) and C.(X * G,7*(K)), where for f €
Cee(G,7*(A)), the LI-norm of f is

max{ sup / 170 Laguy X" sup / 1£* ) aw) dv},
ueGO

ueG )

and similarly for C.(X % G,7(K)). Since every representation of one of these
algebras is continuous in the Lf-norm by Renault’s disintegration theorem [I6]
Theorem 4.1], we conclude that ® extends to a C*-homomorphism from C*(G;.A)
to C*(X % G; K) that is the inverse of U. O

On the basis of Theorem @ we may and shall assume from now on that X = G©
and that A(u) is an elementary C*-algebra for every u € G0,

Proof of the sufficiency. If G acts freely and properly on G(©), then G(© is an equiv-
alence between G and the quotient space G /G (viewed as a cotrivial groupoid)
in the sense of [9]. Further, if G x A := {(u,a) | a € A(u)}, then G x A
serves as a bundle of Morita equivalences between A and AS” in the sense of
[7]. (See [16], too.) Indeed, recall that AS"” is the quotient (G(©) % A)/G, where
(r(v),a)-~v = (s(7),05 " (a)). Then the A-valued inner product on G % Ais given
by the formula

<(u’ a)v (ua b)>A =a"b,

while the AS"” valued inner product on G(®) x A is given by the formula
A ((u,a), (u, b)) = [u, ab"],
where [u, ab*| denotes the image of (u,ab*) in AG” | By Corollaire 5.4 of [16],
C*(G;A) is Morita equivalent to  Co(G? /@, AGm)).

This second algebra is a continuous-trace C*-algebra since AG is a bundle of
elementary C*-algebras satisfying Fell’s condition, as we noted earlier. O
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3. NECESSITY IN THEOREM [I]

The proof of the necessity in Theorem [II is modeled on the proofs in [I0] and
[11], which in turn are inspired by ideas in [5]. There are, however, a number of
new difficulties that must be overcome.

For each u € GV, we fix an irreducible representation 7, of A(u) on a Hilbert
space H,. Since each A(u) is elementary, the m,’s are unique up to unitary equiv-
alence. We define L" to be the representation of C*(G;.4) on the Hilbert space
L?(\,) ® H, according to the formula

(1) L)) = / T 0 021 (f(0))E(aY) dA%(a),

where f € C.(G,r*(A)) and £ € L*(\,) ® H,. (Recall that \, is the image
of A" under inversion.) Thus, L" is the representation of C*(G;.A) induced by
the irreducible representation m, viewed as a representation of Co(G(®), A). This
implies, in particular, that replacing 7, by a unitarily equivalent representation does
not affect the unitary equivalence class of L*. The following lemma and corollary
capture the salient features of the L" that we shall use.

Lemma 3. Under the hypothesis that the action of G on G©) is free (and Hypoth-
esis[ll on A), the following assertions hold:
(1) FEach representation L* is irreducible.
(2) L" is unitarily equivalent to LV if and only if u and v lie in the same orbit.
(3) The map u — L™ is continuous.

Proof. The proof follows the lines of the arguments in [I0, Lemma 2.4 and Propo-
sition 2.5]. Only minor changes need to be made to accommodate the presence of
A. The key point is that L* is unitarily equivalent to the representation R* of
C*(G; A) defined by the formula

RU(f)E(y - u) = / T 0 0 (f(v0))E(a~" - u) dA%(a),

f € Ce(G,r*(A)), & € L*([u], pp)) @ Hy, where [u] denotes the orbit of u and py
is the image of A, under the map r|[s~*(u). The fact that the action of G on G(©)
is free (i.e., G is a principal groupoid) implies that 7|s~!(u) is a bijection between
s71(u) and [u]. It is a Borel isomorphism, of course, because of our separability
hypotheses and the fact that r|s~!(u) is continuous.

The value of R" for us lies in the fact that it is evident how to express R" as
the integrated form of a representation of (G, .A) in the sense of [16, Definition 3.4].
The measure class on G is, of course, that determined by K[ and the Hilbert
bundle H is the constant bundle determined by H, over the orbit of u, i.e.,

[ {v}xH,, velu],
H(v) = { 0, otherwise.

Thus, f@ H (v) dpyy is identified with L2([u], ppy) ® H, in the standard fashion.
The groupoid G is represented on H according to the formula

U“/((S(PY)ag)) = (T(V)ag)v

& € Hy, s(y) € [ul], ie, {Uy},ec is just the translation representation, and A is
represented on ‘H according to the formula

a- (’U7§) = (U77Tu o U’Y(a)g)a
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a € A(w), (v,€) € H(v), where 7 is the unique element in G with source v and
range u.

