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CONTINUOUS-TRACE GROUPOID C∗-ALGEBRAS. III

PAUL S. MUHLY, JEAN N. RENAULT, AND DANA P. WILLIAMS

Abstract. Suppose that G is a second countable locally compact groupoid
with a Haar system and with abelian isotropy. We show that the groupoid
C∗-algebra C∗(G, λ) has continuous trace if and only if there is a Haar system
for the isotropy groupoid A and the action of the quotient groupoid G/A is
proper on the unit space of G.

1. Introduction

Throughout G will be a second countable locally compact Hausdorff groupoid
with unit space G(0) and Haar system {λu }u∈G(0) . We are primarily interested in
the case where the isotropy subgroupoid A = { γ ∈ G : s(γ) = r(γ) } is abelian (in
the obvious sense: each fibre Au = Au = Au = Auu is an abelian group). Notice that
A acts freely and properly on the left and right of G. The quotientR = A\G = G/A
is a principal groupoid which may be identified (set theoretically, but usually not
topologically) with an equivalence relation in G(0) × G(0).

The collection Σ(0) of closed subgroups of G is a compact Hausdorff space in the
Fell topology (see [16, §1]), and a groupoid in its own right. The map S : G(0) →
Σ(0) need not be continuous in general, but the second author has shown that the
continuity of S is equivalent to the existence of a Haar system { βu }u∈G(0) for A
[16, Lemmas 1.1 and 1.2].

Our object is to prove the following theorem.

Theorem 1.1. Suppose that G is a second countable locally compact Hausdorff
groupoid with unit space G(0), abelian isotropy, and Haar system {λu }u∈G(0) . Then
C∗(G, λ) has continuous trace if and only if

(1) the stabilizer map u 7→ Au is continuous from G(0) to Σ(0), and
(2) the action of R on G(0) is proper.

Theorem 1.1 should be thought of as a natural groupoid generalization of [20,
Theorem 5.1] which says that a transformation group C∗-algebra C∗(G,Ω), with all
the stability groups contained in a fixed abelian subgroup of G, has continuous trace
if and only if the stability groups vary continuously and G acts σ-properly. (Recall
that G acts σ-properly if the map (s, ω) 7→ (s ·ω, ω) induces a proper map from the
quotientR = G×Ω/∼, where (s, ω) ∼ (r, ω) if s−1r ∈ Gω.) In fact, as an immediate
corollary of Theorem 1.1, we recover a generalization of [20, Theorem 5.1] that was
recently obtained by Echterhoff [3, Corollary 1] using different methods.
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Corollary 1.2 (Echterhoff). Suppose that (G,Ω) is a second countable locally com-
pact transformation group with abelian stability groups. Then C∗(G,Ω) has contin-
uous trace if and only if the stabilizers vary continuously and G acts σ-properly.

Our strategy for proving Theorem 1.1 is to show that C∗(G, λ) is isomorphic

to the restricted groupoid C∗-algebra C∗(Â o R;D, α) of a T-groupoid D over a

principal groupoid ÂoR as defined in [10, 15]. Here Â is the spectrum of C∗(A, β)

for a Haar system β. It turns out that Â is independent of β, and is only defined
when condition (1) of Theorem 1.1 is satisfied. Then we apply the main theorem of
[10] which characterizes exactly when such C∗-algebras have continuous trace. The

isomorphism between C∗(G, λ) and C∗(ÂoR;D, α) can be established in a quite
general framework, where the only hypothesis is the existence of Haar system for A,
and should be viewed as a version of Mackey’s normal subgroup analysis. For our
purposes, it is sufficient to prove this isomorphism with the additional hypothesis

that Â/R is Hausdorff, which makes the proof more elementary. Therefore we can
proceed as follows. We note that if C∗(G, λ) is CCR, then orbits must be closed
(Proposition 2.8). Since R acting properly on G(0) always implies that orbits are
closed, we can assume throughout that orbits are closed. Next we observe that if
the spectrum of C∗(G, λ) is Hausdorff, then condition (1) of Theorem 1.1 is satisfied
(Proposition 3.1). We are then reduced to proving condition (2) of Theorem 1.1
under the assumption that condition (1) holds and that orbits are closed. We can
then apply our isomorphism result.

