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Abstract

We consider a class of proper actions of locally compact groups on imprimitivity bimodules

over C�-algebras which behave like the proper actions on C�-algebras introduced by Rieffel in
1988. We prove that every such action gives rise to a Morita equivalence between a crossed

product and a generalized fixed-point algebra, and in doing so make several innovations which

improve the applicability of Rieffel’s theory. We then show how our construction can be used

to obtain canonical tensor-product decompositions of important Morita equivalences. Our

results show, for example, that the different proofs of the symmetric imprimitivity theorem for

actions on graph algebras yield isomorphic equivalences, and this gives new information about

the amenability of actions on graph algebras.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A Morita equivalence between two C�-algebras A and B is implemented by an
imprimitivity bimodule AXB; which carries the structure necessary to induce Hilbert-
space representations from B to A and back again. There are often several ways of
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constructing these bimodules, and, unsurprisingly, some ways are better for some
things, and others for others. One therefore wants to be able to switch between
different bimodules implementing equivalences between the same algebras.
To illustrate the kind of problems which arise, we consider a situation which

underlies many important equivalences. Suppose we have commuting free and
proper actions of locally compact groups K and H on the left and right of a
locally compact Hausdorff space P: The orbit spaces P=H and K\P are again locally
compact Hausdorff spaces, and carry actions of, respectively, K and H; the
symmetric imprimitivity theorem of Green and Rieffel states that the crossed
products C0ðP=HÞsK and C0ðK\PÞsH are Morita equivalent. In the original
proof of [16], a suitable imprimitivity bimodule Z was constructed by completing
the space CcðPÞ of continuous functions of compact support. It was later shown
in [2] that one could appeal to a previous construction of Green which gives
C0ðP=HÞ–ðC0ðPÞsHÞ and ðC0ðPÞsKÞ–C0ðK\PÞ bimodules X and Y ; form
crossed product bimodules XsK and YsH; and take the internal tensor product
ðXsKÞ#C0ðPÞsðK�HÞðYsHÞ as the desired ðC0ðP=HÞsKÞ–ðC0ðK\PÞsHÞ
imprimitivity bimodule. This latter construction has advantages: for example, it
saves burrowing into the detailed construction of bimodules, allows us to analyze the
effect of extra structure in stages, and makes it easier to prove analogues for reduced
crossed products. On the other hand, we have a concrete bimodule Z; which is much
more convenient for direct calculations. To make the best of both worlds, we need to
prove that

ZDðXsKÞ#C0ðPÞsðK�HÞðYsHÞ ð1:1Þ

as ðC0ðP=HÞsKÞ–ðC0ðK\PÞsHÞ imprimitivity bimodules.
We ran into problems like these in [7], where we found an isomorphism

implementing (1.1) using ad hoc methods; to verify that it worked, we had to do
awful calculations involving quintuple integrals. One goal of the present project was
to find a more systematic way of identifying and verifying such isomorphisms:
our Theorem 3.1 tells us not just that there is an isomorphism, but also how to write
it down.
To make our approach as systematic as possible, we have worked within the

general framework of proper actions of groups on C�-algebras, as developed by
Rieffel in [17], and we have, we hope, made significant improvements to that theory.
In particular, we have extended Rieffel’s main Morita equivalence in [17, Corollary
1.7] to cover proper actions on imprimitivity bimodules. This extension turned out to
be anything but routine, and we are optimistic that some of the technical tools we
have developed will help in constructing Morita equivalences for more general
integrable actions, where substantial technical problems arise (see [18, Section 6]).
Because Rieffel’s framework involves reduced crossed products rather than full ones,
our main results are about reduced crossed products. We intend to apply our
techniques to full crossed products elsewhere. We emphasize that our notion of
proper action is related to Rieffel’s original version in [17] rather than the integrable
actions studied recently in [5,10,18].
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We begin in Section 2 by discussing proper actions on imprimitivity bimodules.
We start with a Morita equivalence ðX ;G; gÞ between two C�-dynamical systems
ðA;G; aÞ and ðB;G; bÞ: The action g is proper if there is a g-invariant pre-
imprimitivity bimodule A0ðX0ÞB0

CX with properties like those of the dense

subalgebra used by Rieffel. There are several ways in which the technical hypotheses
could be phrased; we have chosen one which reduces to that of [17] when

AXB ¼ BBB; bears a striking formal resemblance to it, and yields the desired Morita

equivalence X0 between Asa;rG and a generalized fixed-point algebra Bb when the

action is also saturated (Theorem 2.16). The proof of Theorem 2.16, though, is quite
different from its analogue in [17]. For AXB ¼ BBB; Rieffel proved that the

ðBsb;rGÞ-valued inner product has the required properties, that Bb acts as

adjointable operators on the resulting left Hilbert module BsrGZ; and then that the

map Bb-LðBsrG
ZÞ is isometric [17, p. 151]. We were not able to extend this last

part, so we had to substantially reshape the whole argument, starting with the right
inner product rather than the left. In retrospect, this is probably a good thing. The
process we have gone through is similar to the program discussed by Rieffel in his
later paper [18, Section 6], and since we have been able to sidestep some of the
general problems he raises in our setting, our arguments may be useful in the more
general context. Indeed, we have already used some of these ideas to find new insight
on how the symmetric imprimitivity theorem relates to reduced crossed products
(see [6]).
In Section 3, we prove our general decomposition theorem. The key idea is

that one obtains a decomposition like (1.1) whenever one has a Morita equivalence
for the linking algebra LðXÞ of another Morita equivalence; the key Lemma 3.2
is a one-sided version of a result from [3]. The main work in Section 3 is to show
that if the action g of G on X is proper and saturated, then so are the associated
actions on B and X"B; we then apply Lemma 3.2 to a bimodule over LðXsGÞ
arising from an application of Theorem 2.16 to X"B: The result is a tensor-product

decomposition for the bimodule X0 of Theorem 2.16, which in the situation
of the symmetric imprimitivity theorem turns out to be the desired
isomorphism (1.1).
In the last section, we apply Theorem 3.1 to crossed products of graph algebras.

This gives new information about the symmetric imprimitivity theorem for graph
algebras, and allows us to settle a question left open in [11].

1.1. Background on integration

Let G be a locally compact group, A a C�-algebra and f :G-A a continuous

function such that
R

G
jj f ðsÞjj dsoN: Minor modifications to the construction

of [15, Lemma C.3], for example, show that f has an integral
R

G
f ðsÞ ds; and that

bounded linear maps and multipliers pull through the integral. By viewing a Hilbert
module X as a corner in its linking algebra LðXÞ; we can extend this integral and its
properties to functions f :G-X such that

R
G
jj f ðsÞjj dsoN:

A. an Huef et al. / Journal of Functional Analysis 200 (2003) 401–428 403



2. Proper actions on imprimitivity bimodules

Throughout this section, ðX ;G; gÞ will be a Morita equivalence between two
dynamical systems ðA;G; aÞ and ðB;G; bÞ; since there is only one locally compact
group G involved, we will drop it from our notation.

Definition 2.1. The action g of G on AXB is proper if there are an invariant subspace
X0 of X and invariant �-subalgebras A0 of A and B0 of B; such that A0ðX0ÞB0

is a pre-

imprimitivity bimodule with completion AXB; and such that

(1) for every x; yAX0; the functions s/DðsÞ�1=2 A/x; gsðyÞS and s/ A/x; gsðyÞS
are in L1ðG;AÞ;

(2) for every bAB0 and xAX0; the functions s/gsðxÞ � b and s/DðsÞ�1=2gsðxÞ � b

are in L1ðG;X Þ;
(3) for every x; yAX0; there is a multiplier /x; ySD in MðB0Þb such that

z �/x; ySDAX0 for all zAX0; andZ
G

bbsð/x; ySBÞ ds ¼ b/x; ySD for all bAB0: ð2:1Þ

That the integral in (2.1) exists follows from

jjbbsð/x; ySBÞjj ¼ jj/gsðyÞ; gsðxÞ � b�SBjjpjjgsðxÞ � b�jj jjyjj

and item (2) of the definition.

