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PROPERTIES PRESERVED UNDER MORITA EQUIVALENCE
OF C∗-ALGEBRAS

ASTRID AN HUEF, IAIN RAEBURN, AND DANA P. WILLIAMS

(Communicated by Joseph A. Ball)

Abstract. We show that important structural properties of C∗-algebras and
the multiplicity numbers of representations are preserved under Morita equiv-
alence.

Introduction

Morita equivalence for C∗-algebras was introduced by Rieffel in the 1970s and
is now a standard tool in the subject. Saying that two C∗-algebras are Morita
equivalent is a strong way of saying that “they have the same representation the-
ory”, and hence one expects representation-theoretic properties of C∗-algebras to
be preserved by Morita equivalence. Here we aim to provide a brief but compre-
hensive discussion of this issue, thereby updating and extending previous work of
Zettl [13, 14].

Our main new results are that the upper and lower multiplicity numbers of
Archbold [1] and the relative multiplicity numbers of Archbold-Spielberg [4] are
preserved by Morita equivalence: if A and B are Morita equivalent, π ∈ B̂, and
Ind π is the corresponding representation of A, then the multiplicities of π and Indπ
coincide (Theorem 10 and its corollaries). We also give a short direct proof that
nuclearity is preserved, avoiding previous authors’ reliance on Connes’ equivalence
between nuclearity of A and injectivity of A∗∗ (see [13, 5]). We have tried to use
only the basic theory of Morita equivalence, as expounded in [12, Chapter 3], and
we have preferred arguments which do not require separability hypotheses. We have
therefore resisted temptations to reduce Morita equivalence to stable isomorphism
using the Brown-Green-Rieffel theorem (as in [12, Theorem 5.55], for example).

We prove in §1 that liminarity and related properties are preserved, and that
the properties of having continuous trace or bounded trace are preserved. Many of
these results were first proved by Zettl using similar arguments [14], and we have
included them here partly to provide a convenient reference in modern notation,
and partly because we need the main technical results (Lemma 4 and its corollaries)
in the proof of our main theorem in §2. In the last section, we prove that nuclearity
is preserved.
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Background. We say that two C∗-algebras are Morita equivalent to mean that
there is an A–B imprimitivity bimodule. The basic theory of Morita equivalence
was developed by Rieffel, and the last two authors provided a detailed account of
his theory in [12, Chapters 2 and 3], which we use as our main reference.

If AXB is an imprimitivity bimodule and π is a representation of B on a Hilbert
space H, we denote by X-Ind π or Indπ the induced representation of A on X⊗B H
characterised by Ind π(a)(x ⊗ h) = (a · x) ⊗ h. The kernel of the representation
Ind π depends only on the kernel of π, so there is a well-defined map Ind = X-Ind
from the set of ideals I(B) of B to I(A), which turns out to be an inclusion-
preserving bijection with inverse X̃-Ind implemented by the dual bimodule BX̃A [12,
Theorem 3.22]. We refer to this bijection as the Rieffel correspondence associated to
the imprimitivity bimodule X. If I is an ideal in B, then I and Ind I are canonically
Morita equivalent, and so are the quotients A/ Ind I and B/I [12, Proposition 3.25].
The map π �→ Ind π respects unitary equivalence and irreducibility and induces a
homeomorphism of the spectrum B̂ onto Â. (It is proved in [12, Corollary 3.33]
that the Rieffel correspondence gives a homeomorphism of Prim B onto PrimA,
and it follows from this and the definition of the topology on the spectrum given
in [12, Definition A.21] that it is also a homeomorphism on spectra.)

1. Properties associated to the algebra of compact operators

A C∗-algebra is elementary if it is isomorphic to the algebra K(H) of compact
operators on some Hilbert space H.

Proposition 1. Suppose that AXB is an imprimitivity bimodule. Then A is ele-
mentary if and only if B is elementary.

Proof. Suppose B is elementary. The algebra K(H) is Morita equivalent to C [12,
Examples 2.11 and 2.27], and Morita equivalence is an equivalence relation [12,
Proposition 3.18], so A is Morita equivalent to C; let AYC be an A–C imprimitivity
bimodule. Since a Hilbert C-module YC is a Hilbert space and K(YC) is then the
usual algebra of compact operators [12, Example 2.27], we deduce that A = K(YC)
is elementary. �

Following [6], we say that a C∗-algebra A is liminary1 if π(A) ∼= K(Hπ) for all
π ∈ Â, and postliminary if every nonzero quotient of A has a nonzero liminary ideal.