The isomorphism result is of independent interest. As a consequence, every
continuous-trace groupoid C∗-algebra of a groupoid with abelian isotropy has
a realization as the restricted groupoid C∗-algebra of a T-groupoid over an
equivalence relation (Remark 4.9). This should prove useful for investigating the
“fine” structure of such groupoids and C∗-algebras. As evidence for this, we note
that in [11, Theorem 1.1] the first and third authors have given a six term exact
sequence, modeled after that of Kumjian’s [6], that describes the Dixmier-Douady
class of these C∗-algebras in terms of the topology of the relation.

Our work is organized as follows. In Section 2, we give a careful development
of representations induced from an abelian subgroup of a stabilizer. We use this
to obtain our results on closed orbits (Proposition 2.8) mentioned above. Our
proof relies on the amenability of the stabilizers—which is trivially guaranteed by
our assumption of abelian isotropy. Section 3 is devoted to showing that A has

a Haar system if (C∗(G, λ))
∧

is Hausdorff (Proposition 3.1), and to showing that

Â is a locally compact group bundle1 (Corollary 3.4). The crucial step here is to

characterize the topology on Â as a suitable generalized compact-open topology
(Proposition 3.3). Section 4 is devoted to the construction of the T-groupoid D
(Proposition 4.3), and the proof that there is an isomorphism of C∗(G, λ) with

C∗(ÂoR;D, α) in our special situation (Proposition 4.5).
We use the notation and terminology of [14] except that we write s for the

source map in place of d. All our groupoids are locally compact, second countable,
and Hausdorff. If G is a groupoid with unit space G(0) and isotropy groupoid A,
then R = G/A = A\G is the principal quotient of G. We identify R with a subset
of G(0) × G(0) via the map j : G → R given by j(γ) =

(
r(γ), s(γ)

)
. We will often

write γ̇ for j(γ).

1Here a “group bundle” always refers to a groupoid whose range and source maps coincide.
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2. Induced Representations

In this section we want to give a straightforward definition of the representation
Ind(u,A, π) of C∗(G, λ) induced from a representation π of an abelian2 subgroup
A of Guu . To do this, we shall show that restriction defines a map

P : Cc(G)→ Cc(A)(2.1)

which is essentially a generalized conditional expectation in the sense of Rieffel [17,
Definition 4.12]. Unfortunately we cannot use Rieffel’s definition directly as Cc(A)
acts on the right of Cc(Gu) rather than Cc(G), and the former is not an algebra.
However, this turns out not to be a real obstruction, and we obtain an induced
representation using Rieffel’s techniques. Notice that A acts freely and properly on
the right of Gu.

Lemma 2.1. Suppose that u ∈ G(0), that A is an abelian subgroup of Guu , and that
β is a Haar measure on A.

(1) The formula

Q(f)(γ̇) =

∫
A

f(γa) dβ(a)

defines a surjection from from Cc(G) onto Cc(Gu/A).
(2) There is a non-negative, bounded, continuous function b on Gu such that for

any compact set K ⊆ Gu the support of b and KA have compact intersection,
and ∫

A

b(γa) dβ(a) = 1(2.2)

for all γ ∈ Gu.
(3) There is a Radon measure σ on Gu/A such that∫

f(γ) dλu(γ) =

∫
Gu/A

∫
A

f(γa) dβ(a) dσ(γ̇).(2.3)

Proof. The properness of the A-action implies that Q takes values in Cc(Gu/A).
The existence of a function b′ satisfying the requirements of (2) with the exception
of (2.2) follows from Lemme 1 on page 96 of [1]. Now (2) follows by normalizing,
and the rest of (1) follows from (2). Part (3) will follow if we can show that the
equation

σ
(
Q(f)

)
=

∫
f(γ) dλu(γ)

yields is a well defined, positive linear functional on Cc(Gu/A). But this amounts
to showing that if ∫

A

f(γa) dβ(a) = 0 for all γ ∈ Gu,(2.4)

2Here we do not assume that Guu is abelian.
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then the left-hand side of (2.3) is 0. However if (2.4) holds, then for any h ∈ Cc(G),∫
h ∗ f(a) dβ(a) =

∫
A

∫
G
h(aγ)f(γ−1) dλu(γ) dβ(a)

=

∫
G
h(γ)

(∫
A

f(γ−1a) dβ(a)
)
dλu(γ) = 0.

