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Abstract

We consider a class of proper actions of locally compact groups on imprimitivity bimodules
over C*-algebras which behave like the proper actions on C*-algebras introduced by Rieffel in
1988. We prove that every such action gives rise to a Morita equivalence between a crossed
product and a generalized fixed-point algebra, and in doing so make several innovations which
improve the applicability of Rieffel’s theory. We then show how our construction can be used
to obtain canonical tensor-product decompositions of important Morita equivalences. Our
results show, for example, that the different proofs of the symmetric imprimitivity theorem for
actions on graph algebras yield isomorphic equivalences, and this gives new information about
the amenability of actions on graph algebras.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A Morita equivalence between two C*-algebras 4 and B is implemented by an
imprimitivity bimodule 4 X, which carries the structure necessary to induce Hilbert-
space representations from B to A and back again. There are often several ways of
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constructing these bimodules, and, unsurprisingly, some ways are better for some
things, and others for others. One therefore wants to be able to switch between
different bimodules implementing equivalences between the same algebras.

To illustrate the kind of problems which arise, we consider a situation which
underlies many important equivalences. Suppose we have commuting free and
proper actions of locally compact groups K and H on the left and right of a
locally compact Hausdorff space P. The orbit spaces P/H and K\P are again locally
compact Hausdorff spaces, and carry actions of, respectively, K and H; the
symmetric imprimitivity theorem of Green and Rieffel states that the crossed
products Co(P/H)><K and Cy(K\P)><H are Morita equivalent. In the original
proof of [16], a suitable imprimitivity bimodule Z was constructed by completing
the space C.(P) of continuous functions of compact support. It was later shown
in [2] that one could appeal to a previous construction of Green which gives
Co(P/H)—(Cy(P)><H) and (Cy(P)><K)-Cy(K\P) bimodules X and Y, form
crossed product bimodules X > K and Y >< H, and take the internal tensor product
(X><K)® ¢y (p)sa(kxm)(Y>H) as the desired (Co(P/H)><K)—(Co(K\P)><H)
imprimitivity bimodule. This latter construction has advantages: for example, it
saves burrowing into the detailed construction of bimodules, allows us to analyze the
effect of extra structure in stages, and makes it easier to prove analogues for reduced
crossed products. On the other hand, we have a concrete bimodule Z, which is much
more convenient for direct calculations. To make the best of both worlds, we need to
prove that

Z=(X><K)® ¢(p)>a(kxu) (Y ><H) (1.1)

as (Co(P/H)><K)—(Co(K\P)> H) imprimitivity bimodules.

We ran into problems like these in [7], where we found an isomorphism
implementing (1.1) using ad hoc methods; to verify that it worked, we had to do
awful calculations involving quintuple integrals. One goal of the present project was
to find a more systematic way of identifying and verifying such isomorphisms:
our Theorem 3.1 tells us not just that there is an isomorphism, but also how to write
it down.

To make our approach as systematic as possible, we have worked within the
general framework of proper actions of groups on C*-algebras, as developed by
Rieffel in [17], and we have, we hope, made significant improvements to that theory.
In particular, we have extended Rieffel’s main Morita equivalence in [17, Corollary
1.7] to cover proper actions on imprimitivity bimodules. This extension turned out to
be anything but routine, and we are optimistic that some of the technical tools we
have developed will help in constructing Morita equivalences for more general
integrable actions, where substantial technical problems arise (see [18, Section 6]).
Because Rieffel’s framework involves reduced crossed products rather than full ones,
our main results are about reduced crossed products. We intend to apply our
techniques to full crossed products elsewhere. We emphasize that our notion of
proper action is related to Rieffel’s original version in [17] rather than the integrable
actions studied recently in [5,10,18].
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We begin in Section 2 by discussing proper actions on imprimitivity bimodules.
We start with a Morita equivalence (X, G,y) between two C*-dynamical systems
(4,G,o) and (B,G,f). The action y is proper if there is a y-invariant pre-
imprimitivity bimodule 4,(Xo)z =X with properties like those of the dense
subalgebra used by Rieffel. There are several ways in which the technical hypotheses
could be phrased; we have chosen one which reduces to that of [17] when
4Xp = pBp, bears a striking formal resemblance to it, and yields the desired Morita
equivalence X, between A >, .G and a generalized fixed-point algebra B? when the
action is also saturated (Theorem 2.16). The proof of Theorem 2.16, though, is quite
different from its analogue in [17]. For 4Xp = pBp, Rieffel proved that the
(B><p,G)-valued inner product has the required properties, that B acts as
adjointable operators on the resulting left Hilbert module 3..,¢Z, and then that the
map Bﬁ—u?(erGZ) is isometric [17, p. 151]. We were not able to extend this last
part, so we had to substantially reshape the whole argument, starting with the right
inner product rather than the left. In retrospect, this is probably a good thing. The
process we have gone through is similar to the program discussed by Rieffel in his
later paper [18, Section 6], and since we have been able to sidestep some of the
general problems he raises in our setting, our arguments may be useful in the more
general context. Indeed, we have already used some of these ideas to find new insight
on how the symmetric imprimitivity theorem relates to reduced crossed products
(see [6]).

In Section 3, we prove our general decomposition theorem. The key idea is
that one obtains a decomposition like (1.1) whenever one has a Morita equivalence
for the linking algebra L(X) of another Morita equivalence; the key Lemma 3.2
is a one-sided version of a result from [3]. The main work in Section 3 is to show
that if the action y of G on X is proper and saturated, then so are the associated
actions on B and X @ B; we then apply Lemma 3.2 to a bimodule over L(X > G)
arising from an application of Theorem 2.16 to X @ B. The result is a tensor-product
decomposition for the bimodule X, of Theorem 2.16, which in the situation
of the symmetric imprimitivity theorem turns out to be the desired
isomorphism (1.1).

In the last section, we apply Theorem 3.1 to crossed products of graph algebras.
This gives new information about the symmetric imprimitivity theorem for graph
algebras, and allows us to settle a question left open in [11].

1.1. Background on integration

Let G be a locally compact group, 4 a C*-algebra and f: G— A a continuous
function such that [;||f(s)||ds<co. Minor modifications to the construction
of [15, Lemma C.3], for example, show that /" has an integral [.f(s)ds, and that
bounded linear maps and multipliers pull through the integral. By viewing a Hilbert
module X as a corner in its linking algebra L(X), we can extend this integral and its
properties to functions f': G— X such that [ || f(s)]|ds< 0.
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2. Proper actions on imprimitivity bimodules

Throughout this section, (X, G,y) will be a Morita equivalence between two
dynamical systems (4, G,a) and (B, G, f5); since there is only one locally compact
group G involved, we will drop it from our notation.