Proposition 2. Suppose that AXB is an imprimitivity bimodule. Then A is limi-
nary if and only if B is liminary.

Proof. Assume A is liminary, and let π ∈ B̂. Since A/ ker(Indπ) is Morita equiva-
lent to B/ kerπ, Proposition 1 implies that B/ ker π is elementary, and there is an
isomorphism φ : B/ kerπ → K(H). The representation π factors through a repre-
sentation π′ of B/ ker π, and then π′′ := π′ ◦ φ−1 is a representation of K(H) with
π(B) = π′′(K(H)). Since every irreducible representation of K(H) is equivalent to
the identity representation, we have

π(B) = π′′(K(H)) = K(Hπ′′) = K(Hπ),

and B is liminary. Symmetry gives the rest. �
1We have followed our sadly missed friend Gert Pedersen in avoiding the dreaded ASHCEFLC

(see [9, §6.2.13]), and in preferring to translate the French word liminaire as liminary in parallel
with the obvious translation of préliminaire.
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One can quickly deduce from Proposition 2 that A is postliminary if and only if B
is, and that the Rieffel correspondence carries the largest liminary and postliminary
ideals of B to the corresponding ideals of A.

Remark 3. If one prefers to define postliminary algebras to be those for which
π(A) ⊃ K(Hπ) for every π ∈ Â (it is actually a deep theorem that the two definitions
are equivalent), then one can also prove directly that this property is preserved.

We learned the following lemma from Philip Green, and Zettl used a similar
result in [14].

Lemma 4. Let AXB be an imprimitivity bimodule and π : B → B(H) a represen-
tation of B. For each x ∈ X, define Tx = Tx,π : H → X ⊗B H by Tx(h) = x ⊗ h
for h ∈ H. Then T ∗

x (y ⊗ h) = π(〈x , y〉B)h and

T ∗
x Tx = π(〈x , x〉B) and TxT ∗

x = Indπ(A〈x , x〉).

Proof. For x, y ∈ X and h, k ∈ H we have

(Tx(k) | y ⊗ h) = (π(〈y , x〉B)k |h) = (k |π(〈x , y〉B)h),

confirming the formula for T ∗
x . We have T ∗

x Tx(h) = T ∗
x (x ⊗ h) = π(〈x , x〉B)h.

Finally,

TxT ∗
x (y ⊗ h) = Tx(π(〈x , y〉B)h) = x ⊗ π(〈x , y〉B)h

= x · 〈x , y〉B ⊗ h = A〈x , x〉 · y ⊗ h,

which is by definition Indπ(A〈x , x〉)(y ⊗ h). �

Corollary 5. Let AXB be an imprimitivity bimodule and π a representation of B.
For each x ∈ X,

tr(π(〈x , x〉B)) = tr(Indπ(A〈x , x〉)).

Proof. A slight modification of the proof that tr(T ∗T ) = tr(TT ∗) for T ∈ B(H)
(for example, that given in [10, Proposition 3.4.3]) shows that it holds also for T ∈
B(H, K). Thus tr(T ∗

x Tx) = tr(TxT ∗
x ), and the result follows from the lemma. �

Corollary 6. Let AXB be an imprimitivity bimodule, π a representation of B and
x ∈ X. Then π(〈x , x〉B) 
= 0 if and only if Ind π(A〈x , x〉) 
= 0.

Recall from [6, 4.5.2] that if A is a C∗-algebra, then

m(A) := span{a ∈ A+ : π �→ tr(π(a)) is finite and continuous on Â}

is an ideal, which we call the ideal of continuous-trace elements. Similarly,

t(A) := span{a ∈ A+ : π �→ tr(π(a)) is bounded on Â}

is an ideal, which we call the ideal of bounded-trace elements ([7, §2]; see also [8, 11]).
The C∗-algebra A has continuous trace if m(A) = A, or bounded trace if t(A) = A.