Observe that the Co(G(?), A) acts as multipliers on C*(G;.A) according to the
formula ® - f(v7) = ®(r(v))f(y) for ® € Co(G®, A) and f € C.(G,r*(A)). The
extension R* of R* to the multiplier algebra C*(G;.A) represents Co(G(?), A) on
L?([u], pp)) ® Hy via the equation

RY(®)E(v) = 7y 0 04 (B (0))E(v),

again, where 7y is the unique element in G with source v and range u. It is clear
from this that the weak closure of the algebra R*(Co(G(®), A)) is the full algebra
of decomposable operators on L?([u], ppy) ® Hy. It follows that any projection
that commutes with R*(C*(G;.A)) must be diagonal. On the other hand, it follows
from the definition of the representation of G, {U,},eq, that a diagonal operator
commuting with R*(C*(G; A)) must commute with {U, },eq, and therefore must
be constant a.e. ji,). This proves that R*, and hence L, is irreducible.

If v and v lie in the same orbit, it is clear that translation by the (unique) ~
with source v and range v implements an equivalence between L" and LY. On the
other hand, if u and v lie in different orbits, then L* and LV are disjoint. Indeed,
the representations N, and N, of Co(G(?) obtained by restricting R" and R’ to
Co(G®), viewed as a subalgebra of M(C*(G;.A)), are supported on the disjoint
sets [u] and [v]. Arguing just as we did in the proof of [10, Proposition 2.5], using
[18, Lemma 4.15], we conclude L* and L" are disjoint.

Finally, to see that the map u — L% is continuous, observe that Hypothesis [1]
guarantees that for each point u € G(® we can find a neighborhood V, of u on
which the H,’s can be chosen to be the fibres of a (topological) Hilbert bundle H
and on which we can choose the 7,’s so that for any section ® € Co(G(?), A) that
is supported on V, and any two Cy-sections of H over V,, & and 7, the function
v = (7, (P(v))E(v)|n(v)) g, is continuous. It follows from the continuity of the Haar
system that given such sections & and 7 of H and any two functions g and h in
C.(G), the function v — (LY(f)(g®&)|(h ® 1)) (where the inner products are taken
in L2(\,) ® H,) is continuous for all f € C.(G;7*(.A)). This shows that the map
u +— L™ is continuous. (]

Corollary 4. Assume that G is principal and that A is an elementary C*-bundle
over GO, satisfying Fell’s condition, on which G acts. If C*(G;.A) has continuous
trace, then the map that sends u € GO to the unitary equivalence class of L* defines
a continuous open surjection of G0 onto C*(G; A)" that is constant on G-orbits.
In particular, orbits are closed and G /G is homeomorphic to C*(G; A)".

Proof. The proof is also essentially the same as the proof in [I0), Proposition 2.5].
Here is an outline. Write ¥ for the map uw — [L%]. Then by Lemma B, ¥ is
continuous and constant on G-orbits. Thus ¥ passes to a continuous map on G(©) /G
with the quotient topology (no matter how bad that might be). Since, however,
C*(G, A)/\ is Hausdorff by hypothesis, we conclude that G(?) /G is Hausdorff.
Suppose that L is an irreducible representation of C*(G;.A) and let M be the
representation of Co(G(?)) obtained by extending L to the multiplier algebra of
C*(G; A) and then restricting to Co(G(?)). The kernel J of M is the set of functions
in Cy(G(®) that vanish on a closed set F' in G(°). Then F is easily seen to be
invariant. Indeed, one may do this directly or use the fact that it supports the
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quasi-invariant measure associated to the disintegrated form of L guaranteed by
[16]. Further, since L is irreducible, F' cannot be expressed as the union of two
disjoint, closed, G-invariant sets. Since the quotient map from G(® to G0 /G is
continuous and open, we may apply the lemma on page 222 of [6] to conclude that
F' is an orbit closure. Since we now know that orbits are closed, F' is, in fact, an
orbit. Thus L factors through C*(G|,j;.A). However, G|, is a transitive principal
groupoid. A little reflection, using Theorem 3.1 of [9], reveals that every irreducible
representation of C*(G|,);.A) is unitarily equivalent to L*. O

We now assume the action of G on G(® is not proper and use Lemma 2.6 of
[10] to choose a sequence {y,} C G such that 7, — oo in the sense that {v,}
eventually escapes each compact subset of G, and such that r(v,), s(v,) — z, for
some z € G(©. We shall fix this sequence for the remainder of the proof. We
also choose a relatively compact neighborhood U of z € G(®) and a section g in the
Pedersen ideal of CO(G(O), A) such that g is non-negative, compactly supported, and
satisfies tr(m, (g(u))) = 1 on U. The fact that A satisfies Fell’s condition guarantees
that such choices are possible.