Definition 2.1. The action y of G on 4Xp is proper if there are an invariant subspace

Xo of X and invariant x-subalgebras 4o of 4 and By of B, such that 4,(Xo)p, is a pre-

imprimitivity bimodule with completion 4Xp, and such that

(1) for every x, ye Xy, the functions sn—»zl(s)_]/2 4<x,7,(y)> and s> 4<{x,9,(») >
are in L'(G, A4);

() for every he By and xe X, the functions sy, (x) - b and sr—»A(s)fl/zyS(x) b
are in L'(G, X);

() for every x,yeXy, there is a multiplier <{x,y>, in M(By)" such that
z-{x,yypeXp for all ze Xy, and

/bﬁs(<x,y>3) ds = b{x,y>p for all beBy. (2.1)
G

That the integral in (2.1) exists follows from

BB (<, o)l = 11 <v5(¥)s 05(x) - 6" Dl < s (x) - 7 Il

and item (2) of the definition.

Remark 2.2. (1) There are some subtleties to this definition. First, asserting
that 4,(Xo)p, is a pre-imprimitivity bimodule is an efficient way of saying
many things; for example, it implies that x-beX, whenever xeX, and
beBy, and ,4<{x,y>eA;, whenever x,yeX;. Second, saying that X is the
completion of X is meant to include that A4y is dense in A and By is
dense in B. Third, the D adorning the inner product does not yet exist: it will be
defined in Proposition 2.3 below, and proved there that {-,->, is a D-valued inner
product.

(2) Note that the action f of G on pBp is proper with respect to p,(Bo)g, if
and only if the action f on B is proper with respect to By in the sense of
[17, Definition 1.2].

(3) Definition 2.1 is not symmetric: asserting that y is proper is not the same as
asserting that the action § on the dual equivalence 3X is proper.

We will prove that if the Morita equivalence () (X, y)< Bp) is proper with respect
to 4,(Xo)p,, then Xp completes to a Morita equivalence between an ideal E of
A><,,G and a generalized fixed-point algebra D= M (Bo)ﬂ of B.
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Proposition 2.3. Let D be the closure of Dy = sp{<{x,y>p : x,y€Xo} in M(B), where
{-,+>p is defined by Definition 2.1(3). Then D is a C*-algebra, and {-,->p is a
D-valued inner product on Xj.

Proof. Let x,ye Xy and de Dy. Then deM(BO)’B, and so for every be By, we have

by d = (/Gbﬁ,<<x,y>3) dr)d= [ #8.<xrds dya
=/Gbﬁt<<x7y-d>3>dr=b<x,y~d>D,

which implies <{x,y>p d = {(x,y-d>p; since we know from Definition 2.1(3) that
y - d e Xy, this implies that Dy is an algebra. Similarly, we have

b<y,x>D:/Gbﬁs(<y,x>g>ds:/Gbﬁs<<x,y>3>* ds
_ (/Gﬁs(<x7y>3)b*dS) — (Cxydp B = b<x,yD),

which implies that <y, x>, = ({x,»>p)". This proves both that Dy is a x-algebra, so
its closure D is a C*-algebra, and that <-,- >, has the algebraic properties of an inner
product.

To show positivity of <-,->p, let = be a faithful nondegenerate representation of B,
and note that

<X,X>D>O<:»> <X,X>D>O in M(B)
< (A({x,x>p)h|h)=0 for all he #;.

Since By is dense in B and 7 is nondegenerate, it is enough to show this when
h = n(b)k for be By and ke # . Well,

(7({x,x0p)n(b)k [ m(b)k) = (m(b" {x,xDp b)k | k)

_ (( / b*ﬁs(<x7x>3)bds>k ‘ ")

- /G (n(b"By( o x Dp)b)K | k) ds,

which is positive because each b*f({x,x Dp)b is positive. Because b*f,({x,x>g)b is
continuous in s, this calculation also shows that

x,x>p =0=-B,({x,x>p) =0 for all s=x =0,

so {-,->p is definite. [
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Remark 2.4. To prove that an element d of a C*-algebra D is positive, it is
usually enough to take a faithful representation p of D and prove that p(d)>0
as an operator on #,. For the above argument, however, it is essential that
the representation u of Dy is the restriction of (an extension of) a representation
n of B. In general, not every representation u of Dy arises this way, and
choosing u = 17| p, means that we are proving d>0 in the C*-algebra obtained
by completing Dy in the norm of the C*-algebra M (B). This observation is crucial
in [6].

Lemma 2.5. There are homomorphisms pu of A into (X)) and U of G into

UZ((Xo)p) such that p(a)x = a-x, Upx=A(s)"",(x) and u(o(a)) = Uyp(a)U;
for aeA,, xeX,.

Remark 2.6. The homomorphism y: G— % (Xg) is not unitary: it changes the inner
product by f;. So it is important here that we are talking about the D-valued inner
product on Xj, and we have had to introduce the modular function to ensure that Uj
preserves this inner product. We are not asserting that (u, U) is a covariant
representation in the usual sense: neither nondegeneracy of u nor continuity of U
seems obvious. We shall return to this point in Lemma 2.17 below. Meanwhile, we
observe that these two problems also arise in the construction of a Morita
equivalence for more general integrable actions [18, Section 6].

Proof of Lemma 2.5. We first show that {a-x,a-x>p< ||a||2<x7 X >p as elements of
D, so that pi(a) : x+—>a - x is bounded on (Xj) 5. To do this, we again choose a faithful
nondegenerate representation 7 of B, and it is enough to prove that
(#(|[al[* <x, xdp — Ca-x,a-xDp)n(b)h| n(b)h) >0 (2.2)
for all be By and he # . We know that
llal[* Cx, x 55 = Ca-x.a-xDp
is positive in B, so

(r(b*By(|]al* {x,x D5 — {a-x,a-xDp)b)h | h)=0

for all b, h and s. Integrating this over G and pulling the integral inside the inner
product gives

<n</ b*B,(Jal|* < x, xdp — <a-x,a-x>3)bds>h ‘ h)>07
G

which is (2.2). We deduce that u(a) is bounded. Since ¢* is just another element of
Ag, p(a*) is also bounded. We can therefore show that u(a) is adjointable with
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adjoint u(a*) by checking that
bla-x,yyp=>b<{x,a -y)p for beBy,

and this follows easily from <{a-x,y >z = {x,a" - y>p. Thus u(a)e £((Xo)p), and it
is easy to check that g is a homomorphism of C*-algebras.
To verify that U; is unitary, we let be By, x,ye Xy and calculate

DU, Uy = [ BB(CAW" 3,00 4(6) 2,5) )
= [ BBl Cxyrp s
— [ BB Cxrm)
=b{x,¥p.
This calculation shows that Uy is bounded with ||Uj|| = 1, as is U1, and that

b< sta.y>D = b< USX7 US(US’ly) >D = b<X, US’1y>Da

so Uy is adjointable with US = U,i. Since we trivially have UyU, = Uy; on Xy, U is a

homomorphism into UZ((X)p), as claimed.
For xe Xy, the covariance condition u(a(a))x = Usp(a) Ul x follows easily from
the formulas and the identity U = Uy, and it then extends by continuity to

xe(Xo)p. O

As we observed in Remark 2.6, we do not know whether (u, U) is always a

covariant representation in % ((Xo),) = M (4 ((Xo)p)), but we can make it into one

by representing #((Xy) ) on Hilbert space. As usual, we start with a nondegenerate
faithful representation = of B. Then 7 is faithful on D, and hence Xy-Ind} 7 is a
faithful representation of #((Xp),) on Xo®p # . We write (v, V) for the pair
((Xo-Indj %) opt, (Xo-Ind3 71) o U), so that

va)(x®p h) = (a-x)®p h and  Vi(xQp h) = A(s)""*,(x)Qp h

for xe Xy and ae 4. To see that (v, V) is covariant, we relate it to the right-regular
representation ((X-Indj )™, p) of (4,2) on L*(G,x®p #,), which is given by

(X-Ind% 7)™ (a)(¢)(s) = X-Ind4 n(o,(a))(E(s)) and

Pi(&)(s) = A1) E(s1).