Remark 2.2. (1) There are some subtleties to this definition. First, asserting
that A0ðX0ÞB0

is a pre-imprimitivity bimodule is an efficient way of saying

many things; for example, it implies that x � bAX0 whenever xAX0 and
bAB0; and A/x; ySAA0 whenever x; yAX0: Second, saying that X is the
completion of X0 is meant to include that A0 is dense in A and B0 is
dense in B: Third, the D adorning the inner product does not yet exist: it will be
defined in Proposition 2.3 below, and proved there that /�; �SD is a D-valued inner
product.
(2) Note that the action b of G on BBB is proper with respect to B0ðB0ÞB0

if

and only if the action b on B is proper with respect to B0 in the sense of
[17, Definition 1.2].
(3) Definition 2.1 is not symmetric: asserting that g is proper is not the same as

asserting that the action *g on the dual equivalence BX̃A is proper.

We will prove that if the Morita equivalence ðA;aÞðX ; gÞðB;bÞ is proper with respect
to A0ðX0ÞB0

; then X0 completes to a Morita equivalence between an ideal E of

Asa;rG and a generalized fixed-point algebra DCMðB0Þb of B:
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Proposition 2.3. Let D be the closure of D0 :¼ spf/x; ySD : x; yAX0g in MðBÞ; where

/�; �SD is defined by Definition 2.1(3). Then D is a C�-algebra, and /�; �SD is a

D-valued inner product on X0:

Proof. Let x; yAX0 and dAD0: Then dAMðB0Þb; and so for every bAB0; we have

b/x; ySD d ¼
Z

G

bbtð/x; ySBÞ dt

� �
d ¼

Z
G

bbtð/x; ySB dÞ dt

¼
Z

G

bbtð/x; y � dSBÞ dt ¼ b/x; y � dSD;

which implies /x; ySD d ¼ /x; y � dSD; since we know from Definition 2.1(3) that
y � dAX0; this implies that D0 is an algebra. Similarly, we have

b/y; xSD ¼
Z

G

bbsð/y; xSBÞ ds ¼
Z

G

bbsð/x; ySBÞ� ds

¼
Z

G

bsð/x; ySBÞb� ds

� ��
¼ ð/x; ySD b�Þ� ¼ b/x; yS�

D;

which implies that /y; xSD ¼ ð/x; ySDÞ�: This proves both that D0 is a �-algebra, so
its closure D is a C�-algebra, and that /�; �SD has the algebraic properties of an inner
product.
To show positivity of /�; �SD; let p be a faithful nondegenerate representation of B;

and note that

/x; xSDX03/x; xSDX0 in MðBÞ

3 ð %pð/x; xSDÞh j hÞX0 for all hAHp:

Since B0 is dense in B and p is nondegenerate, it is enough to show this when
h ¼ pðbÞk for bAB0 and kAHp: Well,

ð %pð/x; xSDÞpðbÞk j pðbÞkÞ ¼ ðpðb�/x; xSD bÞk j kÞ

¼ p
Z

G

b�bsð/x; xSBÞb ds

� �
k

���� k

� �

¼
Z

G

ðpðb�bsð/x; xSBÞbÞk j kÞ ds;

which is positive because each b�bsð/x; xSBÞb is positive. Because b�bsð/x; xSBÞb is
continuous in s; this calculation also shows that

/x; xSD ¼ 0)bsð/x; xSBÞ ¼ 0 for all s)x ¼ 0;

so /�; �SD is definite. &
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Remark 2.4. To prove that an element d of a C�-algebra D is positive, it is
usually enough to take a faithful representation m of D and prove that mðdÞX0
as an operator on Hm: For the above argument, however, it is essential that
the representation m of D0 is the restriction of (an extension of) a representation
p of B: In general, not every representation m of D0 arises this way, and
choosing m ¼ %pjD0 means that we are proving dX0 in the C�-algebra obtained

by completing D0 in the norm of the C�-algebra MðBÞ: This observation is crucial
in [6].

Lemma 2.5. There are homomorphisms m of A into LððX0ÞDÞ and U of G into

ULððX0ÞDÞ such that mðaÞx ¼ a � x; Usx¼DðsÞ1=2gsðxÞ and mðasðaÞÞ ¼ UsmðaÞU�
s

for aAA0, xAX0.

Remark 2.6. The homomorphism g :G-LðXBÞ is not unitary: it changes the inner
product by bs: So it is important here that we are talking about the D-valued inner
product on X0; and we have had to introduce the modular function to ensure that Us

preserves this inner product. We are not asserting that ðm;UÞ is a covariant
representation in the usual sense: neither nondegeneracy of m nor continuity of U

seems obvious. We shall return to this point in Lemma 2.17 below. Meanwhile, we
observe that these two problems also arise in the construction of a Morita
equivalence for more general integrable actions [18, Section 6].

Proof of Lemma 2.5. We first show that /a � x; a � xSDpjjajj2/x; xSD as elements of
D; so that mðaÞ : x/a � x is bounded on ðX0ÞD: To do this, we again choose a faithful
nondegenerate representation p of B; and it is enough to prove that

ð %pðjjajj2/x; xSD �/a � x; a � xSDÞpðbÞh j pðbÞhÞX0 ð2:2Þ

for all bAB0 and hAHp: We know that

jjajj2/x; xSB �/a � x; a � xSB

is positive in B; so

ðpðb�bsðjjajj2/x; xSB �/a � x; a � xSBÞbÞh j hÞX0

for all b; h and s: Integrating this over G and pulling the integral inside the inner
product gives

p
Z

G

b�bsðjjajj2/x; xSB �/a � x; a � xSBÞb ds

� �
h

���� h

� �
X0;

which is (2.2). We deduce that mðaÞ is bounded. Since a� is just another element of
A0; mða�Þ is also bounded. We can therefore show that mðaÞ is adjointable with
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adjoint mða�Þ by checking that

b/a � x; ySD ¼ b/x; a� � ySD for bAB0;

and this follows easily from /a � x; ySB ¼ /x; a� � ySB: Thus mðaÞALððX0ÞDÞ; and it
is easy to check that m is a homomorphism of C�-algebras.
To verify that Us is unitary, we let bAB0; x; yAX0 and calculate

b/Usx;UsySD ¼
Z

G

bbtð/DðsÞ1=2gsðxÞ;DðsÞ1=2gsðyÞSBÞ dt

¼
Z

G

bbtsð/x; ySBÞDðsÞ dt

¼
Z

G

bbrð/x; ySBÞ dr

¼ b/x; ySD:

This calculation shows that Us is bounded with jjUsjj ¼ 1; as is Us�1 ; and that

b/Usx; ySD ¼ b/Usx;UsðUs�1yÞSD ¼ b/x;Us�1ySD;

so Us is adjointable with U�
s ¼ Us�1 : Since we trivially have UsUt ¼ Ust on X0; U is a

homomorphism into ULððX0ÞDÞ; as claimed.
For xAX0; the covariance condition mðasðaÞÞx ¼ UsmðaÞU�

s x follows easily from

the formulas and the identity U�
s ¼ Us�1 ; and it then extends by continuity to

xAðX0ÞD: &

As we observed in Remark 2.6, we do not know whether ðm;UÞ is always a
covariant representation inLððX0ÞDÞ ¼ MðKððX0ÞDÞÞ; but we can make it into one
by representingLððX0ÞDÞ on Hilbert space. As usual, we start with a nondegenerate
faithful representation p of B: Then %p is faithful on D; and hence X0-Ind

L
D %p is a

faithful representation of LððX0ÞDÞ on X0#D Hp: We write ðn;VÞ for the pair
ððX0-IndLD %pÞ 3m; ðX0-IndLD %pÞ 3UÞ; so that

nðaÞðx#D hÞ ¼ ða � xÞ#D h and Vsðx#D hÞ ¼ DðsÞ1=2gsðxÞ#D h

for xAX0 and aAA0: To see that ðn;VÞ is covariant, we relate it to the right-regular
representation ððX -IndA

B pÞB; rÞ of ðA; aÞ on L2ðG; x#B HpÞ; which is given by

ðX -IndA
B pÞBðaÞðxÞðsÞ ¼ X -IndA

B pðasðaÞÞðxðsÞÞ and

rtðxÞðsÞ ¼ DðtÞ1=2xðstÞ:

The next lemma is similar to [6, Theorem 1].
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Lemma 2.7. Let p be a faithful nondegenerate representation of B on Hp: There is an

isometry W of X0#D Hp into L2ðG; x#B HpÞ; such that

Wðx#D pðbÞhÞðsÞ ¼ gsðxÞ#B pðbÞh for xAX0; bAB0;

and then Wðn;VÞW � is the restriction of the regular representation ððX -IndA
B pÞB; rÞ

to the range of W. In particular, ðn;VÞ is a covariant representation of ðA; aÞ:

Proof. We begin by noting that if xAX0 and bAB0; then

Z
G

jjgsðxÞ � bjj2 ds ¼
Z

G

jj/gsðxÞ � b; gsðxÞ � bSBjj ds

¼
Z

G

jjb�bsð/x; xSBÞbjj ds

p jjbjj
Z

G

jjb�bsð/x;xSBÞjj ds

¼ jjbjj
Z

G

jj/gsðxÞ � b; gsðxÞSBjj ds

p jjbjj jjxjj
Z

G

jjgsðxÞ � bjj ds;

which is finite by Definition 2.1(2). Since jjgsðxÞ#B pðbÞhjjpjjgsðxÞ � bjj jjhjj; it
follows that W maps X0}pðB0ÞHp into L2ðG; x#B HpÞ: To see that W is
isometric, we fix two vectors x#D pðbÞh and y#D pðcÞk in X0}pðB0ÞHp; and
compute

ðWðx#D pðbÞhÞ j Wðy#D pðcÞkÞÞ

¼
Z

G

ðWðx#D pðbÞhÞðsÞ j Wðy#D pðcÞkÞðsÞÞ ds

¼
Z

G

ðgsðxÞ#B pðbÞh j gsðyÞ#B pðcÞkÞ ds

¼
Z

G

ðpðc�/gsðyÞ; gsðxÞSB bÞh j kÞ ds

¼ p
Z

G

c�bsð/y; xSBÞb ds

� �
h

���� k

� �
¼ ðpð/y; xSDÞpðbÞh j pðcÞkÞ

¼ ðx#D pðbÞh j y#D pðcÞkÞ:

Thus, W extends to an isometry on X0#D Hp ¼ X0}pðB0ÞHp:

A. an Huef et al. / Journal of Functional Analysis 200 (2003) 401–428408



Now for x#D hAX0}pðB0ÞHp; we have

ðWnðaÞðx#D hÞÞðsÞ ¼Wða � x#D hÞðsÞ ¼ gsða � xÞ#B h

¼ asðaÞ � gsðxÞ#B h ¼ X -IndA
B pðasðaÞÞðWðx#D hÞðsÞÞ

¼ ððX -IndA
B pÞBðaÞWðx#D hÞÞðsÞ;

which proves the first intertwining relation. To check that WVsðx#D hÞ ¼
rsWðx#D hÞ is even easier. &

Remark 2.8. It is crucial in this argument that we start with a representation p
of B; and the lemma suggests that this choice is one of the reasons that the
reduced crossed product is appropriate on the left-hand side. The importance

of this issue is emphasized by Example 2.1 of [17], where B ¼ KðL2ðGÞÞ and
D0 is contained in the subalgebra rðCcðGÞÞ of MðBÞ ¼ BðL2ðGÞÞ: Any representa-
tion U of G gives a representation of CcðGÞDrðCcðGÞÞ; which extends to a
representation of KðL2ðGÞÞDC0ðGÞsG precisely when there is a compatible
representation of C0ðGÞ; by the imprimitivity theorem, this happens precisely
when U is induced from a representation of feg; and hence is a regular
representation of G:

Lemma 2.9. For x; yAX0; define E/x; yS:G-A0 by

E/x; ySðsÞ ¼ DðsÞ�1=2 A/x; gsðyÞS;

which belongs to L1ðG;AÞ by Definition 2.1(1). Let yx;y be the compact operator on

ðX0ÞD defined by yx;yz ¼ x �/y; zSD: Then

nsVðE/x; ySÞ ¼ X0-Ind
L
D %pðyx;yÞ: ð2:3Þ

Proof. For zAX0; hAHp and cAB0; we have

nsVðE/x; ySÞðz#D pðcÞhÞ

¼
Z

G

nðDðsÞ�1=2 A/x; gsðyÞSÞDðsÞ1=2ðgsðzÞ#D pðcÞhÞ ds

¼
Z

G

ðA/x; gsðyÞS� gsðzÞÞ#D pðcÞh ds

¼
Z

G

ðx �/gsðyÞ; gsðzÞSBÞ#D pðcÞh ds

¼
Z

G

ðx � bsð/y; zSBÞÞ#D pðcÞh ds: ð2:4Þ
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At this stage we want to whip the ds past#D pðcÞh: then the integral would be that
defining x �/y; zSD ¼ yx;yðzÞ; and we would be done. Unfortunately, the resulting
integral converges in the norm coming from the B-valued inner product, so we have
to work to pull it through a balanced tensor product defined using the D-valued
inner product.
The ðX0#D HpÞ-valued integral in (2.4) is characterized by its inner products with

vectors of the form w#D pðbÞk for bAB0:Z
G

ðx � bsð/y; zSBÞÞ#D pðcÞh ds j w#D pðbÞk
� �

¼
Z

G

ððx � bsð/y; zSBÞÞ#D pðcÞh j w#D pðbÞkÞ ds

¼
Z

G

ðpðb�/w; x � bsð/y; zSBÞSDcÞh j kÞ ds

¼
Z

G

p
Z

G

b�btð/w; x � bsð/y; zSBÞSBÞc dt

� �
h

���� k

� �
ds;

which, because the inner integral is that of a B-valued function, is just

¼
Z

G

Z
G

ðpðb�btð/w; x � bsð/y; zSBÞSBÞcÞh j kÞ dt ds

¼
Z

G

Z
G

ðpðb�btð/w; xSBÞbtsð/y; zSBÞcÞh j kÞ dt ds: ð2:5Þ

The two elements b and c of B0 are there to ensure that the integrand in this double
integral is integrable on G � G; so that we can apply Fubini’s Theorem to continue:

ð2:5Þ ¼
Z

G

Z
G

ðpðb�btð/w; xSBÞbtsð/y; zSBÞcÞh j kÞ ds dt

¼
Z

G

Z
G

ðpðb�btð/w; xSBbsð/y; zSBÞcÞÞh j kÞ ds dt

¼
Z

G

Z
G

ðpðb�btð/w; xSBbsð/y; zSBÞcÞÞh j kÞ dt ds: ð2:6Þ

We can now go backwards through the previous analysis to see that

ð2:6Þ ¼ ðyx;yðzÞ#D pðcÞh j w#D pðbÞkÞ

¼ ðX0-IndLD %pðyx;yÞðz#D pðcÞhÞ j w#D pðbÞkÞ;

and the result follows. &

To get our Morita equivalence, we consider

E0 :¼ spfE/x; yS: x; yAX0gCL1ðG;AÞ:
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Because we know from Lemma 2.7 that the representation ðn;VÞ is equivalent to a
subrepresentation of the regular representation, nsV extends to a representation
of the reduced crossed product Asa;rG: Eq. (2.3) therefore implies that nsV

carries the closure E of E0 in Asa;rG into the image X0-Ind
L
D %pðKððX0ÞDÞÞ of the

imprimitivity algebra

KððX0ÞDÞ :¼ spfyx;y : x; yAX0gCLððX0ÞDÞ:

We would like to prove next that nsV is isometric for the reduced norm on E0: If
we could do this, we could deduce that nsV is an isometric linear isomorphism of E

onto KððX0ÞDÞ; this would imply both that E is a C�-algebra (because K is, and

nsV is a �-algebra homomorphism on Asa;rG), and that ðX0ÞD is an E–D

imprimitivity bimodule.
The program of the previous paragraph works without any problems when

the isometry W of Lemma 2.7 maps X0#D Hp onto L2ðG; x#B HpÞ; or,
equivalently, when

spfs/gsðxÞ#D pðbÞh : xAX0; bAB0; hAHpg ð2:7Þ

is dense in L2ðG; x#B HpÞ: To make this independent of the choice of Hilbert space,
we could ask instead that the corresponding map of X0#D B into L2ðG;XBÞ be an
isomorphism of Hilbert B-modules. In the examples where X0; A0 and B0 consist of
functions of compact support, this seems remarkably similar to asking that the maps

s/ E/x; ySðsÞ span a dense subspace of L1ðG;AÞ: So what we have proved at this
stage is already potentially interesting:

Proposition 2.10. Suppose that the functions fs/gsðxÞ � b : xAX0; bAB0g span a dense

subspace of L2ðG;XBÞ; and that the space E0 is dense in L1ðG;AÞ: Then ðX0ÞD is an

Asa;rG–D imprimitivity bimodule.