On the other hand,

0 =

∫
h ∗ f(a) dβ(a) =

∫
G

(∫
A

h∗(γ−1a) dβ(a)
)
f(γ−1) dλu(γ̇).

(Where we have replaced a by a−1 in the final formula, and used the fact that A
is abelian and hence unimodular.) It follows from (2) and the Tietze extension
theorem that there is an h ∈ C+

c (G) such that the final A integral is equal to one
for every γ−1 in the support of f . The lemma follows.

Recall that Cc(Gu) is a Cc(G)–Cc(A)-bimodule; Cc(A) acts on the right of Cc(Gu)
by the formula

f · φ(γ) =

∫
A

f(ηa)φ(a−1) dβ(a),

while Cc(G) acts on the left by convolution:

g · f(γ) = f ∗ g(γ) =

∫
G
g(γη)f(η−1) dλu(η).

Of course, if G were transitive, then Gu would be an G–Au-equivalence (see [8,
Example 2.2]), and we could have circumvented some of the details in the proof of
the following proposition. While it may be the case that [8, Example 2.2] extends
to a setting sufficiently general to satisfy our needs, the proof of Proposition 2.2 is
sufficiently elementary to be of independent interest.

Proposition 2.2. Suppose that u ∈ G(0), and that A is an abelian subgroup of Guu .
Then

〈f, g〉
A

= P (f∗ ∗ g)

defines a C∗(A)-valued sesquilinear form on Cc(Gu) such that for all g, h ∈ Cc(Gu)
and φ ∈ Cc(A)

〈g, h〉∗
A

= 〈h, g〉
A
, 〈g, h · φ〉

A
= 〈g, h〉

A
∗ φ, and(2.5)

〈g, g〉
A

is a positive element of C∗(A).(2.6)

Furthermore, there is an approximate identity { ek } in Cc(G) such that

〈g ∗ ek − g, g ∗ ek − g〉
A
→ 0 in C∗(A), and(2.7)

〈f ∗ g, f ∗ g〉
A
≤ ‖f‖2

C∗(G,λ)
〈g, g〉

A
,(2.8)

for all f ∈ Cc(G), and g ∈ Cc(Gu).

Proof. The formulas in (2.5) follow from routine calculations. For (2.6), it will

suffice to check that χ
(
〈g, g〉

A

)
≥ 0 for all χ ∈ Â:

χ
(
〈g, g〉

A

)
=

∫
A

χ(a)g∗ ∗ g(a) dβ(a) =

∫
A

∫
G
χ(a)g(γa−1)g(γ) dλu(γ) dβ(a);
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which, using (2.3), is

=

∫
A

∫
Gu/A

∫
A

χ(a)g(γba−1)g(γb) dβ(b) dσ(γ̇) dβ(a);

which, using the Fubini Theorem and sending a 7→ a−1b, is

=

∫
Gu/A

(∫
A

χ(a)g(γa) dβ(a)
)(∫

A

χ(b)g(γb) dβ(b)
)
dσ(γ̇) ≥ 0.

This proves (2.6). Assertion (2.7) follows from [8, Proposition 2.10], and the fact
that the inductive limit topologies are stronger than the C∗-norm topologies on
C∗(G, λ) and C∗(A).

To prove the final assertion, we claim that it suffices to notice that

f 7→ P (h∗ ∗ f ∗ h)

is bounded and defines a positive operator Ph : C∗(G, λ) → C∗(A) for each h ∈
Cc(G). To see this note that e∗k ∗ g∗ ∗ f∗ ∗ f ∗ g ∗ ek ≤ ‖f‖2C∗(G,λ)

e∗k ∗ g∗ ∗ g ∗ ek in

C∗(G, λ). If Pg∗ek is positive, then 〈f ∗g∗ek, f ∗g∗ek〉
A
≤ ‖f‖2

C∗(G,λ)
〈g∗ek, g∗ek〉

A
.