The next lemma is similar to [6, Theorem 1].
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Lemma 2.7. Let © be a faithful nondegenerate representation of B on # . There is an
isometry W of Xo®p H#r into L*(G,x®p H ), such that

W(x®p n(b)h)(s) = y,(x)®p n(b)h for xeXy, be By,

and then W (v, VYW* is the restriction of the regular representation ((X-Indsx)™~, p)
to the range of W. In particular, (v, V') is a covariant representation of (A, ).

Proof. We begin by noting that if xe X and be By, then

/G||vs< b2 ds—/m by 9(x) - byl ds
- / 16" Bo(<x, x 5)b]] s
< an/ 15 B,(<x,x Dp) | d
fubn/m b,7y(x) Dl ds
<|Ib (x) - b|| ds,
< ||||x||/G\|y‘<x> | ds

which is finite by Definition 2.1(2). Since ||y,(x)®z n(b)h||<||y,(x) - b||||A]l, it
follows that W maps XoOn(Bo)# . into L*(G,x®p #,). To see that W is
isometric, we fix two vectors x®p n(h)h and y®p n(c)k in XoOn(By)# r, and
compute

(W (x®p n(b)h) | W(y®p n(c)k))

/G(W(X®D n(b)h)(s) | W (y®p m(c)k)(s)) ds

/G (7,(x) @5 7(b) | 7,(y) ® n(c)k) ds
- / (7(e" 330 75(x) g BYR| &) di

(o( [ nicrmmmaly 1

(n(<y,x>p)n(b)h| n(c)k)
= (x®p n(b)h|y®p n(c)k).

Thus, W extends to an isometry on Xo®p #, = Xo On(By)H# .
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Now for x®p he Xy On(By)H r, we have
(Wv(a)(x®p h))(s) = W(a-x®p h)(s) = ys(a-x)®p h
=a5(a) - 7,(x) ®p h = X-Indj n(as(a)) (W (x®p h)(s))
= ((X-Indz m)~ (@) W (x®p h))(s),

which proves the first intertwining relation. To check that WV (x®p h) =
o, W(x®p h) is even easier. [

Remark 2.8. It is crucial in this argument that we start with a representation =«
of B, and the lemma suggests that this choice is one of the reasons that the
reduced crossed product is appropriate on the left-hand side. The importance
of this issue is emphasized by Example 2.1 of [17], where B = #"(L*(G)) and
Dy is contained in the subalgebra p(C.(G)) of M(B) = B(L*(G)). Any representa-
tion U of G gives a representation of C.(G)=p(C.(G)), which extends to a
representation of #'(L*(G))=Cy(G)>G precisely when there is a compatible
representation of Cy(G); by the imprimitivity theorem, this happens precisely
when U is induced from a representation of {e}, and hence is a regular
representation of G.

Lemma 2.9. For x,ye Xy, define g{x,y>: G— Ay by
EC6s) = A(s)72 4 <x, 0,00,

which belongs to L'(G, A) by Definition 2.1(1). Let 0., be the compact operator on
(Xo)p defined by Oy,z = x - {y,z)p. Then

v V(< x,p>) = Xo-Ind} 7(0,,). (2.3)

Proof. For ze Xy, he #, and ce By, we have

v>aV(g<x,y>)(z®p mn(c)h)

- /G WA ™ 4 Cxy0) DA 2 (04(2) @ () dis

/G <23 (0) > 15(2)) ®p n()hds

/G (x - {ys(»),75(2) >p) ®p w(c)h ds

/G(x ' ﬁs(<y?Z>B)) ®D TE(C)/’Z dS. (24)
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At this stage we want to whip the ds past ®p n(c)h: then the integral would be that
defining x - {y,z)p = 0.,(z), and we would be done. Unfortunately, the resulting
integral converges in the norm coming from the B-valued inner product, so we have
to work to pull it through a balanced tensor product defined using the D-valued
inner product.

The (Xo®p # ,)-valued integral in (2.4) is characterized by its inner products with
vectors of the form w®p n(b)k for be By:

( [ 6B 2s) @0 wlclhds | we n(b)k)
- / ((x- B(<3258)) ®p n(ch | w®p n(B)K) ds
- /G (16" Cwx - B2 55) o) | &) s

/G<”(/Gb*ﬁf(<wvx'ﬁs(<yvz>3)>3)0df)h ' k) ds,

which, because the inner integral is that of a B-valued function, is just

/G / (=6 B, <0, - By(< 32 55) Sw)e)l | k) dit ds

/G / (10" BL( <, x D) B (s 2Dp)c) | K) it ds. (2.5)

The two elements b and ¢ of By are there to ensure that the integrand in this double
integral is integrable on G x G, so that we can apply Fubini’s Theorem to continue:

25) = [ [ GO BB p)h | 1) ds
GJG

= [ [ @B o (<o | ) ds
GJG

= [ [ b BB (< | ) s, (2.6)

GJG

We can now go backwards through the previous analysis to see that

(2.6) = (0x(z) ®p n(c)h|w®p n(b)k)
= (Xo-Ind} 7(0,,)(z®p n(c)h) | w®p n(b)k),

and the result follows. [

To get our Morita equivalence, we consider

Ey = sp{p<{x,y>:x,yeXo} =L (G, A).
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Because we know from Lemma 2.7 that the representation (v, V) is equivalent to a
subrepresentation of the regular representation, v>} extends to a representation
of the reduced crossed product A><,,G. Eq.(2.3) therefore implies that v><
carries the closure E of Ey in A>,,G into the image Xo-Ind7 (4 ((Xo),)) of the
imprimitivity algebra

# (Xo)p) = 5p{0s, : x, e Xo} = £ (Ko)p)-

We would like to prove next that v><V is isometric for the reduced norm on Ej. If
we could do this, we could deduce that v>< V' is an isometric linear isomorphism of £

onto A ((Xo)p); this would imply both that E is a C*-algebra (because " is, and
v>al is a =x-algebra homomorphism on 4><,,G), and that (Xy), is an E-D
imprimitivity bimodule.

The program of the previous paragraph works without any problems when
the isometry W of Lemma 2.7 maps Xo®p #, onto L*(G,x®p H#,), or,
equivalently, when

sp{s—7,(x)®p n(b)h: xe Xy, beBy, he #,} (2.7)

is dense in L2(G7 x®p # 7). To make this independent of the choice of Hilbert space,
we could ask instead that the corresponding map of Xo®p B into L*(G, Xp) be an
isomorphism of Hilbert B-modules. In the examples where Xj, 4g and By consist of
functions of compact support, this seems remarkably similar to asking that the maps
s> p{x,y>(s) span a dense subspace of L!(G, 4). So what we have proved at this
stage is already potentially interesting:

Proposition 2.10. Suppose that the functions {s+>7y,(x) - b: xe Xo,be By} span a dense

subspace of L*(G, Xp), and that the space Ey is dense in L' (G, A). Then (Xo),, is an
A >, ,,G-D imprimitivity bimodule.