Unfortunately, for arbitrary proper actions we do not see how to prove directly
that nsV is isometric on E: So to establish the Morita equivalence of E and D; we
prove that X0 is an E0–D0 pre-imprimitivity bimodule. Since we already know that
X0 is a pre-Hilbert D-module, it remains to show that E0 is a �-algebra which acts by
bounded operators on ðX0ÞD according to the formula E/x; yS� z ¼ x �/y; zSD; that

E/�; �Sis then a pre-inner product with respect to the completion E of E0 (that is, the
closure E of E0 in the reduced norm), and that D acts by bounded operators
on EðX0Þ:

Lemma 2.11. The pairing E/�; �Son X0 satisfies

E/x; yS� E/z;wS¼ E/x �/y; zSD;wS and E/x; yS� ¼ E/y; xS;

where the product and adjoint are those of L1ðG;AÞCAsa;rG:
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Proof. For the first identity, we compute

E/x; yS� E/z;wSðsÞ ¼
Z

G

DðrÞ�1=2 A/x; grðyÞSarðDðr�1sÞ�1=2

A/z; gr�1sðwÞSÞ dr

¼
Z

G
A/x; grðyÞS A/grðzÞ; gsðwÞSdr DðsÞ�1=2

¼
Z

G
A/ A/x; grðyÞS� grðzÞ; gsðwÞSdr DðsÞ�1=2

¼
A

Z
G

x �/grðyÞ; grðzÞSB dr; gsðwÞ
� �

DðsÞ�1=2

¼ A/x �/y; zSD; gsðwÞSDðsÞ�1=2

¼ E/x �/y; zSD;wSðsÞ:

The second identity follows from a simple algebraic manipulation. &

Proposition 2.12. The set E0 :¼ spfE/x; yS: x; yAX0g is a �-subalgebra of L1ðG;AÞ;
and there is a left action of E0 on ðX0ÞD such that

E/x; yS� z ¼ x �/y; zSD and

/e � x; e � xSDpjjejj2/x; xSD as elements of D

for x; y; zAX0 and eAE0:

Proof. Because x �/y; zSD belongs to X0; the formulas in Lemma 2.11 show that E0
is a �-subalgebra of L1ðG;AÞ:We know from Lemma 2.9 that the �-homomorphism
f :¼ ðIndLD %pÞ�13ðnsVÞ restricts to a �-homomorphism of E0 into LððX0ÞDÞ
such that fðE/x; ySÞ ¼ yx;y; and f gives the required action of E0 on ðX0ÞD: e � z

is by definition fðeÞz: For any bounded operator TALððX0ÞDÞ; we have
/Tx;TxSDpjjT jj2/x; xSD; because Ind

L
D %p is isometric and nsV is decreasing for

the reduced norm, we have jjfðeÞjjpjjejj; and the inequality follows. &

Proposition 2.13. The pairing E/�; �Sis an inner product with values in the C�-algebra

E :¼ E0; and

E/x � d; x � dSpjjdjj2 E/x; xS as elements of the C�-algebra E: ð2:8Þ

Proof. We know from Lemma 2.11 that

E/x; yS� E/z;wS¼ E/x �/y; zSD;wS;
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since the left action of E0 satisfies E/x; yS� z ¼ x �/y; zSD; it follows that
e � E/z;wS¼ E/e � z;wS for all eAE0: Lemma 2.11 also shows that E/x; yS�

¼ E/y; xS; so E/�; �Shas the required algebraic properties.
To see positivity, we fix a representation r of A onH; and consider the left-regular

representation ð *r; lÞ on L2ðG;HÞ given by

ð *rðaÞxÞðsÞ ¼ rðas�1ðaÞÞxðsÞ and ðltxÞðsÞ ¼ lðt�1sÞ:

Now we let xAX0 and consider xAL2ðG;HÞ of the form s/f ðsÞh for fACcðGÞþ:
Then, we have

ð *rslðE/x; xSÞx j xÞ

¼
Z

G

*rðE/x; xSðsÞÞlsx ds j x
� �

¼
Z

G

Z
G

*rðDðsÞ�1=2A/x; gsðxÞSlsx ds

�
ðtÞ

� ���� xðtÞ
� �

dt

¼
Z

G

Z
G

ðrðat�1ðA/x; gsðxÞSÞÞðxðs�1tÞÞ j xðtÞÞDðsÞ�1=2 ds dt

¼
Z

G

Z
G

ðrðA/gt�1ðxÞf ðtÞ; gt�1sðxÞf ðs�1tÞSÞh j hÞDðsÞ�1=2 ds dt:

Since the function t/gt�1ðxÞf ðtÞ belongs to CcðG;XÞ; we can apply Fubini’s
Theorem, and then substitute r ¼ s�1t to reduce this toZ

G

Z
G

ðrðA/gt�1ðxÞf ðtÞDðtÞ
�1=2; gr�1ðxÞf ðrÞDðrÞ

�1=2SÞh j hÞ dr dt;

which has the form ðrðA/y; ySÞh j hÞ for the element y of X defined by

y :¼
Z

G

gt�1ðxÞf ðtÞDðtÞ�1=2 dt;

and hence is positive. Since x of the given form span a dense subspace of L2ðG;HÞ;
this proves that *rslðE/x; xSÞ is positive.
Thus E/�; �S is a pre-inner product; it is definite because jjE/x; xSjjAsrG

¼ 0
implies E/x; xSðsÞ ¼ 0 for all sAG: If now dADCMðBÞb; then gsðx � dÞ ¼ gsðxÞ �
bsðdÞ ¼ gsðxÞ � d; so we can repeat the calculation of the previous paragraph to
see that

ð *rslðjjdjj2E/x; xS� E/x � d; x � dSÞx j xÞ

¼ ðrðjjdjj2A/y; yS� A/y � d; y � dSÞh j hÞ;

which is positive because MðBÞ acts as bounded operators on AX : This
proves (2.8). &
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Remark 2.14. As in [17], E is an ideal in Asa;rG: To see this, one observes first that

the dense subalgebra A0 of A satisfies A0E0CE0 and second that s/atðeðt�1sÞÞ is in
E0 for every eAE0 and tAG: So if f is in the dense subalgebra CcðG;A0Þ of Asa;rG;

then the integrand of f � eðsÞ ¼
R

G
f ðtÞatðeðt�1sÞÞ dt is in E0 for each t; and hence the

integral takes values in E0 ¼ E: Since E0 is a �-subalgebra this implies that E is a
two-sided ideal.

Definition 2.15. Following [17], we say that a proper action g on AXB is saturated

with respect to X0 if E ¼ Asa;rG:

To sum up, we have now proved:

Theorem 2.16. Suppose the Morita equivalence ðA;aÞðX ; gÞðB;bÞ is proper in the sense

of Definition 2.1 with respect to the pre-imprimitivity bimodule A0ðX0ÞB0
: Then the

completion of X0 in the norm jjxjj :¼ jj/x; xSDjj1=2 implements a Morita equivalence

between the ideal

E :¼ spfs/DðsÞ�1=2 A/x; gsðyÞS: x; yAX0gCAsa;rG

and the C�-algebra

D :¼ spf/x; ySD : x; yAX0gCMðBÞ:

In particular, if the action g is saturated, then ðX0ÞD implements a Morita equivalence

between Asa;rG and D:

The general theory produces a pre-imprimitivity bimodule on which only the
spans of the ranges of the inner products act. In the main examples, there are
algebras of continuous functions of compact support which ought to act too, and it
is important that the formulas extend. The following lemma gives conditions under
which the extended left action is given by the expected formula.

Lemma 2.17. Let f :G-A be a continuous function such that both s/jj f ðsÞjj
and s/jj f ðsÞjjDðsÞ1=2 are integrable. Suppose that xAX0 and that the integralR

G
f ðsÞ � gsðxÞDðsÞ1=2 ds; which converges in XB because of our second integrability

hypothesis on f, belongs to X0: Let p be a representation of B and let ðn;VÞ be the

covariant representation discussed in Lemma 2.7; note that the first integrability

hypothesis on f implies that nsVðf Þ makes sense as a bounded operator on

X0#D Hp: ThenZ
G

f ðsÞ � gsðxÞDðsÞ1=2 ds

� �
#D h ¼ nsVðf Þðx#D hÞ for hAHp:
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In other words, the left action of fAL1ðG;AÞ on xAðX0ÞD is given by the integral

formula

f � x ¼
Z

G

f ðsÞ � gsðxÞDðsÞ
1=2

ds:

Proof. To make things easier on the eye, we write gðsÞ :¼ f ðsÞ � gsðxÞDðsÞ1=2: We fix
y#D pðbÞkAX0#DpðB0ÞHp; and compute:

ðnsVðf Þðx#D hÞ y#D pðbÞkÞj

¼
Z

G

nðf ðsÞÞVsðx#D hÞ ds

����� y#D pðbÞk
 !