Then (2.8) now follows from (2.7).
To prove the claim, recall that C∗(G, λ) and C∗(A) are, respectively, the en-

veloping C∗-algebras of LI(G, λ) (as defined in [14]) and L1(A). Moreover,

‖Pg(f)‖1 =

∫
A

|g∗ ∗ f ∗ g(a)| dβ(a)

≤
∫
A

∫
G

∫
G

∣∣g(η−1γ−1a)f(η−1)g(γ−1)
∣∣ dλs(γ) dλu(γ) dβ(a)

≤ ‖Q
(
|g|
)
‖∞‖f‖I‖g‖I .

It follows that Pg extends to a continuous map of LI(G, λ) into L1(A). But if ρ is
a state of L1(A), then ρ ◦ P is a positive form on LI(G, λ) of norm no larger than
M = ‖Q

(
|g|
)
‖∞‖g‖I . Then by [2, Proposition 2.7.1], if f ≥ 0, M‖f‖C∗(G,λ) ≥

ρ ◦ Pg(f). Taking the supremum over all states ρ, we get

M‖f‖C∗(G,λ) ≥ ‖Pg(f)‖C∗(A)

for f ∈ C∗(G, λ)+; this suffices.

It now follows that, given a representation π of A on Hπ,

〈f ⊗ ξ, g ⊗ ζ〉=
(
π
(
〈g, f〉

A

)
ξ|ζ
)
Hπ(2.9)

defines a pre-inner product on Cc(Gu)⊗Hπ on which Cc(G) acts by bounded oper-
ators via convolution. Consequently, we can make the following definition.

Definition 2.3. Suppose that u ∈ G(0), that A is an abelian subgroup of Guu ,
and that π is a representation of A on Hπ. Then we write Ind(u,A, π) for the
representation of C∗(G, λ) on the Hilbert space completion of Cc(Gu) ⊗ Hπ with
respect to the inner product determined by (2.9) given by the formula

Ind(u,A, π)(f)[g ⊗ ξ] = [f ∗ g ⊗ ξ].
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Remark 2.4. The only hard part of defining the above representations induced from
the stability groups is showing the boundedness: Proposition 2.2. We could have
appealed to [15, Proposition 4.2] for this, but have chosen instead to give a more
elementary proof in our situation.

The remainder of this section closely parallels Lemma 2.4 and Proposition 2.5
of [9]. Recall that G acts on the right of G(0) via r(γ) · γ = s(γ). Furthermore, if

χ ∈ Âr(γ), then χ ·γ will denote the element of Âs(γ) given by a 7→ χ(γaγ−1). Note
that both u · γ and χ · γ depend only on γ̇ = j(γ) in R. (Recall that j : G → R is
defined by j(γ) =

(
r(γ), s(γ)

)
.)

Lemma 2.5. Suppose that G is a second countable locally compact groupoid
with abelian isotropy and Haar system {λu }u∈G(0) . Then Ind(u,Au, χ) is an

irreducible representation for all u ∈ G(0) and χ ∈ Âu. Furthermore, if γ ∈ Gu,

then Ind(u,Au, χ) is unitarily equivalent to Ind(u · γ, Âs(γ), χ · γ). In particular,
Ind(u,Au, 1) is equivalent to Ind(v,Av, 1) if and only if [u] = [v].

Proof. Note that L(χ,u) := Ind(u,Au, χ) acts on the completion V(χ,u) of Cc(Gu)
with respect to the inner product:

(f |g)(χ,u) =

∫
Au

χ(a)g∗ ∗ f(a) dβu(a) =

∫
Au

∫
G
χ(a)g(γa)f(γ) dλu(γ) dβu(a)

=

∫
Au

∫
Gu/Au

∫
Au

χ(a)g(γba)f(γb) dβu(b) dσu(γ̇) dβu(a)

=

∫
Gu/Au

(∫
Au

χ(b)f(γb) dβu(b)
)(∫

Au

χ(a)g(γa) dβu(a)
)
dσu(γ̇).