Unfortunately, for arbitrary proper actions we do not see how to prove directly
that v>a V is isometric on E. So to establish the Morita equivalence of E and D, we
prove that Xj is an Ey—Dy pre-imprimitivity bimodule. Since we already know that
Xp is a pre-Hilbert D-module, it remains to show that Ej is a x-algebra which acts by
bounded operators on (Xj) , according to the formula g<{x,y -z = x - {y,z)p, that
g<-,-yis then a pre-inner product with respect to the completion E of Ej (that is, the
closure E of E; in the reduced norm), and that D acts by bounded operators
on E(XO)-

Lemma 2.11. The pairing g<{-,-» on X, satisfies
XX, y)x p{z,w) = px-{y,2)p,w)y and p{x,y) = p{y,x),

where the product and adjoint are those of L'(G,A)=A>,,G.
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Proof. For the first identity, we compute

E<x7y>*E<Z,W>(S) = \/GA(V)71/2 A<x,’y’.(y)>O{,,(A(1’71S)71/2
A <Z7 yr*‘x(w) >) dr

_ / 20100 <0, (2), s (9) Y A(s) ™
:/G A< <X, 7,(0) > 70(2), ps(w) dddr A(s) ™2

_ < [5G ys<w>> Afs)™?
A G

= 4<x- {020, 7 (W) > A(s) 72

= E<X' <y,Z>D,W>(S)-

The second identity follows from a simple algebraic manipulation. [

Proposition 2.12. The set Ey == sp{p{x,y>:x,yeXo} is a x-subalgebra of L'(G, A),
and there is a left action of Ey on (Xo),, such that

E<x7y>'Z:x'<yvz>D and
<e~x,e~x>D<||e||2<x,x>D as elements of D
for x,y,ze Xy and e€ Ey.

Proof. Because x - {y,z>p belongs to Xy, the formulas in Lemma 2.11 show that Ej
is a x-subalgebra of L!(G, A). We know from Lemma 2.9 that the *-homomorphism
¢ = (IndZ @) 'o(v>< V) restricts to a *-homomorphism of E; into 2((X0) )
such that ¢(g{x,y)) = 0,, and ¢ gives the required action of Ej on (Xp),: e-z

is by definition ¢(e)z. For any bounded operator Te.%((X;),), we have

{Tx, TxYp< ||T|\2 {x, X Yp; because Indgﬁ is isometric and v> V is decreasing for
the reduced norm, we have ||¢(e)||<||e||, and the inequality follows. [J

Proposition 2.13. The pairing g<-,- ) is an inner product with values in the C*-algebra
E =Ey, and

p<x-d,x-dY<||d|]* £<x,x)> as elements of the C*-algebra E. ~ (2.8)

Proof. We know from Lemma 2.11 that

E<xay>* E<ZaW>: E<X' <y72>D7W>;
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since the left action of FEj satisfies g<{x,y)-z=x-<{p,z)p, it follows that
e -glz,wy= gle-z,w) for all eeEy. Lemma 2.11 also shows that g{x,y)"
= g<{y,x), so g<-,-» has the required algebraic properties.

To see positivity, we fix a representation p of 4 on 2, and consider the left-regular
representation (j, 1) on L*(G, #) given by

(A(a)S)(s) = p(ag1(a))e(s) and  (4C)(s)

Now we let xe X, and consider éeL?*(G, #) of the form s+ f(s)h for fe C.(G)".
Then, we have

(p><i(e<{x,x))¢[¢)

At 1),

_ ( [ e e | c)

L(( Lot acxnineas) o \ O

/G /G (0 (o (a1 () M (EGT ) | ED)A(s) ™ dsdr

= /G/G(P(A<“/,—1(x)f(t),yrls(x)f(sflt) >)h | h)A(s)fl/z ds dr.

Since the function t+—7y,1(x)f(¢) belongs to C.(G,X), we can apply Fubini’s
Theorem, and then substitute r = s~ !¢ to reduce this to

/ / (Pla 1 DA™, (XU DA D) | ) dred,
GJG
which has the form (p(4<{y,y>)h|h) for the element y of X defined by
y= / D (X (A dr,
G

and hence is positive. Since ¢ of the given form span a dense subspace of L(G, #),
this proves that g><A(g<x, x)) is positive.

Thus g{-,-) is a pre-inner product; it is definite because |[r{x,x)|[4. =0
implies £<{x,x)(s) =0 for all seG. If now deDc M (B)’, then y,(x-d) = 7,(x) -
py(d) =y,(x)-d, so we can repeat the calculation of the previous paragraph to
see that

(p><A(||d|E<{x, x> — p{x-d,x-d))E| )

= (p(|d|P & p,y>— Ly -d,y-d)h|h),

which is positive because M(B) acts as bounded operators on 4X. This
proves (2.8). O



414 A. an Huef et al. | Journal of Functional Analysis 200 (2003) 401-428

Remark 2.14. Asin [17], E is an ideal in 4><,,G. To see this, one observes first that
the dense subalgebra A4, of A satisfies 4oEq < Ey and second that s+ o, (e(t's)) is in
E, for every e Ey and t€ G. So if f is in the dense subalgebra C.(G, 4y) of 4><,,G,
then the integrand of /" « e(s) = [, (t)o:(e(t™"s)) dt is in Ey for each 7, and hence the
integral takes values in Ey = E. Since Ej is a x-subalgebra this implies that E is a
two-sided ideal.

Definition 2.15. Following [17], we say that a proper action y on 4Xp is saturated
with respect to Xj if £ = A4><,,G.

To sum up, we have now proved:

Theorem 2.16. Suppose the Morita equivalence (4, (X, y)( Bp) I8 proper in the sense
of Definition 2.1 with respect to the pre-imprimitivity bimodule 4,(Xo)g, . Then the

completion of Xy in the norm ||x|| = || (x,x>D||l/2 implements a Morita equivalence
between the ideal

E=35p{s>A(s)""* 4{x,0,(0)> 1 x, e Xo} c A><,,G
and the C*-algebra

D= @{<X7J’>D : xvyEXO}CM(B)'
In particular, if the action y is saturated, then (Xo), implements a Morita equivalence
between A>,,G and D.

The general theory produces a pre-imprimitivity bimodule on which only the
spans of the ranges of the inner products act. In the main examples, there are
algebras of continuous functions of compact support which ought to act too, and it
is important that the formulas extend. The following lemma gives conditions under
which the extended left action is given by the expected formula.