Proposition 7. Let AXB be an imprimitivity bimodule. Then the Rieffel corre-
spondence carries m(B) to m(A) and t(B) to t(A). In particular, A has continuous
trace if and only if B has continuous trace, and A has bounded trace if and only if
B has bounded trace.
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Proof. We prove the statement about t(B) and t(A); a very similar argument proves
the analogous statement for m(B). Since every closed ideal J in A satisfies

J =
⋂
{kerπ : π ∈ Â, π|J = 0},

it suffices to show that

(1) {π ∈ B̂ : π(t(B)) 
= {0}} = {π ∈ B̂ : Indπ(t(A)) 
= {0}}.
Suppose π(t(B)) 
= {0}. By [12, Theorem 3.22], and then by polarisation,

t(B) = span{〈x , y〉B : x, y ∈ X · t(B)}
= span{〈x , x〉B : x ∈ X · t(B)}
= span{〈x , x〉B : x ∈ X · t(B)}.

So there exists x ∈ X · t(B) such that π(〈x , x〉B) 
= 0. Since 〈x , x〉B ∈ t(B),
the function π �→ tr(π(〈x , x〉B) is bounded, and it follows from Corollary 5 that
A〈x , x〉 ∈ t(A). By Corollary 6, Indπ(A〈x , x〉) 
= 0. Thus Indπ(t(A)) 
= {0}, and
we have shown that the left-hand side of (1) is contained in the right-hand side. A
similar argument gives the other inclusion. �

It is well known that a C∗-algebra need have no largest continuous-trace ideal:
for example, in the algebra A3 of [12, Example A.25], kerπ1 and ker π2 are distinct
maximal continuous-trace ideals whose intersection is m(A3). The bounded-trace
property is quite different, as the following result shows. It was first proved in [3,
Theorem 2.8], but our argument seems more direct.

Proposition 8. Every C∗-algebra A has a largest bounded-trace ideal.

Proof. We consider the set I of all closed ideals in A which have bounded trace.
Observe that if a ∈ I+ belongs to t(I), then π(a) vanishes for π ∈ Â \ Î, and hence
a ∈ t(A) also. Let J be the closure of span

⋃
I∈I I. Then J is an ideal in A, and

span
⋃

I∈I t(I) is dense in J ; since span
⋃

I∈I t(I) ⊂ t(J), J has bounded trace. �

We can now deduce the following corollary from Proposition 7.

Corollary 9. Let AXB be an imprimitivity bimodule. Then the Rieffel correspon-
dence carries the largest bounded-trace ideal of B to the largest bounded-trace ideal
of A.

2. Multiplicity numbers

Our next goal is to prove that the upper and lower multiplicities of representa-
tions are preserved under Morita equivalence. We suppose that B is a C∗-algebra,
π ∈ B̂ and (πα) is a net in B̂ such that π is a cluster point of (πα). We use the
following characterisations of upper multiplicity relative to a net from [3, Theo-
rem 2.4]:

(rk) MU (π, (πα)) ≤ k if and only if there exists b ∈ B such that π(b) 
= 0 and
rankπα(b) ≤ k eventually.

(tr) MU (π, (πα)) ≤ k if and only if there exists b ∈ B+ such that π(b) is a
nonzero projection and trπα(b) ≤ k eventually.

Our statement of (rk) is slightly different from that of [3, Theorem 2.4(iii)] in that
we do not require b to be positive, but the two are equivalent because the rank of
πα(b∗b) is the same as the rank of πα(b).
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Theorem 10. Suppose AXB is an imprimitivity bimodule. Let π ∈ B̂ and let (πα)
be a net in B̂ such that π is a cluster point of (πα). Then

MU (π, (πα)) = MU (X-Ind π, (X-Indπα)).

In the proof of the theorem we need the following standard lemma.

Lemma 11. Suppose AXB is an imprimitivity bimodule. The n-fold direct sum
Xn is an Mn(A)-B imprimitivity bimodule with

(aij) · x =
(∑n

j=1 aij · xj

)
i
,

x · b = (xi · b)i,

Mn(A)〈x, y〉 =
(
A〈xi, yj〉

)
i,j

, and

〈x, y〉B =
∑n

i=1〈xi, yi〉B,

for x = (xi), y = (yi) ∈ Xn, (aij) ∈ Mn(A) and b ∈ B. If π : B → B(H) is a
representation, then there is a unitary isomorphism U of Xn⊗B H onto (X⊗B H)n

such that U(x ⊗ h) = (xi ⊗ h)i, and U intertwines Xn-Ind π((cij)) with the matrix(
X-Ind π(cij)

)
i,j

in Mn(B(X ⊗B H)) = B((X ⊗B H)n).