¼
Z

G

ðgðsÞ#D hÞ ds

����� y#D pðbÞk
 !

¼
Z

G

ðgðsÞ#D h j y#D pðbÞkÞ ds

¼
Z

G

ðpðb�/y; gðsÞSDÞh j kÞ ds

¼
Z

G

p
Z

G

b�btð/y; gðsÞSBÞ dt

� �
h j k

� �
ds

¼
Z

G

Z
G

ðpðb�btð/y; gðsÞSBÞÞh j kÞ dt ds; ð2:9Þ

using standard properties of B-valued integrals. On the other hand,

Z
G

gðsÞ ds

� �
#D h j y#D pðbÞk

� �

¼ p b� y;

Z
G

gðsÞ ds

� �
D

� �
h j k

� �

¼ p
Z

G

b�bt y;

Z
G

gðsÞ ds

� �
B

� �
dt

� �
h j k

� �

¼
Z

G

p b�bt y;

Z
G

gðsÞ ds

� �
B

� �� �
h j k

� �
dt:

Because the inside integral converges in XB; we can pull it through the B-valued inner
product with y; now we have an ordinary B-valued integral, and we can pull the
automorphisms and representation through to recover

Z
G

Z
G

ðpðb�btð/y; gðsÞSBÞÞh j kÞ ds dt: ð2:10Þ
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But now we are talking about ordinary scalar-valued integrals; the element b is a sum
of elements of the form /w; zSB; and for such an element the integrand

ðpðb�btð/y; gðsÞSBÞÞh j kÞ ¼ ðpð/A/gtðyÞ;wS� z; gtðgðsÞÞSBÞÞh j kÞ

is integrable on G � G: Thus, an application of Fubini’s Theorem identifies (2.10)
with (2.9) and we are done. &

3. Tensor-product decompositions of imprimitivity bimodules

Suppose the Morita equivalence ðA;aÞðX ; gÞðB;bÞ is proper with respect to the pre-
imprimitivity module A0ðX0ÞB0

; so that Theorem 2.16 gives a Morita equivalence ðX0Þ
between an ideal in Asa;rG and a generalized fixed-point algebra D for ðB; bÞ: We
now want to show that ðB; bÞ is itself proper in Rieffel’s sense [17, Definition 1.2],
and to relate ðX0Þ to other Morita equivalences involving Rieffel’s generalized fixed-
point algebra Bb: Both D and Bb are by definition subalgebras ofMðBÞb; but it is not
obvious that they must be the same subalgebra. Indeed, it is not even obvious that we
get the same generalized fixed-point algebra when b is proper with respect to two
different dense �-subalgebras. Fortunately, we have been able to show that at least
when g is saturated, all the fixed-point algebras relevant to us coincide. After we have
sorted this out, it will be relatively easy to get the desired relations between
imprimitivity bimodules.
We begin by giving a careful statement of our main results. Since we are concerned

about possibly different fixed-point algebras, we shall denote by ðB;B1Þb the
generalized fixed-point algebra as defined in [17] when b is proper with respect to a
particular subalgebra B1:

Theorem 3.1. Suppose that the Morita equivalence ðA;aÞðX ; gÞðB;bÞ is proper with

respect to A0ðX0ÞB0
; with generalized fixed-point algebra D. Then

(1) the action b on B is proper with respect to the subalgebra

B1 :¼ /X0;X0SB :¼ spf/x; ySB : x; yAX0g;

and the generalized fixed-point algebra ðB;B1Þb is an ideal in D;
(2) the action g is also proper with respect to the smaller pre-imprimitivity

bimodule A0ðX0ÞB1
; and then has the same generalized fixed-point

algebra D.

The action b is saturated with respect to B1 if and only if g is saturated with respect to

X0; and then ðB;B1Þb ¼ D: There is an isomorphism

O : ðXsrGÞ#BsrGB1-X0
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of ðAsa;rGÞ–D-imprimitivity bimodules such that

Oðf#bÞ ¼
Z

G

f ðsÞ � bsðbÞDðsÞ1=2 ds ð3:1Þ

for bAB1 and f of the form f ðsÞ :¼ x � bsðc�ÞDðsÞ�1=2 with xAX0 and cAB1:

Proofs of (1) and (2). For (1), we need to verify the two items of [17, Definition 1.2].

Write F for ðB;B1Þb; and let b ¼ /v;wSB and c ¼ /x; ySB be typical spanning
elements of B1: Then

bbsðc�Þ ¼ /v;w � bsð/y; xSBÞSB ¼ /v; A/w; gsðyÞS� gsðxÞSB;

and hence

jjbbsðc�ÞjjpjjvjjjjxjjjjA/w; gsðyÞSjj:

The function s/ A/w; gsðyÞS and its product with s/DðsÞ1=2 are in L1ðG;AÞ
because g is proper, so it follows that s/bbsðcÞ and s/DðsÞ1=2bbsðcÞ are integrable.
This gives the first item of [17, Definition 1.2].
Set z :¼ v �/x; ySB: Then zAX0; and

b�c ¼ /w; vSB/x; ySB ¼ /w; v �/x; ySBSB ¼ /w; zSB: ð3:2Þ

Definition 2.1(3) says there is a multiplier /w; zSDAMðB0Þb such thatZ
G

absðb�cÞ ds ¼ð3:2Þ
Z

G

absð/w; zSBÞ ds

¼ a �/w; zSD for all aAB1CB0: ð3:3Þ

We claim that /w; zSD multiplies B1 (we already know it multiplies B0). If
b0 ¼ /x1; x2SBAB1; then b0 �/w; zSD ¼ /x1; x2 �/w; zSDSB because /w; zSDA
MðBÞ: But x2 �/w; zSD is back in X0; so b0 �/w; zSDA/X0;X0SB ¼ B1: Thus
/w; zSDAMðB1Þ:
We now define /b; cSF :¼ /w; zSD; and (3.3) gives the second item of [17,

Definition 1.2]. Note that by definition of /�; �SF ; we have F ¼ /X0;X0 � B1SD: Since
X0 � B1 is a sub-module of E0ðX0ÞD0

; it follows from the Rieffel correspondence that F

is an ideal of D: This gives (1).
For (2), we have to verify the three properties of Definition 2.1 for A0ðX0ÞB1

: Since

B1CB0; the integrability properties are clear. So it suffices to check Definition 2.1(3)
and to show that D and D1 :¼ DðA0

ðX0ÞB1
Þ coincide. If x; y; zAX0 then z �/x; ySD is

in X0; so

/w; zSB/x; ySD ¼ /w; z �/x; ySDSB
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is in B1: Thus /x; ySD multiplies B1; and /x; ySD1 :¼ /x; ySD has the properties

described in Definition 2.1(3). But with this definition of /�; �SD1 we trivially have

D ¼ D1: &

The proof of the decomposition isomorphism (3.1) uses a general lemma about
imprimitivity bimodules over a linking algebra. If AXB is an imprimitivity bimodule,

we denote by X̃ the dual B–A imprimitivity bimodule of [15, p. 49], and by

LðX Þ :¼
a x

wðyÞ b

 !
: aAA; bAB; x; yAX

( )

the linking algebra of X [15, p. 50]. The matrices

p ¼ pLðXÞ ¼
1MðAÞ 0

0 0

 !
and q ¼ qLðX Þ ¼

0 0

0 1MðBÞ

 !

define full projections inMðLðXÞÞ; and the corners pLðX Þp; qLðXÞq and pLðXÞq in
LðX Þ can be naturally identified with A; B and X ; respectively.
In the next lemma, which is a variation of [3, Lemma 4.6; 4, Proposition 4.3], we

use the identifications to produce actions of A; B and X on a module over LðXÞ:

Lemma 3.2. Let X be an A–B imprimitivity bimodule with linking algebra LðXÞ: If Z is

an LðXÞ–C imprimitivity bimodule, then pZ and qZ are A–C and B–C imprimitivity

bimodules, respectively, and there is an isomorphism O : x#B qZ-pZ of A–C
imprimitivity bimodules such that