Lemma 2.17. Let f:G—> A be a continuous function such that both s ||f(s)]|
and s»—>||f(s)||A(s)1/2 are integrable. Suppose that xe X, and that the integral
Jof (s) -ys(x)A(s)l/ 2 ds, which converges in Xg because of our second integrability
hypothesis on f, belongs to Xy. Let n be a representation of B and let (v, V) be the
covariant representation discussed in Lemma 2.7; note that the first integrability

hypothesis on f implies that v><V(f) makes sense as a bounded operator on
Xo ®D e}lfn. Then

(/Gf(s) -ys(x)A(s)l/zds> ®p h=v>=<V(f)(x®p h) for he #,.
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In other words, the left action of feL'(G,A) on xe(Xy), is given by the integral

Sformula
fox= [ £ 040" s
G

Proof. To make things easier on the eye, we write g(s) = f(s) - 7,(x)4(s)"/*. We fix
y®p n(b)ke Xy ®pn(By)H », and compute:

(v><V(f)(x®p h) | y@p n(b)k)

( /G V() Va(x®p h) ds

( / (9(s) ®p h) ds
G

/G(Q(S) ®p h|y®p n(b)k)ds

y®p ”(b)k>

y®p n(b)k>

/G (=(b" . g(s) So) | k) ds

L(=( [ 2 p<rarm )il k) as

/ / (=(b*B( <. 9(s) Sg) | &) dit d, (29)
GJG

using standard properties of B-valued integrals. On the other hand,

((/ (s)d)®D By @p w(b) )
= (o [, o)

(=(/ bﬁf(< o) ) 1)
L ((o o)) )

Because the inside integral converges in X, we can pull it through the B-valued inner
product with y; now we have an ordinary B-valued integral, and we can pull the
automorphisms and representation through to recover

/G /G (=" B,( <3 9(5) 35))h | k) dis . (2.10)
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But now we are talking about ordinary scalar-valued integrals; the element b is a sum
of elements of the form {w,z g, and for such an element the integrand

(@B (<y,g(s) 2p))h| k) = (m(a <y W), W) 2,7,(g(5)) Dp))h | )

is integrable on G x G. Thus, an application of Fubini’s Theorem identifies (2.10)
with (2.9) and we are done. [

3. Tensor-product decompositions of imprimitivity bimodules

Suppose the Morita equivalence () (X,7) (Bf) is proper with respect to the pre-

imprimitivity module 4,(X) ,, so that Theorem 2.16 gives a Morita equivalence (X))
between an ideal in 4><,,G and a generalized fixed-point algebra D for (B, ff). We
now want to show that (B, f§) is itself proper in Rieffel’s sense [17, Definition 1.2],

and to relate (Xj) to other Morita equivalences involving Rieffel’s generalized fixed-

point algebra B®. Both D and B are by definition subalgebras of M(B)ﬁ, but it is not
obvious that they must be the same subalgebra. Indeed, it is not even obvious that we
get the same generalized fixed-point algebra when f is proper with respect to two
different dense x-subalgebras. Fortunately, we have been able to show that at least
when y is saturated, all the fixed-point algebras relevant to us coincide. After we have
sorted this out, it will be relatively easy to get the desired relations between
imprimitivity bimodules.

We begin by giving a careful statement of our main results. Since we are concerned
about possibly different fixed-point algebras, we shall denote by (B, Bl)ﬂ the
generalized fixed-point algebra as defined in [17] when f is proper with respect to a
particular subalgebra Bj.

Theorem 3.1. Suppose that the Morita equivalence (A#)(X,y)(Bﬁ) is proper with
respect to 4,(Xo) B,» With generalized fixed-point algebra D. Then

(1) the action B on B is proper with respect to the subalgebra
Bl = <X0a X0>B = Sp{<x7y>B : x7y6XO}7

and the generalized fixed-point algebra (B, Bl)ﬁ is an ideal in D,

(2) the action vy is also proper with respect to the smaller pre-imprimitivity
bimodule ~ 4,(Xo)p,, and then has the same generalized fixed-point
algebra D.

The action f is saturated with respect to By if and only if v is saturated with respect to
Xo, and then (B, B,)" = D. There is an isomorphism

Q:(X><,G)® p=s,cB1— X0
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of (A >y, G)—D-imprimitivity bimodules such that
2@ = [ £) b)) ds G.)
G

for be By and f of the form f(s) = x - B,(¢*)A(s)""/* with xe Xy and ceB,.

Proofs of (1) and (2). For (1), we need to verify the two items of [17, Definition 1.2].
Write F for (B,B;)*, and let b= (v,w); and ¢ = (x,y)dp be typical spanning
elements of By. Then

bﬁs(c*) = <U,W : :[))J(<y7x>3) >B = <U, A<W7ys(y)>' Vs(x) >Ba

and hence
BB (NI ollllxa <w, () M-

The function s+— 4{w,y,(y))> and its product with s»—>A(s)1/2 are in L(G, A4)

because y is proper, so it follows that s+ bf(c) and s»—»A(s)l/zbﬁS(c) are integrable.
This gives the first item of [17, Definition 1.2].
Set z:=v- {x,y . Then ze Xj, and

b'c = {w,v)p{x,yop = {w,0- (X, y)p7p = {W,Z)p. (3.2)

Definition 2.1(3) says there is a multiplier <w,z>DeM(Bo)ﬁ such that

[aeeras = [ ap(wzdpds
G G
=a-<{w,zyp for all ae B, < By. (3.3)

We claim that <{w,z); multiplies B; (we already know it multiplies Bj). If
b = {x1,x2)5€B1, then b -{w,z>p = {x1,x2-{w,z>p > because {w,z>pe
M(B). But x;- {w,z>p is back in Xy, so b'-<{w,zdpe Xy, X0 p = By. Thus
{w,zype M(By).

We now define <{b,c)p = {(w,z)p, and (3.3) gives the second item of [17,
Definition 1.2]. Note that by definition of <-,- >, we have F = { Xy, Xy - B} >p. Since
Xo - By is a sub-module of f,(Xp)p, , it follows from the Rieffel correspondence that F
is an ideal of D. This gives (1).

For (2), we have to verify the three properties of Definition 2.1 for 4,(X)), . Since
B < By, the integrability properties are clear. So it suffices to check Definition 2.1(3)
and to show that D and Dy = D(, (Xy)p, ) coincide. If x,y,z€ X, then z- {x,y)p is
in Xp, so

<M}aZ>B<xay>D = <M}72' <xay>D>B
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is in By. Thus <{x,y)p multiplies By, and <{x,y>p, = {X,y)p has the properties
described in Definition 2.1(3). But with this definition of <-,-}p we trivially have
D=D,. O

The proof of the decomposition isomorphism (3.1) uses a general lemma about
imprimitivity bimodules over a linking algebra. If 4 Xp is an imprimitivity bimodule,
we denote by X the dual B-4 imprimitivity bimodule of [15, p. 49], and by

LX) = {(b(ay) ;) :aeA,beB,x,yeX}

the linking algebra of X [15, p. 50]. The matrices

Ligga) O 0 0
P =DLx)= 0 0 and g=qrx) = 0 Ly
M(B

define full projections in M (L(X)), and the corners pL(X)p, ¢L(X)q and pL(X)q in
L(X) can be naturally identified with 4, B and X, respectively.

In the next lemma, which is a variation of [3, Lemma 4.6; 4, Proposition 4.3], we
use the identifications to produce actions of 4, B and X on a module over L(X).