As in [10, §3], we let H0
(χ,u) be the collection of bounded Borel functions ξ on Gu

such that ξ(γa) = χ(a)ξ(γ) for all a ∈ Au and γ ∈ Gu, and such that γ̇ 7→ |ξ(γ)|
has compact support on Gu/Au. We let H(χ,u) be the Hilbert space completion of

H0
(χ,u) with respect to the inner product defined by

〈ξ, ζ〉
(χ,u)

=

∫
Gu/Au

ξ(γ)ζ(γ) dσu(γ̇).

Then using (2.3) it follows that the equation

U (χ,u)(f)(γ) =

∫
Au

χ(a)f(γa) dβu(a)

defines a unitary operator U (χ,u) : V(χ,u) → H(χ,u) which intertwines L(χ,u) with
the representation given by the formula

T (χ,u)(f)ξ(γ) =

∫
G
f(γη)ξ(η−1) dλu(η), ξ ∈ H(χ,u).(2.10)

Since Gu is second countable and the action of Au is proper, there is a Borel cross
section c for the natural map from Gu to Gu/Au. This allows us to introduce a Borel
function δ : Gu → Au such that γ = c(γ̇)δ(γ) for all γ ∈ Gu. Notice that δ(γa) =
δ(γ)a for a ∈ Au. The point is that we can define an isometric operator W (χ,u) from
Hu into L2(Gu/Au, σu) by W (χ,u)(f)(γ̇) = f

(
c(γ)

)
. Since R(ξ)(γ) = χ

(
δ(γ)

)
ξ(γ̇)

defines an inverse, W (χ,u) is a unitary operator which intertwines L(χ,u) with the
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representation M (χ,u) on L2(Gu/Au, σu) given by the formula

M (χ,u)(f)ξ(γ̇) =

∫
G
χ
(
δ(η)δ(γ)−1

)
f(γη−1)ξ(η̇) dλu(η).

Again, since Gu is second countable, the restriction of r defines a Borel isomor-
phism of Gu/Au with [u]. We let σu∗ = r∗(σ

u) so that∫
φ(v) dσu∗ (v) =

∫
Gu/Au

φ
(
r(γ)

)
dσu(γ̇).

Then M (χ,u) is equivalent to the representation R(χ,u) on L2
(
[u], σu∗

)
given by

R(χ,u)(f)ξ(γ · u) =

∫
G
χ
(
δ(ηγ)δ(γ)−1

)
f(η−1)ξ(ηγ · u) dλr(γ)(η).(2.11)

Fortunately, χ
(
δ(ηγ)δ(γ)−1

)
depends only on v = γ · u and η, and we can write

θ(η, v) for the corresponding Borel function. Thus we can rewrite (2.11) as

R(χ,u)(f)ξ(v) =

∫
G
θ(η, v)f(η−1)ξ(η · v) dλv(η).

Now let Nu be the representation of C0(G(0)) on L2
(
[u], σu∗

)
given by

Nu(φ)(ξ)(v) = φ(v)ξ(v), v ∈ [u], φ ∈ C0(G(0)), and ξ ∈ L2
(
[u]
)
.

Notice that R(χ,u)(φ · f) = Nu(φ)R(χ,u)(f) for all φ ∈ Cc(G(0)) and f ∈ Cc(G).
Just as in the proof of [9, Lemma 2.4], we see that R(χ,u), and hence L(χ,u), is
irreducible. More precisely, any projection commuting with R(χ,u)

(
C∗(G, λ)

)
must

also commute with Nu
(
C0(G(0))

)′′
, and since Cc(G(0))|[u] separates points of [u],

Nu
(
C0(G(0))

)′′
is a maximal abelian subalgebra of operators on L2

(
[u]
)
. Therefore

any projection commuting with R(χ,u)
(
C∗(G, λ)

)
must be of the form Nu(φ) with

φ = 1E and E ⊆ [u]. Since Nu(φ) commutes with every R(χ,u)(f), we have

φ(v)

∫
G
θ(η, v)f(η−1)ξ(η · v) dλv(η) =

∫
G
θ(η, v)f(η−1)φ(η · v)ξ(η · v) dλv(η)

for σu∗ -almost every v, all ξ ∈ L2, and all f ∈ Cc(G). Thus for some v ∈ [u],

φ(v) = φ(η · v)

for λv-almost all η. Then, of course, φ is constant (a.e.) on [u]. This proves the
irreducibility.