With these ingredients fixed, we want to build a special neighborhood F of z in
G, following the analysis on pages 236-238 of [10]. First observe, as we have above,
that since G is principal, r maps G, bijectively onto [z] while s maps G* bijectively
onto [z], where, recall, [z] denotes the orbit of z. Since [z] is closed by Corollary [4]
while 7 is continuous and open on G, we see that » maps G, homeomorphically onto
[2]. Likewise, s maps G* homeomorphically onto [z]. Also, since G is principal,
multiplication induces a homeomorphism between G, x G* and G|[;). Let N be the
closed support of g, a compact subset of G(°), and set F, := G, Nr~([z] ' N) and
F? := G* Ns71([z] N N), obtaining compact subsets of G, and G*, respectively.
Then we see that if v € G|[,; and if g(s(v)) # 0 and g(r(7)) # 0, then v € F,F*.

According to Lemma 2.7 of [I0], we may select symmetric, conditionally compact
open neighborhoods Wy and Wi of G(© such that W, C Wj. (Recall that a
neighborhood W of G(©) is conditionally compact in case VIV and WV are relatively
compact subsets of G for each relatively compact subset V' in G.) We select such
a pair, as we may, with the additional property that F,F?* C WyzWy. Then from
the preceding paragraph, we see that if v ¢ WyzWy, then either g(s(v)) = 0 or
g(r(+)) = 0.

By construction,

Wl7z\Woz C r_l(G(O)\N).

So we may find relatively compact open neighborhoods Vj and Vi of z in G so that
Vo € Wy, Vo C Vi, and so that
Wh Vi\WoVo C rH(GO\N).
With these V and V4 so chosen, the special open neighborhood F of z in G that
we want is defined to be FE := WyVoWy.
Observe that we have
Wi Vi \E = Wi Vi Wi \WoVoW, C r~1(GO\N).
Set
T 7
gi(7) = g(r(v), ~eWr iwy,
0, v ¢ E.
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Then, since W1771W17\E Cr Y GO\N), g" is a continuous section of r*(A) on
G that vanishes outside FE.

Observe the following containment relations among relatively compact sets: E? =
WOVOWOQVE)WO - W(?VOVVS1 - W0470W04 - W14V1 W14. Hence, we may find a com-
pactly supported function b on G such that 0 < b(y) < 1 for all v, b= 1 on E? and
b =0 off WV;W{. Replacing b by b+b , if necessary, we may assume that b is a
selfadjoint element of the convolution algebra of scalar-valued functions C.(G).

Define F(v) := g(r(7))o~(g(s(7)))b(7y). By our choices of g and b, F belongs to
C.(G,r*(A)), F is selfadjoint and

LU (F)E(y) :Wu(ff;l(g(r(v))))/Wu(ff;l(Q(T(a))))b(w’l)ﬁ(a) dAy ()

for all u by the definition of L* (cf. (@)). Let P, 1 be the projection onto &, 1 :=
L*(G,NE)® H, and let P, 2 be the projection onto the orthocomplement, &, 2 :=
L*(G,\E)® H,. Then, if P, 1€ =&, we see that

LY(F)E(y) = ﬂu(o$1(9(r(7))))/ mu(o5 " (9(r(a))))€(a) dAu (@)

G,NE
= o0 (g' (7)) /G  mo0 (g (@))€ a)dA o)

for all ¥ € G\, N E because b is identically 1 on E?. However, by definitions of E
and g', the equation persists when v € G, \E, yielding 0. Thus, P, 1 commutes
with L*(F'). Moreover, when u = z, these formulas show that L*(F)P, ; = L*(F).

We now want to show that L*(F)P,1 > 0 and we want to analyze the trace,
tr(L*(F)Py,,1). However, when £ is in the range of P, 1, the formula for L*(F)¢
shows that

(L(F)ElE) = //(m 003 (g" (M) 0 05 (9" (@))€(a), E(7)dAu (@)dNu ()
= //(M 005 (g'(@)é(a), mu 0 05 (g" (1))E(Y))dAu () du ()

As for the trace, observe that if K, is defined by the formula
Ku(y,n) =m0y (" (1), (g1 ()

on G, x G, then our calculations show that K, is continuous, positive semidefinite
and supported on (G, N E) x (G, N E), and that

(L(F)PaaélC) = / / W1 EM), CO)) AN (M)A (7).