Lemma 3.2. Let X be an A—B imprimitivity bimodule with linking algebra L(X). If Z is
an L(X)—C imprimitivity bimodule, then pZ and qZ are A-C and B-C imprimitivity
bimodules, respectively, and there is an isomorphism Q:xQ®p qZ—-pZ of A-C
imprimitivity bimodules such that

Q(x®p qz) = x - qz. (3.4)

Proof. Since 4 = pL(X)p<L(X), itis easy to see that pZ is an A-module; on pZ, the
L(X)-valued inner product takes values in pL(X)p, and with 4{pz,pz>=
Prx)<z,2' Dp, pZ becomes a full left Hilbert A-module. The right actions and inner
products are already defined; the only thing we need to worry about is whether pZ is
full as a Hilbert C-module. So let 7 be the ideal in C spanned by the elements
{pz,pz >c. Then

Z-Ind¢M (1) =5p{ ) <z 0,2 Y1 2,2 € Z,ie ]}

:ﬁ{L(X) <Z : <PWaPW/>C»Z/>3Za Z/>W7 W/EZ}
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=5p{ 1) ooy <zpw - pw', 2 )z, 2 wow'eZ}
=5p{rx) <z PW oL <pw', 2 Y1z, 2 wow' e Z}
=5p{rx) <z WP Py W, 2 Dz, 2 wow e Z)

= L(X)pL(X),

which is L(X) because p is full. We can therefore deduce from the Rieffel
correspondence that / = C. Thus, pZ is an A-C imprimitivity bimodule. Similarly,
qZ is a B—C imprimitivity bimodule.

Note that the map (x,¢z)r>x- ¢z is bilinear, so there is a well-defined map
Q on the algebraic tensor product X ©¢Z satisfying (3.4), and which is
C-linear. To see that it is A-linear, recall that the action of 4 on X is given
by the product of the embedded copies in L(X); thus for aed and xelX,
we have

Qa-x®qz)=(a-x)-gz=a-(x-qz) =a- 2x®qz).
In the same way, the inner product {y,x g is given by the product y*x in L(X), so
(x®sp 42,y @8 qwrc = <<, X)p - qz,qwic = {(V'X) - 42,qw )¢
= {x-qz,y-qw)c
=< Q(x®p ¢2), 2y ®s 9w) e,

and Q extends to an isometry of (x®;p ¢Z). into (pZ).. To see that Q has
a dense range and is therefore onto, note that L(X) acts nondegenerately on Z,
so that

range Q DpL(X)q-qZ =pL(X)q-qL(X)-Z
=pL(X)qL(X)-Z = pL(X) - Z

because ¢ is full. Since Q is a bimodule isomorphism which preserves the C-valued
inner product, it must preserve the A-valued inner product as well. [

To prove Theorem 3.1, we apply Lemma 3.2 to the Combes bimodule X ><, .G
and a bimodule Z coming from an application of Theorem 2.16. As it arises, Z will
be a left module over L(X)><,G rather than L(X><,G). Thus, we shall have to
identify L(X)>,G with L(X>,G). Since we need to be very explicit about the
identifications involved, we review the details.



420 A. an Huef et al. | Journal of Functional Analysis 200 (2003) 401-428

Suppose as in the theorem that 4., (X a"/)(B,/}) is a Morita equivalence. For
feC/(G,A4),ge C/(G,B) and z,we C.(G, X) define

Fox0) = [ 103,075 dr (3.5)
29 = [ 20 lotr ') ar (3.6)

6 <E(8) = [ )07 ) (™) (3.7)
W 3pmolo) = [ B (<0009 30) . (3.8)

Proposition 3.3 (Combes). With the above actions and inner products, C.(G,X) is a
C.(G,A)-C.(G, B) pre-imprimitivity bimodule whose completion is an A>,,G—
B>y, G imprimitivity bimodule X >, ,G.

Composing functions with the usual identifications of the corners in L(X) gives
embeddings 111, 112 and 1»n of C.(G,4), C.(G,X) and C.(G,B), respectively, in
C.(G,L(X)). The actions of G on the corners combine to give an action u of G on
L(X). The following result is proved in [1].

Proposition 3.4 (Combes). The maps 1; induce an isomorphism of L(X ><,,G)
onto L(X)>,,G which carries prixs, ) and qrxs,c) into full projections
p and §eM(L(X)>,,G) such that p(L(X)><,,G)p,q(L(X)>,,G)§ and
P (L(X)><,,G){ are identified with A>,,G,B>3,G and X >, ,G, respectively.

We now return to the situation of Theorem 3.1. Recall that we seek an
L(X ><,,G)-D imprimitivity bimodule Z to which we can apply Lemma 3.2. We
intend to find Z by applying Theorem 2.16 to the Morita equivalence
(L(X).u)(X@B>(B$[;) and identifying the left-hand algebra L(X)><,,G with
L(X >«,,G) using Proposition 3.4. Of course we have some checking to do:

Lemma 3.5. Suppose that (4, (X,7) (B IS proper with respect to the pre-imprimitivity
bimodule 4,(Xo)p,, and has generalized fixed-point algebra D. Let By = < Xo, Xo g and

Ay X
L(Xo) = (Xz BT)‘

Then y@® B is proper with respect to p(x,)(Xo® B1)p,, and has generalized fixed-point
algebra D.
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Proof. Let x,ye Xy and b, ce B;. For Definition 2.1(1) we need to verify that

o x O\ _ [ a<xnn0)) x-Bi(e)
N B )\ (o) b(r,(v) - b)  bB(c)

and its product with 4 (s)fl/2 are in L'(G, L(X)). Since the action of G is proper with
respect to 4,(Xo)p, and g, (Bi)g , the functions s~ 4<{x,7,(y)> and s>bf(c*) as

~1/2

well as their products with A(s) are integrable. That s—>x- f,(c) and s+ x -

ﬁs(c)A(s)_]/ 2 are integrable follows from the estimate

[ - Bs(Kp 20p) I <1 a <6 050) > - 95 I oy W) T2

For Definition 2.1(2), note that s+—7,(x) - b and s+ f,(b) - ¢ and their products
with A(s)*l/2 are integrable using Definition 2.1(2) for 4,(Xo), and p, (B, B)p, -

To verify Definition 2.1(3), we write D’ for the generalized fixed-point algebra
associated to the action y@® 5, and F = (B, Bl)ﬁ, and define

x\ (¥
<<b>a< >> = <x7y>D+<b7c>F'
4 o

Note that D multiplies B;, and that the right-hand side belongs to D because F <= D
by part (1) of the theorem. Thus D' = D. Straightforward calculations show that

()G )
La(G) () #=C)L)),

for ze Xy and b’ eB;. O

and that

At this point it is convenient to prove the assertion in Theorem 3.1 about saturated
actions.

Proposition 3.6. Suppose that the Morita equivalence (4,)(X, y)( pp) is proper with
respect to the pre-imprimitivity bimodule 4,(Xo)p . Then the following are equivalent:

(1) the action y is saturated with respect to Xy;
(2) the action f is saturated with respect to By; and
(3) the action y@® p is saturated with respect to Xy @ Bj.