Proof of Theorem 10. It suffices to prove that

(2) MU (X-Ind π, (X-Indπα)) ≤ MU (π, (πα));

indeed, given (2), we can apply it to the dual bimodule X̃ to get

MU (π, (πα)) = MU (X̃-Ind(X-Ind π), (X̃-Ind(X-Ind πα)))

≤ MU (X-Ind π, (X-Indπα)).

First we suppose that k := MU (π, (πα)) is finite. By (tr), there exists b ∈ B+

such that π(b) is a nonzero projection and trπα(b) ≤ k eventually. Choose a
continuous function f ∈ Cc([0,∞)) such that f(t) = 0 for t near 0, f(1) = 1, and
f(t) ≤ t for all t ≥ 0. For large α, πα(b) is a positive compact operator (trace-class,
in fact), and since f(t) ≤ t for all t, the spectral theorem implies that

tr(πα(f(b))) = tr(f(πα(b))) ≤ tr(πα(b)) ≤ k.

Since f(0) = 0 and f(1) = 1, we also have π(f(b)) = f(π(b)) = π(b), so π(f(b)) is
a nonzero projection.

The point of applying f to b is that f(b)1/2 = f1/2(b) lies in the Pedersen
ideal κ(B) of B, which is contained in every other dense ideal of B (see [9, Theo-
rem 5.6.1]). In particular, κ(B) is contained in the ideal 〈X, X〉B spanned by the
elements of the form 〈x, y〉B, and thus there are finitely many elements xi, yi ∈ X
such that f(b)1/2 =

∑n
i=1〈xi, yi〉B. Now

f(b) =
( n∑

i=1

〈xi, yi〉B
)( n∑

j=1

〈xj , yj〉B
)∗

=
n∑

i,j=1

〈xi, A〈yi, yj〉 · xj〉B.
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The matrix (A〈yi, yj〉)i,j is a positive element of the C∗-algebra Mn(A) (see, for
example, [12, Lemma 2.65]), and hence has the form D∗D for some D = (dij) ∈
Mn(A). Thus

f(b) =
n∑

i=1

〈
xi,

n∑
k,j=1

d∗kidkj · xj

〉
B

=
n∑

k=1

〈 n∑
i=1

dki · xi,
n∑

j=1

dkj · xj

〉
B

=
n∑

k=1

〈zk, zk〉B,

where we have written zk =
∑n

i=1 dki · xi. Then with z = (zk) ∈ Xn, we have
realised f(b) as the single inner product 〈z, z〉B for the B-valued inner product of
Lemma 11.

Recall that π(〈z, z〉B) has the form T ∗
z Tz for the operator Tz : h �→ z⊗B h of Hπ

into HXn-Ind π = Xn ⊗ Hπ (see Lemma 4). Since π(〈z, z〉B) = π(f(b)) = π(b) is a
nonzero projection,

TzT
∗
z = Xn-Ind π(Mn(A)〈z, z〉)

is also a nonzero projection. By Corollary 5, for large α we have

tr
(
Xn-Ind πα(Mn(A)〈z, z〉)

)
= tr

(
πα(〈z, z〉B)

)
≤ k.

Thus (tr) gives MU (Xn-Ind π, (Xn-Ind πα)) ≤ k.
To see that this statement passes to one about MU (X-Ind π, (X-Indπα)), we use

(rk) to find C = (cij) ∈ Mn(A)+ such that Xn-Ind π(C) 
= 0, and for large α we
have rank(Xn-Ind πα(C)) ≤ k. By Lemma 11, Xn-Ind π(C) is essentially the n×n
matrix

(
X-Ind π(cij)

)
, and we deduce that at least one entry X-Ind π(cij) in this

matrix is non-zero. Since for large α we have

rank
(
X-Ind πα(cij)

)
= rank

(
eii

(
Xn-Ind πα(C)

)
ejj

)
≤ rank

(
Xn-Ind πα(C)

)
≤ k,

we deduce from (rk) that MU (X-Ind π, (X-Indπα)) ≤ k, and we have proved (2)
when k = MU (π, (πα)) is finite.