Consequently, we may use Duflo’s generalization of Mercer’s theorem, [Il Proposi-
tion 3.1.1], and the fact that K,(v,v) = 7, 0 05" (9(r(7)))? to conclude that

te(L*(F)Py.1) = /G im0y () dh(3).

By our choice of g, this expression is continuous in v and when u = z yields the
value tr(L?*(F)).
We will show that there is a positive number a such that

@) IO (F) Py 2)|| = 20
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eventually, where (L*0m)(F )Ps(y,),2)" denotes the positive part of the selfadjoint
operator L*(m)(F )Ps(y,),2- Therefore, eventually

(the largest eigenvalue of LS(V")(F)RQ(%),Q) > 2a.

Assume that we have shown this, and set

0, t<a,
qt) =< 2(t—a), a<t<2a,
t, 2a.

Then ¢(F') is a positive element in the Pedersen ideal of C*(G,.A), and so the
function

u— tr(L*(q(F))) = tr(L*(q(F)) Pu1) + tr(L*(q(F)) Pu.2)

is finite and continuous in u, with value tr(L*(¢(F))) at u = z. (Recall that L*(F) =
L*(F)P, 1 and so L*(q(F)) = L*(q(F))P,,1.) On the other hand, we showed that
L“(F)P, is positive. Since P, 1 commutes with L*(F), L“(F)P,1 = L“(F*)P, 1.
But also we showed that w — tr(L*(F)P,, 1) is continuous at z. Consequently, so
is u — tr(L“(F)P,,1). Since ¢(F) < F*, the function u — tr(L“(q(F))Py,1) is
continuous by Lemma 4.4.2(i) in [3]|, with value tr(L*(q(F))) = tr(L*(¢(F))P.1)
at u = z, also. Therefore

lim tr(L"(¢(F))P,2) = 0.

uU—z

Since the largest eigenvalue of L300 (F )Ps(y,),2 > 2a, the largest eigenvalue of
LS(V")(q(F))PS(%)’Q > 2a also. Consequently,

lim inf tx( L") (q(F)) Py, 2) > 2a.
This contradiction will complete the proof.

We will finish by verifying the asserted inequality (). To this end, choose an
open neighborhood of z in G, V3, that is contained in Vj and choose a conditionally
compact neighborhood Y of G(© such that if v € V, then r maps Yv into U.
Without loss of generality, we may assume that ¥ C Wy. Observe that if v, ¢
WQWWlQ, then for v € Yv,, v ¢ E. Indeed, if v = v/, € ENY~,, then
Y € (V)LE C WEVoW, C WRWWR contrary to assumption. So, since 7(7Vy,)
and s(7y,) are tending to z, while ,, eventually escapes Wfﬁm , we can conclude
that for n sufficiently large, whenever v lies in Y+, then v ¢ E while r(y) and
s(y) lie in U. From now on, we will assume that n is sufficiently large so that these
conditions are satisfied.

Next observe that since for each n, the map v — 7y, 0 05 (g9(r(7))) defines a
continuous family of rank 1 projections on the Hilbert space H,(,, ), we can find a

" such that m(,,) 0 05 (g(r(7))) is the rank 1

Borel family of unit vectors v — vl 5

projection determined by vl.
Let hn(7) = 1y, (7) x vl where 1y, denotes the characteristic function of Y,
Observe that if v, € Y7, then yva™! € Yy,7, 1Y C YWY C WoVoW, = E.
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Consequently, b(ya~!) = 1 and we may calculate to find that if v € Y7y, then
L0 (F)ha (1)

= Tty (05 (g(r (1)) / o) (05 (g(r(@)))b(ya™ ) hn (@) dXy (s, (@)
= V5 A (y,) (V).

Hence (L*Om) (F)hy,|hy) = A
in E(y,.),25 5O

(L5 (F) Pyt y2)  hnlhn) > (L0 (F)Pygy, ) 2hn|hn)
= (LS(’YR)(F)thn) = )‘T(VH)(Y)Q'

T(%L)(Y)Q. However, by our assumption on vy, h, lies

This shows that || (L*()(F)Py(y,)2) " H > Ar(y) (Y) provided n is sufficiently large.
But the continuity of the Haar system implies that liminf A, )(Y") > 0, as n — oo.
This verifies equation (@) and completes the proof of Theorem .
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