Oðx#B qzÞ ¼ x � qz: ð3:4Þ

Proof. Since A ¼ pLðXÞpCLðXÞ; it is easy to see that pZ is an A-module; on pZ; the
LðX Þ-valued inner product takes values in pLðX Þp; and with A/pz; pz0S:¼
pLðXÞ/z; z0Sp; pZ becomes a full left Hilbert A-module. The right actions and inner

products are already defined; the only thing we need to worry about is whether pZ is
full as a Hilbert C-module. So let I be the ideal in C spanned by the elements
/pz; pz0SC : Then

Z-Ind
LðXÞ
C ðIÞ ¼ spfLðX Þ/z � i; z0S: z; z0AZ; iAIg

¼ spfLðX Þ/z �/pw; pw0SC ; z0S: z; z0;w;w0AZg
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¼ spfLðXÞ/LðXÞ/z; pwS� pw0; z0S: z; z0;w;w0AZg

¼ spfLðXÞ/z; pwSLðX Þ/pw0; z0S: z; z0;w;w0AZg

¼ spfLðXÞ/z;wSp�pLðXÞ/w0; z0S: z; z0;w;w0AZg

¼LðX ÞpLðXÞ;

which is LðX Þ because p is full. We can therefore deduce from the Rieffel
correspondence that I ¼ C: Thus, pZ is an A–C imprimitivity bimodule. Similarly,
qZ is a B–C imprimitivity bimodule.
Note that the map ðx; qzÞ/x � qz is bilinear, so there is a well-defined map

O on the algebraic tensor product X}qZ satisfying (3.4), and which is
C-linear. To see that it is A-linear, recall that the action of A on X is given
by the product of the embedded copies in LðXÞ; thus for aAA and xAX ;
we have

Oða � x#qzÞ ¼ ða � xÞ � qz ¼ a � ðx � qzÞ ¼ a � Oðx#qzÞ:

In the same way, the inner product /y; xSB is given by the product y�x in LðX Þ; so

/x#B qz; y#B qwSC ¼ //y; xSB � qz; qwSC ¼ /ðy�xÞ � qz; qwSC

¼ /x � qz; y � qwSC

¼/Oðx#B qzÞ;Oðy#B qwÞSC ;

and O extends to an isometry of ðx#B qZÞC into ðpZÞC : To see that O has
a dense range and is therefore onto, note that LðXÞ acts nondegenerately on Z;
so that

rangeO*pLðX Þq � qZ ¼ pLðXÞq � qLðX Þ � Z

¼ pLðXÞqLðXÞ � Z ¼ pLðX Þ � Z

¼ pZ

because q is full. Since O is a bimodule isomorphism which preserves the C-valued
inner product, it must preserve the A-valued inner product as well. &

To prove Theorem 3.1, we apply Lemma 3.2 to the Combes bimodule Xsg;rG

and a bimodule Z coming from an application of Theorem 2.16. As it arises, Z will
be a left module over LðXÞsrG rather than LðXsrGÞ: Thus, we shall have to
identify LðXÞsrG with LðXsrGÞ: Since we need to be very explicit about the
identifications involved, we review the details.
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Suppose as in the theorem that ðA;aÞðX ; gÞðB;bÞ is a Morita equivalence. For
fACcðG;AÞ; gACcðG;BÞ and z;wACcðG;XÞ define

f � zðsÞ ¼
Z

G

f ðrÞ � grðzðr�1sÞÞ dr ð3:5Þ

z � gðsÞ ¼
Z

G

zðrÞ � brðgðr�1sÞÞ dr ð3:6Þ

AsaG/z;wSðsÞ ¼
Z

G
A/zðrÞ; gsðwðs�1rÞÞSDGðs�1rÞ dr ð3:7Þ

/z;wSBsbGðsÞ ¼
Z

G

b�1r ð/zðrÞ;wðrsÞSBÞ dr: ð3:8Þ

Proposition 3.3 (Combes). With the above actions and inner products, CcðG;X Þ is a

CcðG;AÞ–CcðG;BÞ pre-imprimitivity bimodule whose completion is an Asa;rG–

Bsb;rG imprimitivity bimodule Xsg;rG:

Composing functions with the usual identifications of the corners in LðX Þ gives
embeddings i11; i12 and i22 of CcðG;AÞ; CcðG;XÞ and CcðG;BÞ; respectively, in
CcðG;LðXÞÞ: The actions of G on the corners combine to give an action u of G on
LðX Þ: The following result is proved in [1].

Proposition 3.4 (Combes). The maps iij induce an isomorphism of LðXsg;rGÞ
onto LðX Þsu;rG which carries pLðXsg;rGÞ and qLðXsg;rGÞ into full projections

p̂ and q̂AMðLðX Þsu;rGÞ such that p̂ ðLðXÞsu;rGÞp̂ ; q̂ ðLðXÞsu;rGÞq̂ and

p̂ ðLðX Þsu;rGÞq̂ are identified with Asa;rG;Bsb;rG and Xsg;rG; respectively.

We now return to the situation of Theorem 3.1. Recall that we seek an
LðXsg;rGÞ–D imprimitivity bimodule Z to which we can apply Lemma 3.2. We

intend to find Z by applying Theorem 2.16 to the Morita equivalence

ðLðX Þ;uÞðX"BÞðB;bÞ and identifying the left-hand algebra LðX Þsu;rG with

LðXsg;rGÞ using Proposition 3.4. Of course we have some checking to do:

Lemma 3.5. Suppose that ðA;aÞðX ; gÞðB;bÞ is proper with respect to the pre-imprimitivity

bimodule A0ðX0ÞB0
; and has generalized fixed-point algebra D. Let B1¼/X0;X0SB and

LðX0Þ :¼
A0 X0

*X0 B1

 !
:

Then g"b is proper with respect to LðX0ÞðX0"B1ÞB1
; and has generalized fixed-point

algebra D.
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Proof. Let x; yAX0 and b; cAB1: For Definition 2.1(1) we need to verify that

s/ LðX Þ
x

b

 !
;

gsðyÞ
bsðcÞ

 !* +
¼ A/x; gsðyÞS x � bsðc�Þ

wðgsðyÞ � b�Þ bbsðc�Þ

 !

and its product with DðsÞ�1=2 are in L1ðG;LðX ÞÞ: Since the action of G is proper with
respect to A0ðX0ÞB0

and B1ðB1ÞB1
; the functions s/ A/x; gsðyÞS and s/bbsðc�Þ as

well as their products with DðsÞ�1=2 are integrable. That s/x � bsðcÞ and s/x �
bsðcÞDðsÞ�1=2 are integrable follows from the estimate

jjx � bsð/y; zSBÞjjpjj A/x; gsðyÞS� gsðzÞjjpjj A/x; gsðyÞSjj jjzjj:

For Definition 2.1(2), note that s/gsðxÞ � b and s/bsðbÞ � c and their products

with DðsÞ�1=2 are integrable using Definition 2.1(2) for A0ðX0ÞB0
and B1ðB1; bÞB1

:

To verify Definition 2.1(3), we write D0 for the generalized fixed-point algebra

associated to the action g"b; and F :¼ ðB;B1Þb; and define

x

b

 !
;

y

c

 !* +
D0

:¼ /x; ySD þ/b; cSF :

Note that D multiplies B1; and that the right-hand side belongs to D because FCD

by part (1) of the theorem. Thus D0 ¼ D: Straightforward calculations show that

z

b0

 !
�

x

b

 !
;

y

c

 !* +
D

A
X0

B1

 !

and that Z
G

b0bs

x

b

 !
;

y

c

 !* +
B

 !
ds ¼ b0 x

b

 !
;

y

c

 !* +
D

for zAX0 and b0AB1: &

At this point it is convenient to prove the assertion in Theorem 3.1 about saturated
actions.