For the proof we need a standard lemma.
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Lemma 3.7. Let E be an ideal in a C*-algebra C and let p be a full projection in M(C).
Then E = C if and only if pEp = pCp.

Proof. Recall that pC is a pCp—C imprimitivity bimodule. The result follows from
the Rieffel correspondence:

pC-Ind(E) =sp{,¢,{pce,pd): c,de C,ee E}
=Sp{pced*p:c,deC,ecE}
=pEp

is the corresponding ideal in pCp. [

Proof of Proposition 3.6. As usual, we write E for the ideal in L(X)><,,G spanned
by functions of the form

s> A(s)"? L(x)<<z>, (;i((i;>>

_ g2 a<x 0> X Bi(e)
A(s) < b(ys(v) - b*)  bB(c*) )’ (3.9)

where x,y€ Xy and b, ceB;. Since L(X)>,,G=L(X >, ,G), two applications of
Lemma 3.7 imply that

E=L(X)>,,G==pL(X>,,G)p =A><,,G<=(¢L(X>,,G)§ =B>,,G.

Thus, functions of form (3.9) are dense in L(X)><,,G if and only if 4><,,G is
spanned by the functions s— 4(s)~"/* 4 (x,7,(») > if and only if B><p,G is spanned
by the functions sn—>A(s)71/2bﬁS(c*). The result follows. [

Proof of Theorem 3.1. Parts (1) and (2) were proved earlier, and the statement about
saturation is part of Proposition 3.6. We know from Lemma 3.5 and Proposition 3.6
that y and 7@ 8 are proper and saturated with respect to Xo and 1 (x,)(Xo @ B1)p,,
respectively. Thus Theorem 2.16 gives two imprimitivity bimodules

B=y,6(B)p and  [(x),,6(Xo® Bi))p, (3.10)

where F is an ideal of D. Since L(X)>,,G=~L(X ><,,G), we can apply Lemma 3.2
to the imprimitivity bimodules X >, .G and X, @ B;. Thus to see the existence of the
isomorphism, it suffices to prove that

P(Xo@B1)=4,,6(X0)p, and §(Xo@Bi)=pw,,6(B1)p (3.11)
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as imprimitivity bimodules; given this, it then follows from the Rieffel correspon-
dence that F = D because the imprimitivity bimodules in (3.10) and (3.11) based on
B, are completed in the same norm.

That p (Xo @ B)) and ¢ (Xy @ By) are (4><,,G)-D and (B>p,G)—D imprimitivity
bimodules, respectively, is proved in Lemma 3.2 (after again identifying L(X)><, .G
with L(X><1},G)) Recall that E, =L(X) >, G (Xo®B,Xo®B;) and that Ej-
(Xo @ B,) is dense in (Xo @ Bi) . Since

(O A0
e O ) OOV C)

we obtain that 5 (Xo@ B;), = (Xo®{0}),. That 5 (Xo® B)) = 4,,6(Xo), is now
clear because the inclusion of Xj into (X @ {0}),, preserves both inner products and
the D-action. Similarly, ¢ (Xo@ B1) = p>a,,¢(B1)p-

Finally, to get the formula for the isomorphism, we need to chase through our
identifications. Here, f -5 means the left action of feX>,,GcL(X>,,G)=
L(X)><,,G on be B < X, ® B;. Thus we have a formula for the action provided

£ D) (D)

which means that / must have the form f(s) = x - B,(¢*)4(s)”"/*. If so,

()= 0) () L

which gives the right formula. [
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4. The symmetric imprimitivity theorem for graph algebras

A directed graph E consists of countable sets E° of vertices and E' of edges, and
range and source maps r,s: E' - E°. A Cuntz—Krieger E-family in a C*-algebra A
consists of partial isometries {s,:e€E'} with mutually orthogonal ranges and
mutually orthogonal projections {p, : ve E°} such that

szse:pr(e)y SCS: <ps(e) and Pv = Z SES:

s(e)=v

whenever 0<|s~!(v)| < o0.

The graph C*-algebra C*(E) is generated by a universal Cuntz—Krieger family
{Se, v} (see [9] or [14], for example). We write E* for the path space of E, and for
peE” of length |u| we write s, = sy, 5y, ...5,,. The Cuntz—Krieger relations imply
that every word in the s, and Sf collapses to one of the form s,s} for u,ve E*, and
these are zero unless r(u) = r(v). Thus,

Xo(E) = sp{sus; :u,veE*,r(u) =r(v)}

is a dense *-subalgebra of C*(E).

Suppose we have a left action of a (discrete) group G on E which is free on E° (and
hence is free on E'). The universal property of C*(E) implies that there is an induced
action o: G—Aut C*(E) such that ay(s.) = sg. and oy(py,) = pgo. It is shown in
[11, Section 1] that the action « is proper and saturated with respect to Xy(E).
Indeed, it is proved in [11, Lemma 1.1] that averaging over o gives a linear map
I: Xo(E)—> M(Xo(E))” whose range spans the generalized fixed-point algebra
C*(E)*, and that there is an isomorphism ¢ of the C*-algebra C*(G\E) of the
quotient graph onto C*(E)*; thus, it follows from Rieffel’s theory that C*(E) >, ,G
is Morita equivalent to C*(G\E). The maps I; and ¢ are also used in [11] to directly
construct a bimodule implementing a symmetric imprimitivity theorem for the full
crossed products, as follows.

Suppose we have commuting free actions of G and H on the left and right of E.
Because the actions commute, they induce actions on the quotient graphs, and hence
we have actions o : G—Aut C*(E/H) and §: H— Aut C*(G\E) on their C*-algebras;
it is safe to also use « and f for the actions on X((E) and C*(E), because the maps
¢y and ¢ are then equivariant.

We write k(H, Xo(G\E)) for the set of functions f: H— Xy(G\E) with finite
support. For bek(H, Xo(G\E)), cek(G,Xo(E/H)) and x,ye Xy(E), we define

box=> ¢g(b(h))By(x), (4.1)
heH
x-e=>Y o (xpu(c(9))), (4.2)

geG
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k(X6 B <X Y () = bt oI (xB, (7)), (4.3)

(XY Gxemy) (9) = O oI (X og(v)). (4.4)

Now [11, Theorem 2.1] states that Xo(E) completes to give a Morita equivalence Z
between C*(G\E)><gH and C*(E/H)>,G.

We aim to apply Theorem 3.1 with X = X,(E) the C*(G\E)—(C*(E)><,G)
imprimitivity bimodule obtained by ignoring the action of H in (4.1)-(4.4). By
[8, Corollary 3.3] or [11, Corollary 3.1], we have

C*(E)><,G = C*(E)><,,G,
so we can view X as a module over the reduced crossed product.