As we commented earlier, this suffices to prove the theorem when k is finite. In
particular, if one of the upper multiplicities is finite, then so is the other; hence if
one is infinite, the other must be too, and we also have equality when MU (π, (πα))
is infinite. �

We now use Theorem 10 to obtain information about the lower multiplicity
numbers ML defined in [1, §2] and [4, §2].

Corollary 12. Suppose AXB is an imprimitivity bimodule. Let π ∈ B̂ and let (πα)
be a net in B̂ such that π is a cluster point of (πα). Then

ML(π, (πα)) = ML(Ind π, (Indπα)).

Proof. Since Ind is a homeomorphism on spectra, Ind π is a cluster point of (Indπα).
So it suffices to show that ML(Ind π, (Indπα)) ≤ ML(π, (πα)). By [4, Proposi-
tion 2.3] there exists a subnet (παi

) of (πα) such that ML(π, (πα)) = MU (π, (παi
)).

Now Theorem 10 gives

ML(Indπ, (Ind πα)) ≤ MU (Indπ, (Indπαi
)) = MU (π, (παi

)) = ML(π, (πα)),

as required. �
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Corollary 13. Suppose AXB is an imprimitivity bimodule and let π ∈ B̂.
(1) Suppose {π} is not open in Â (so that the lower multiplicity of π is defined).

Then ML(π) = ML(Indπ).
(2) MU (π) = MU (Ind π).

Proof. It suffices to show that M∗(Ind π) ≤ M∗(π).
(1) Since Ind is a homeomorphism, Indπ is not open in Â. By Propositions 2.2

and 2.3 of [4], there is a net (πα) in B̂ \ {π} converging to π such that ML(π) =
MU (π, (πα)). Now Theorem 10 gives

ML(Indπ) ≤ ML(Ind π, (Indπα)) ≤ MU (Ind π, (Indπα)) ≤ MU (π, (πα)) = ML(π).

(2) By [4, Proposition 2.2] there exists a net (πα) in B̂ converging to π such that

MU (Ind π) = MU (Indπ, (Ind πα)),

which, by Theorem 10, is MU (π, (πα)), and thus less than or equal to MU (π). �

Recall that A is a Fell algebra if every π ∈ Â is a Fell point, that is, there exists
a ∈ A+ such that σ(a) is a rank-one projection for all σ near π in Â. It was observed
in [2, §3] that the Fell algebras are the algebras of type I0 studied in [9, §6.1]. By
[1, Theorem 4.6], A is a Fell algebra if and only if MU (π) = 1 for every π ∈ Â.
Thus we have:

Corollary 14. Suppose that AXB is an imprimitivity bimodule. Then A is a Fell
algebra if and only if B is a Fell algebra.

3. Nuclearity

Recall that a C∗-algebra A is nuclear if there is only one C∗-norm on the alge-
braic tensor product A � C for every C∗-algebra C; the maximal tensor product
A ⊗max C and the spatial tensor product A ⊗σ C (as defined and discussed in Ap-
pendix B of [12], for example) then coincide. Our goal in this section is to give a
simpler and more direct proof of the following theorem of Zettl [13] and Beer [5].

Theorem 15. Suppose that AXB is an imprimitivity bimodule. Then A is nuclear
if and only if B is nuclear.

For the proof of Theorem 15 we need the following lemma.

Lemma 16. Suppose that AXC and BYD are imprimitivity bimodules. Then there
are unique (A � C)- and (B � D)-valued inner products on the tensor product
bimodule Z = X � Y such that

A�B〈x ⊗ y, z ⊗ w〉 = A〈x, z〉 ⊗ B〈y, w〉 and(3)

〈x ⊗ y, z ⊗ w〉C�D = 〈x, z〉C ⊗ 〈y, w〉D,(4)

and Z is then both a pre-(A ⊗max B)–(C ⊗max D) imprimitivity bimodule, and a
pre-(A ⊗σ B)–(C ⊗σ D) imprimitivity bimodule.