Now let (v,Av, ρ) = (u · γ, Âs(γ), χ · γ). Then a 7→ γaγ−1 is an isomorphism of

Au onto Av. Since the unitary equivalence class of L(χ,u) is certainly independent
of our choice of Haar measure βu on Au, we may as well assume that∫

Au

f(a) dβu(a) =

∫
Av

f(γaγ−1) dβv(a)(2.12)

for all f ∈ Cc(Au). Then we can define a unitary map Q : H(χ,u) → H(v,ρ) by

Q(f)(η) = f(ηγ−1), and Q clearly intertwines Ind(u,Au, χ) and Ind(v,Av, ρ).
Conversely, suppose that Ind(u,Au, χ) is equivalent to Ind(v,Av, ρ). Then Nu

and Nv are certainly equivalent. Just as in the proof of [9, Proposition 2.5], if
[u]∩ [v] = ∅, then Nu cannot be equivalent to Nv by [19, Lemma 4.15]. The result
follows.
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Remark 2.6. Notice that we have proved a bit more. If Ind(u,Au, χ) is equivalent
to Ind(v,Av , ρ), then v = u · γ and Ind(v,Av , ρ) is equivalent to Ind(u,Au, ρ · γ−1).
At this point, it does not seem to be easy to see that this forces ρ to equal χ · γ.
Fortunately, this will follow when orbits are closed (Lemma 2.11), and as this is the
only situation in which we will require the result, we will settle for that.

The next result is standard; see for example, Rieffel’s Theorem 5.9 (Induction in
Stages) and Proposition 6.26 in [17]. We omit the proof.

Lemma 2.7. Suppose that u ∈ G(0), that A and B are abelian subgroups of Guu
with A ⊆ B, and that π and ρ are representations of A.

(1) Ind(u,A, π) is unitarily equivalent to Ind
(
u,B, IndBA(π)

)
, and

(2) if π weakly contains ρ, then Ind(u,A, π) weakly contains Ind(u,A, ρ).

Now we use [16, Lemma 1.3] to fix once and for all a continuous choice of Haar

measures for the subgroups of A. That is, for each A ∈ Σ
(0)
A , we choose a measure

βA such that the map

A 7→
∫
A

f(a) dβA(a)

is continuous on Σ
(0)
A for each f ∈ Cc(A). We will continue to write βu in place of

βAu .
Our next result closely parallels [9, Proposition 2.5]; however, the argument is

complicated by the presence of (possibly discontinuous) isotropy.

Proposition 2.8. Suppose that G is a second countable locally compact groupoid
with abelian isotropy, and Haar system {λu }u∈G(0) . Then, if points are closed in

(C∗(G, λ))
∧

, [u] is closed for each u ∈ G(0).

Proof. By Lemma 2.5, the map u 7→ Lu = Ind(u,Au, 1) defines an injection Ψ :

G(0)/G → (C∗(G, λ))
∧

. Thus it suffices to show that Ψ is continuous. In particular,
it suffices to show that if Lu(f) 6= 0 and if { un } converges to u, then, eventually,

Lun(f) 6= 0. If the assertion fails, then it fails for some f ∈ Cc(G). Since Σ
(0)
A

is compact, we can, by passing to a subsequence and relabeling, assume that Aun
converges to C, and that Lun(f) = 0 for all n. Note that C ⊆ Au.

It follows from our choice of Haar measures that, for each g, h ∈ Cc(G),(
Lun(f)(g)|h

)
(1,un)

converges to
(

Ind(u,C, 1)(f)(g)|h
)

(1,u)
.(2.13)

It follows that Ind(u,C, 1)(f) = 0. Therefore Lemma 2.7(1) implies that

Ind
(
u,Au, IndAuC (1)

)
(f) = 0. Since IndAuC (1) is weakly contained in the trivial

representation of Au, Lemma 2.7(2) implies that Lu(f) = 0 as desired.