Proposition 3.6. Suppose that the Morita equivalence ðA;aÞðX ; gÞðB;bÞ is proper with

respect to the pre-imprimitivity bimodule A0ðX0ÞB0
: Then the following are equivalent:

(1) the action g is saturated with respect to X0;
(2) the action b is saturated with respect to B1; and

(3) the action g"b is saturated with respect to X0"B1:

For the proof we need a standard lemma.
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Lemma 3.7. Let E be an ideal in a C�-algebra C and let p be a full projection in MðCÞ:
Then E ¼ C if and only if pEp ¼ pCp:

Proof. Recall that pC is a pCp–C imprimitivity bimodule. The result follows from
the Rieffel correspondence:

pC-IndðEÞ ¼ spfpCp/pce; pdS : c; dAC; eAEg

¼ spfpced�p : c; dAC; eAEg

¼ pEp

is the corresponding ideal in pCp: &

Proof of Proposition 3.6. As usual, we write E for the ideal in LðXÞsu;rG spanned

by functions of the form

s/DðsÞ�1=2 LðX Þ
x

b

 !
;

gsðyÞ
bsðcÞ

 !* +

¼ DðsÞ�1=2 A/x; gsðyÞS x � bsðc�Þ
wðgsðyÞ � b�Þ bbsðc�Þ

 !
; ð3:9Þ

where x; yAX0 and b; cAB1: Since LðX Þsu;rGDLðXsg;rGÞ; two applications of
Lemma 3.7 imply that

E ¼ LðXÞsu;rG3p̂ LðXsg;rGÞp̂ ¼ Asa;rG3q̂ LðXsg;rGÞq̂ ¼ Bsb;rG:

Thus, functions of form (3.9) are dense in LðX Þsu;rG if and only if Asa;rG is

spanned by the functions s/DðsÞ�1=2 A/x; gsðyÞS if and only if Bsb;rG is spanned

by the functions s/DðsÞ�1=2bbsðc�Þ: The result follows. &

Proof of Theorem 3.1. Parts (1) and (2) were proved earlier, and the statement about
saturation is part of Proposition 3.6. We know from Lemma 3.5 and Proposition 3.6
that g and g"b are proper and saturated with respect to X0 and LðX0ÞðX0"B1ÞB1

;

respectively. Thus Theorem 2.16 gives two imprimitivity bimodules

Bsb;rGðB1ÞF and LðX Þsu;rGðX0"B1ÞD; ð3:10Þ

where F is an ideal of D: Since LðXÞsu;rGDLðXsg;rGÞ; we can apply Lemma 3.2
to the imprimitivity bimodules Xsg;rG and X0"B1: Thus to see the existence of the
isomorphism, it suffices to prove that

p̂ ðX0"B1ÞDAsa;rGðX0ÞD and q̂ ðX0"B1ÞDBsb;rGðB1ÞD ð3:11Þ
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as imprimitivity bimodules; given this, it then follows from the Rieffel correspon-
dence that F ¼ D because the imprimitivity bimodules in (3.10) and (3.11) based on
B1 are completed in the same norm.

That p̂ ðX0"B1Þ and q̂ ðX0"B1Þ are ðAsa;rGÞ–D and ðBsb;rGÞ–D imprimitivity
bimodules, respectively, is proved in Lemma 3.2 (after again identifying LðXÞsu;rG

with LðXsg;rGÞ). Recall that E0 :¼LðXÞsu;rG /X0"B1;X0"B1S and that E0 �
ðX0"B1Þ is dense in ðX0"B1ÞD: Since

p̂ LðXÞsu;rG

x

b

 !
;

y

c

 !* +
¼ LðX Þsu;rG

x

0

 !
;

y

c

 !* +

implies

p̂ LðX Þsu;rG

x

b

 !
;

y

c

 !* +
�

z

d

 !
¼

x

0

 !
�

y

c

 !
;

z

d

 !* +
D

A
X0

f0g

 !
;

we obtain that p̂ ðX0"B1ÞD ¼ ðX0"f0gÞD: That p̂ ðX0"B1ÞDAsa;rGðX0ÞD is now

clear because the inclusion of X0 into ðX0"f0gÞD preserves both inner products and

the D-action. Similarly, q̂ ðX0"B1ÞDBsb;rGðB1ÞD:

Finally, to get the formula for the isomorphism, we need to chase through our
identifications. Here, f � b means the left action of fAXsg;rGCLðXsg;rGÞD
LðX Þsu;rG on bAB1CX0"B1: Thus we have a formula for the action provided

0 f

0 0

 !
¼ LðXÞsu;rG

x

0

 !
;
0

c

 !* +
;

which means that f must have the form f ðsÞ ¼ x � bsðc�ÞDðsÞ�1=2: If so,

f � b

0

 !
¼

0 f

0 0

 !
�
0

b

 !
¼
Z

G

0 f

0 0

 !
ðsÞ � gs"bs

0

b

 !
DðsÞ1=2 ds

¼
Z

G

0 f ðsÞ
0 0

 !
0

bsðbÞ

 !
DðsÞ1=2 ds

¼
Z

G

f ðsÞ � bsðbÞDðsÞ1=2

0

 !
ds

¼
R

G
f ðsÞ � bsðbÞDðsÞ1=2 ds

0

 !
;

which gives the right formula. &
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4. The symmetric imprimitivity theorem for graph algebras

A directed graph E consists of countable sets E0 of vertices and E1 of edges, and

range and source maps r; s : E1-E0: A Cuntz–Krieger E-family in a C�-algebra A

consists of partial isometries fse : eAE1g with mutually orthogonal ranges and
mutually orthogonal projections fpv : vAE0g such that

s�ese ¼ prðeÞ; ses�eppsðeÞ and pv ¼
X

sðeÞ¼v

ses�e

whenever 0ojs�1ðvÞjoN:

The graph C�-algebra C�ðEÞ is generated by a universal Cuntz–Krieger family
fse; pvg (see [9] or [14], for example). We write E� for the path space of E; and for
mAE� of length jmj we write sm :¼ sm1sm2ysmjmj : The Cuntz–Krieger relations imply

that every word in the se and s�f collapses to one of the form sms�n for m; nAE�; and

these are zero unless rðmÞ ¼ rðnÞ: Thus,

X0ðEÞ :¼ spfsms�n : m; nAE�; rðmÞ ¼ rðnÞg

is a dense �-subalgebra of C�ðEÞ:
Suppose we have a left action of a (discrete) group G on E which is free on E0 (and

hence is free on E1). The universal property of C�ðEÞ implies that there is an induced
action a :G-AutC�ðEÞ such that agðseÞ ¼ sg�e and agðpvÞ ¼ pg�v: It is shown in
[11, Section 1] that the action a is proper and saturated with respect to X0ðEÞ:
Indeed, it is proved in [11, Lemma 1.1] that averaging over a gives a linear map
IG :X0ðEÞ-MðX0ðEÞÞa whose range spans the generalized fixed-point algebra
C�ðEÞa; and that there is an isomorphism fG of the C�-algebra C�ðG\EÞ of the
quotient graph onto C�ðEÞa; thus, it follows from Rieffel’s theory that C�ðEÞsa;rG

is Morita equivalent to C�ðG\EÞ: The maps IG and fG are also used in [11] to directly
construct a bimodule implementing a symmetric imprimitivity theorem for the full
crossed products, as follows.
Suppose we have commuting free actions of G and H on the left and right of E:

Because the actions commute, they induce actions on the quotient graphs, and hence
we have actions a :G-AutC�ðE=HÞ and b :H-AutC�ðG\EÞ on their C�-algebras;
it is safe to also use a and b for the actions on X0ðEÞ and C�ðEÞ; because the maps
fH and fG are then equivariant.
We write kðH;X0ðG\EÞÞ for the set of functions f :H-X0ðG\EÞ with finite

support. For bAkðH;X0ðG\EÞÞ; cAkðG;X0ðE=HÞÞ and x; yAX0ðEÞ; we define

b � x ¼
X
hAH

fGðbðhÞÞbhðxÞ; ð4:1Þ

x � c ¼
X
gAG

a�1g ðxfHðcðgÞÞÞ; ð4:2Þ
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kðH;X0ðG\EÞÞ/x; ySðhÞ ¼ f�1
G 3IGðxbhðy�ÞÞ; ð4:3Þ

/x; ySkðG;X0ðE=HÞÞðgÞ ¼ f�1
H 3IHðx�agðyÞÞ: ð4:4Þ

Now [11, Theorem 2.1] states that X0ðEÞ completes to give a Morita equivalence Z

between C�ðG\EÞsbH and C�ðE=HÞsaG:

We aim to apply Theorem 3.1 with X ¼ X0ðEÞ the C�ðG\EÞ–ðC�ðEÞsaGÞ
imprimitivity bimodule obtained by ignoring the action of H in (4.1)–(4.4). By
[8, Corollary 3.3] or [11, Corollary 3.1], we have

C�ðEÞsaG ¼ C�ðEÞsa;rG;

so we can view X as a module over the reduced crossed product.