Proof. In [12, Proposition 3.36], we show that (3) and (4) define positive sesquilinear
forms no matter what tensor product norm we use. We also show that when we use
the spatial norms, the module actions are bounded, so that Z is a pre-(A ⊗σ B)–
(C ⊗σ D) imprimitivity bimodule. To see that the same is true for the maximal
norm, we only need to see that the module actions are bounded when the inner
products are viewed as taking values in the maximal tensor products. We denote
by X ⊗max Y the Hilbert-module completion when C � D has the maximal norm.
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We begin by showing that the left action of A is bounded. Consider the A–
Mn(C) imprimitivity bimodule Xn, defined as in Lemma 11 but with left and right
swapped, and a typical element

∑n
i=1 xi ⊗ yi of X � Y . Since A acts by bounded

operators on (Xn)Mn(C) (see [12, Lemma 3.7]), there is a matrix S = (sij) in Mn(C)
such that

(5)
(
〈a · xi, a · xj〉C

)
i,j

= ‖a‖2
(
〈xi, xj〉C

)
i,j

+ S∗S.

The matrix
(
〈yi, yj〉D

)
is positive in Mn(D), and therefore has the form T ∗T for

some T = (tij) ∈ Mn(D). We now compute as follows:〈∑
i

a · xi ⊗ yi,
∑

i

a · xi ⊗ yi

〉
C�D

=
∑
i,j

〈a · xi, a · xj〉C ⊗ 〈yi, yj〉D

=
∑
i,j

(
‖a‖2〈xi, xj〉C +

∑
k

s∗kiskj

)
⊗ 〈yi, yj〉D

= ‖a‖2
〈∑

i

xi ⊗ yi,
∑

j

xj ⊗ yj

〉
C�D

+
∑

i,j,k,l

s∗kiskj ⊗ t∗litlj

≤ ‖a‖2
〈∑

i

xi ⊗ yi,
∑

i

xi ⊗ yi

〉
C�D

;

since the term we threw away is positive in every C∗-completion of C � D, this
last inequality holds in every completion, and in particular in the maximal tensor
product. A similar computation shows that B acts by bounded operators on the
second factor. The resulting homomorphisms of A and B into the C∗-algebra
L(X ⊗max Y ) have commuting ranges, and hence by [12, Theorem B.27] give a
homomorphism of A ⊗max B into L(X ⊗max Y ), as required. �

Proof of Theorem 15. Suppose that B is nuclear and C is any C∗-algebra. In view
of [12, Proposition 3.36] and Lemma 16, the algebraic tensor product X � C is
both a pre-(A ⊗max C)–(B ⊗max C) imprimitivity bimodule, and a pre-(A ⊗σ C)–
(B ⊗σ C) imprimitivity bimodule. In particular, the maximal norm of t ∈ A � C
is the operator norm of t on X � C viewed as a right Hilbert (B ⊗max C)-module,
and the spatial norm is the operator norm of t on X �C viewed as a right Hilbert
(B⊗σC)-module. Since B is nuclear, these norms coincide. Therefore, the maximal
and spatial norms coincide on A � C. Since C is arbitrary, A is nuclear. �

Presumably the following proposition is well known, but we do not have a refer-
ence.

Proposition 17. Every C∗-algebra has a largest nuclear ideal.

For the proof, we need the following standard facts:
(a) If I is an ideal in A and both I and A/I are nuclear, then so is A.
(b) If A =

⋃
i Ai and each Ai is a nuclear C∗-subalgebra of A, then A is nuclear.

The first of these is given a relatively elementary proof in [12, §B.53]. For the second,
let B be a C∗-algebra and consider the canonical surjection φ : A⊗maxB → A⊗σ B.
For each i the norm inherited from A ⊗max B is a C∗-norm on Ai � B, and hence
the canonical map of Ai � B into Ai ⊗σ B is isometric for this norm. Since the
inclusion of Ai ⊗σ B in A ⊗σ B is isometric, it follows that φ is isometric on each
subalgebra Ai � B of A ⊗max B, and hence φ itself is isometric.
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Proof. We consider the collection I of nuclear ideals of A, which is nonempty
because {0} ∈ I. Property (b) above implies that chains in I have upper bounds
in I, and hence Zorn’s lemma implies that I has maximal elements. If I and J are
two maximal elements, then applying property (a) to the exact sequence

0 → I → I + J → J/(I ∩ J) → 0

shows that I + J is nuclear, and hence maximality forces I = J . The unique
maximal nuclear ideal is the one we want. �

Given the existence of the largest nuclear ideal, Theorem 15 immediately gives:

Corollary 18. Suppose that AXB is an imprimitivity bimodule. Then the Rieffel
correspondence carries the largest nuclear ideal of B into the largest nuclear ideal
of A.
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