Lemma 4.1. The action f of H on Xo(E) < C*(E) induces actions f of H on C*(G\E),
pon X and f><id on C*(E)><,G, and (X, H, ) is then a Morita equivalence between
(C*(G\E),H,p) and (C*(E)><,G,H,>id). The action  on X is proper and
saturated with respect to the pre-imprimitivity bimodule Xo(G\E)XO(E)k(G,XO(E))-

Proof. That f§ induces the actions on C*(G\E) and C*(E)><,G is standard. Because
f is compatible with the maps ¢ and I [11, Lemma 1.7], it is easy to check that f is
compatible with the module actions and inner products. In particular, this implies
that each f, is isometric, and hence extends to an action on X implementing the
desired Morita equivalence of systems. For the submodule Xy(E), the functions in
parts (1) and (2) of Definition 2.1 have finite support, and hence are trivially
integrable. For x,ye Xy(E), the function {x,y>p: G— M(C*(E)) defined by

X, 90p(9) = Tu(x oy ()

also has finite support; the embedding of M(C*(E)) X, G in M (C*(E)><,G) carries
this function into a multiplier {(x,y>, of k(G,Xo(E)) which satisfies Definition
2.1(3). Thus the action of H is proper. To see that it is saturated, we use [11, Lemma
1.4] to see that the function 6,5¢.,5%., in k(H, Xo(G\E)) is given by

SnSGuS gy = Onbg oA (su8)) = <X, )p,
when x = 5,5, and y = pyy.. O

Applying Theorem 3.1 to (X, H, f§) gives a (C*(E) ><,3(G x H))—D imprimitivity
bimodule By, a (C*(G\E) > 3H)-D imprimitivity bimodule Xy, and a decomposition
isomorphism. The space X;(E) underlies both X, and the bimodule Z of [11]. Here
X is really a bimodule over k(H, Xo(G\E)) and the generalized fixed-point algebra
Dc M(C*(E)><,G); when we use ¢y ><id to identify D with C*(E/H)><,G, our
formulas convert to the ones (4.1)—(4.4) used in [11]. Thus:
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Theorem 4.2. The bimodule (1 x,(G\£)X0(E)kc x,(£/my described in (4.1)-(4.4)
completes to give an imprimitivity bimodule which implements a Morita equivalence
between C*(G\E)>p,H and C*(E/H)>a,,G.

Comparing this bimodule to the one for the full crossed products allows us to
settle a question left open in [11, Remark 3.2].

Corollary 4.3. Suppose that G and H act freely on the left and right of a directed graph
E, and let o and [ denote the induced actions on C*(E/H) and C*(G\E). Then regular
representations of (C*(E/H), G,a) are faithful if and only if regular representations of
(C*(G\E), H, p) is faithful.

Proof. Let I be the kernel of the quotient map from C*(E/H)><,G to
C*(E/H)><,,G. Then, by the Rieffel correspondence [15, Section 3.3], there are a
closed submodule W of the bimodule Z of [11] and an ideal J = Z-Ind [ in
C*(G\E)>agH such that Z/W is a (C*(G\E)>gH)/J-(C*(E/H)>,G)/I im-
primitivity bimodule. In particular, this implies that the semi-norms on Xy(E)=Z
induced by the quotient norms on (C*(G\E)><gH)/J and (C*(E/H)><,G)/I
coincide [15, Proposition 3.11]. The semi-norm coming from the right inner
product is that induced by the reduced norm on k(G,Xo(E/H)). However, we
know by applying [15, Proposition 3.11] to the bimodule of Theorem 4.2 that this
coincides with the semi-norm induced by the left inner product and the
reduced norm on k(H,Xy(G\E)). Thus, the semi-norm on k(H,X)(G\E))
pulled back from the quotient (C*(G\E)><gH)/J is the reduced semi-norm,
the quotient is the reduced crossed product, and J is the kernel of the quotient
map onto C*(G\E)><p,H). Since I =0 if and only if Z-IndI =0, the result
follows. O

To complete the analysis, we identify B; and check that the decomposition
of Theorem 3.1 gives an isomorphism between the tensor-product equivalence of
[11, Theorem 1.9] and that of Theorem 4.2.

The algebra B; is spanned by the range of the inner product on Xy(E),
and since

5g5145:k7 = <Svsrupg*1~s(v) >k(G,X0(E))7

this is all of k(G, Xo(E)). This is also a dense subspace of the Combes bimodule
Y ><,G, where Y is the (C*(E)>pgH)-C*(E/H) imprimitivity bimodule based on
Yo = Xo(E) obtained by ignoring G in (4.1)~(4.4). To see that B; is isomorphic to
Y><,,G, we need to note that the map ¢y><id is an isomorphism of
C*(E/H)><,,G onto the fixed-point algebra D, and check that the inner products
and module actions match up.

Let a,b,cek(G, Xo(E)). To verify that the D-valued inner product on B; and the
C*(E/H)><,,G-valued inner product on Y ><,,G agree modulo the isomorphism
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¢ ><id, note that

a-<b,cyp="> a(p>id),(b*c), (4.5)

heH

where the two products on the right are convolution in C*(E)><,G. Thus a-
{b,cyp(t) can be written as a triple sum over H X G X G. On the other hand, using
(3.6) and (3.8), we get

a-<{b,cHc p/mys,,6(t) = Z Z a(s)otg1,(<b(), e(Is™'0) ey

seG leG

which is the same as (4.5) after using ¢ to identify C*(E/H) and C*(E)ﬁ and

applying (4.4).
To see that the left inner products coincide, we start with the inner product from
Y ><,,G: from (3.7) we have

(C(E) >y H) >=,,G <Dy € (1, h) Z c+(E)ayi <b(s),0(c (r'5)) X(h),

seCG

which, using (4.3) and the isomorphism ¢, is > . b(s) B (e (c(z7's5)™)). But we can
recognize this as the convolution product bf,(c*) evaluated at 7z, which is
(C*(E)>2,G) >, 1 <Dy ¢ (D, 1).

Using (3.6) it is straightforward to check that the right action of C*(E/H) >, ,G
on Y>,,G is the same as the action of D as multipliers on B;. If fek(G x H,
Xo(E)) then using (3.5) we get

0= f(s,)-aslals"1)),

seG

which, using (4.1) and ¢, reduces to the left action of f on B, given by Lemma 2.17.
Thus B, and Y >, G are isomorphic.

The decomposition isomorphism of (X >4, H)® (), (mx6) (Y ><4,G) onto the
reduced symmetric imprimitivity bimodule of Theorem 4 2 is given by

Qe®b) =Y e(h) - (B>id), (b),

heH

where the action is that of Eyck(G, Xo(E/H)) on Xy. Working out the formulas in
terms of the product in Xo(E) < C*(E) gives

Qe®b) =Y > o, (edu(Bu(b(9))), (4.6)

heH geG

and the functions e, b of the required form span k(H, Xp) and k(G, Yy), respectively.
Hence:
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Corollary 4.4. The map Q:k(H, X)) ®k(G, Yy) - Xy defined by (4.6) extends to an
isomorphism of (X ><p,H)® c(g)s,(1x6) (Y >,,G) onto the reduced symmetric
imprimitivity bimodule of Theorem 4.2.

Remark 4.5. A similar analysis can be carried out for the symmetric imprimitivity
theorem of [13], and yields an isomorphism of the form (1.1) for the bimodule Z
which implements the reduced version of the symmetric imprimitivity theorem, as in
[12] or [6, Corollary 2]. With a bit of work, one can check that this isomorphism is
given on suitable dense subspaces by the same formula as that of [7, Lemma 4.8].
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