Lemma 4.1. The action b of H on X0ðEÞCC�ðEÞ induces actions b of H on C�ðG\EÞ;
b on X and bsid on C�ðEÞsaG; and ðX ;H; bÞ is then a Morita equivalence between

ðC�ðG\EÞ;H; bÞ and ðC�ðEÞsaG;H; bsidÞ: The action b on X is proper and

saturated with respect to the pre-imprimitivity bimodule X0ðG\EÞX0ðEÞkðG;X0ðEÞÞ:

Proof. That b induces the actions on C�ðG\EÞ and C�ðEÞsaG is standard. Because
b is compatible with the maps fG and IG [11, Lemma 1.7], it is easy to check that b is
compatible with the module actions and inner products. In particular, this implies
that each bh is isometric, and hence extends to an action on X implementing the
desired Morita equivalence of systems. For the submodule X0ðEÞ; the functions in
parts (1) and (2) of Definition 2.1 have finite support, and hence are trivially
integrable. For x; yAX0ðEÞ; the function /x; ySD :G-MðC�ðEÞÞ defined by

/x; ySDðgÞ ¼ IHðx�agðyÞÞ

also has finite support; the embedding ofMðC�ðEÞÞ �a G inMðC�ðEÞsaGÞ carries
this function into a multiplier /x; ySD of kðG;X0ðEÞÞ which satisfies Definition
2.1(3). Thus the action of H is proper. To see that it is saturated, we use [11, Lemma
1.4] to see that the function dhsG�ms�G�n in kðH;X0ðG\EÞÞ is given by

dhsG�ms�G�n ¼ dhf
�1
G 3IGðsms�nÞ ¼ /x; ySD;

when x ¼ sms�n and y ¼ psðnÞ�h: &

Applying Theorem 3.1 to ðX ;H; bÞ gives a ðC�ðEÞsa�bðG � HÞÞ–D imprimitivity
bimodule B1; a ðC�ðG\EÞsbHÞ–D imprimitivity bimodule X0; and a decomposition

isomorphism. The space X0ðEÞ underlies both X0 and the bimodule Z of [11]. Here
X0 is really a bimodule over kðH;X0ðG\EÞÞ and the generalized fixed-point algebra
DCMðC�ðEÞsaGÞ; when we use fHsid to identify D with C�ðE=HÞsaG; our
formulas convert to the ones (4.1)–(4.4) used in [11]. Thus:
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Theorem 4.2. The bimodule kðH;X0ðG\EÞÞX0ðEÞkðG;X0ðE=HÞÞ described in (4.1)–(4.4)

completes to give an imprimitivity bimodule which implements a Morita equivalence

between C�ðG\EÞsb;rH and C�ðE=HÞsa;rG:

Comparing this bimodule to the one for the full crossed products allows us to
settle a question left open in [11, Remark 3.2].

Corollary 4.3. Suppose that G and H act freely on the left and right of a directed graph

E, and let a and b denote the induced actions on C�ðE=HÞ and C�ðG\EÞ: Then regular

representations of ðC�ðE=HÞ;G; aÞ are faithful if and only if regular representations of

ðC�ðG\EÞ;H; bÞ is faithful.

Proof. Let I be the kernel of the quotient map from C�ðE=HÞsaG to
C�ðE=HÞsa;rG: Then, by the Rieffel correspondence [15, Section 3.3], there are a
closed submodule W of the bimodule Z of [11] and an ideal J ¼ Z-Ind I in
C�ðG\EÞsbH such that Z=W is a ðC�ðG\EÞsbHÞ=J–ðC�ðE=HÞsaGÞ=I im-

primitivity bimodule. In particular, this implies that the semi-norms on X0ðEÞCZ

induced by the quotient norms on ðC�ðG\EÞsbHÞ=J and ðC�ðE=HÞsaGÞ=I

coincide [15, Proposition 3.11]. The semi-norm coming from the right inner
product is that induced by the reduced norm on kðG;X0ðE=HÞÞ: However, we
know by applying [15, Proposition 3.11] to the bimodule of Theorem 4.2 that this
coincides with the semi-norm induced by the left inner product and the
reduced norm on kðH;X0ðG\EÞÞ: Thus, the semi-norm on kðH;X0ðG\EÞÞ
pulled back from the quotient ðC�ðG\EÞsbHÞ=J is the reduced semi-norm,

the quotient is the reduced crossed product, and J is the kernel of the quotient
map onto C�ðG\EÞsb;rHÞ: Since I ¼ 0 if and only if Z-Ind I ¼ 0; the result
follows. &

To complete the analysis, we identify B1 and check that the decomposition
of Theorem 3.1 gives an isomorphism between the tensor-product equivalence of
[11, Theorem 1.9] and that of Theorem 4.2.
The algebra B1 is spanned by the range of the inner product on X0ðEÞ;

and since

dgsms�n ¼ /sns
�
m; pg�1�sðnÞSkðG;X0ðEÞÞ;

this is all of kðG;X0ðEÞÞ: This is also a dense subspace of the Combes bimodule
YsaG; where Y is the ðC�ðEÞsbHÞ–C�ðE=HÞ imprimitivity bimodule based on
Y0 :¼ X0ðEÞ obtained by ignoring G in (4.1)–(4.4). To see that B1 is isomorphic to
Ysa;rG; we need to note that the map fHsid is an isomorphism of

C�ðE=HÞsa;rG onto the fixed-point algebra D; and check that the inner products
and module actions match up.
Let a; b; cAkðG;X0ðEÞÞ: To verify that the D-valued inner product on B1 and the

C�ðE=HÞsa;rG-valued inner product on Ysa;rG agree modulo the isomorphism
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fHsid; note that

a �/b ; cSD ¼
X
hAH

aðbsidÞhðb�cÞ; ð4:5Þ

where the two products on the right are convolution in C�ðEÞsaG: Thus a �
/b; cSDðtÞ can be written as a triple sum over H � G � G: On the other hand, using
(3.6) and (3.8), we get

a �/b; cSC�ðE=HÞsa;rGðtÞ ¼
X
sAG

X
lAG

aðsÞas�1lð/bðlÞ; cðls�1tÞSC�ðE=HÞÞ;

which is the same as (4.5) after using fH to identify C�ðE=HÞ and C�ðEÞb and
applying (4.4).
To see that the left inner products coincide, we start with the inner product from

Ysa;rG: from (3.7) we have

ðC�ðEÞsbHÞsa;rG/b; cSðt; hÞ ¼
X
sAG

C�ðEÞsbH/bðsÞ; atðcðt�1sÞÞSðhÞ;

which, using (4.3) and the isomorphism fH ; is
P

sAG bðsÞbhðatðcðt�1sÞ�ÞÞ: But we can
recognize this as the convolution product bbhðc�Þ evaluated at t; which is

ðC�ðEÞsaGÞsb;rH/b; cSðh; tÞ:
Using (3.6) it is straightforward to check that the right action of C�ðE=HÞsa;rG

on Ysa;rG is the same as the action of D as multipliers on B1: If fAkðG � H;
X0ðEÞÞ then using (3.5) we get

f � aðtÞ ¼
X
sAG

f ðs; �Þ � asðaðs�1tÞÞ;

which, using (4.1) and fG; reduces to the left action of f on B1 given by Lemma 2.17.

Thus B1 and Ysa;rG are isomorphic.

The decomposition isomorphism of ðXsb;rHÞ#C�ðEÞsrðH�GÞðYsa;rGÞ onto the
reduced symmetric imprimitivity bimodule of Theorem 4.2 is given by

Oðe#bÞ ¼
X
hAH

eðhÞ � ðbsidÞhðbÞ;

where the action is that of E0CkðG;X0ðE=HÞÞ on X0: Working out the formulas in
terms of the product in X0ðEÞCC�ðEÞ gives

Oðe#bÞ ¼
X
hAH

X
gAG

a�1g ðeðhÞfHðbhðbðgÞÞÞÞ; ð4:6Þ

and the functions e; b of the required form span kðH;X0Þ and kðG;Y0Þ; respectively.
Hence:
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Corollary 4.4. The map O : kðH;X0Þ#kðG;Y0Þ-X0 defined by (4.6) extends to an

isomorphism of ðXsb;rHÞ#C�ðEÞsrðH�GÞðYsa;rGÞ onto the reduced symmetric

imprimitivity bimodule of Theorem 4.2.

Remark 4.5. A similar analysis can be carried out for the symmetric imprimitivity
theorem of [13], and yields an isomorphism of the form (1.1) for the bimodule Z

which implements the reduced version of the symmetric imprimitivity theorem, as in
[12] or [6, Corollary 2]. With a bit of work, one can check that this isomorphism is
given on suitable dense subspaces by the same formula as that of [7, Lemma 4.8].
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