Remark 2.9. It follows from Proposition 2.8 that, in order to prove Theorem 1.1, we
may assume that G has closed orbits. On the one hand, if C∗(G, λ) has continuous
trace, then it has Hausdorff spectrum and the proposition applies. On the other
hand, if we assume that the R-action on G(0) is proper, then R, and hence G, orbits
are easily seen to be closed.

The next lemma is a well-known consequence of Renault’s disintegration theorem
[15, 7, 12]. It is stated without proof in [16, Remark 4.10], and it is, unfortunately,
used without comment in [9, 10]. We include the statement and proof here for the
reader’s convenience.



GROUPOID C∗-ALGEBRAS 3629

Lemma 2.10. Suppose that G is a second countable locally compact groupoid with
Haar system {λu }u∈G(0) , and that U is a G-invariant open subset of G(0) with

F = G(0) \ U . Then there is an exact sequence

0 −−−−→ C∗(G|U , λ)
j−−−−→ C∗(G, λ)

p−−−−→ C∗(G|F , λ) −−−−→ 0.

The map j and p are determined on continuous functions by extension by 0 and
restriction, respectively.

Proof. First recall that every representation of C∗(G, λ) may be disintegrated [15].
This means that given a representation π, there is an essentially uniquely deter-
mined triple (µ,U ,H ∗ G(0)) consisting of a quasi-invariant measure µ on G(0), a
(Borel) Hilbert bundle H ∗ G(0), and a Borel homomorphism U from G into the
isomorphism groupoid of H ∗ G(0) such that Hilbert space of π may be realized as

the direct integral
∫ ⊕
G(0) H(x) dµ(x) and π may be expressed through the formula

(π(f)ξ, η) =

∫
f(γ)(U(γ)ξ ◦ s(γ), η ◦ r(γ)) dν0(γ),

where f ∈ Cc(G), ξ and η lie in
∫ ⊕
G(0) H(x) dµ(x), and ν0 is the symmetric measure

on G determined by µ and the Haar system (see [14, p. 52]). Depending on context
U or the entire triple (µ,U ,H ∗ G(0)) is called a representation of G. Several things
should be kept in mind. First, because µ is quasi-invariant, its support is an
invariant Borel subset of G(0), say E. Second, we may assume that H(u) = 0, for
all u /∈ E. And third, we may assume that U(γ) = 0, unless both r(γ) and s(γ)
lie in E. We shall therefore refer to E as the support of (µ,U ,H ∗ G(0)) or of π.
It is perhaps worthwhile, too, to point out that in [14], representations of G were
“less than homomorphisms.” Thanks, however, to [13] we may take them to be
true homomorphisms and we may make the assertions on their supports that we
just made.

Suppose that f lies in Cc(G|U ) and view f as lying also in Cc(G) by extending it
to be zero on G|F . (Remember that because U and F are complementary invariant
sets in G(0), G = G|U ∪ G|F .) The norm of f calculated in C∗(G|U , λ) is the
supremum of ‖π(f)‖ as π runs over all representations of Cc(G|U , λ). Each of
these may be disintegrated in terms of a representation (µ,U ,H ∗ U) of G|U . This
means, in particular, that the support of such a representation is a subset of U .
But a representation of G|U obviously extends to a representation of G. Just set
H(u) = 0, for u ∈ F , and set U(γ) = 0 for γ ∈ G|F . This shows that the norm of
f as an element of C∗(G|U , λ) is dominated by its norm in C∗(G, λ). On the other
hand, every representation of C∗(G, λ) yields, by restriction, a representation of
C∗(G|U , λ), so the norm of f is independent of the algebra in which it is calculated.
This shows that j is injective at the level of C∗-algebras. It is also evident that
the range of j, j

(
C∗(G|U , λ)

)
, is an ideal in C∗(G, λ). A similar analysis, using the

disintegration theorem, shows that p is surjective at the C∗-algebra level. So the
only thing that remains to be proved is that the kernel of p is the range of j. Of
course the range of j is contained in the kernel of p. For the reverse inclusion, simply
observe that a representation of C∗(G, λ) annihilates j

(
C∗(G|U , λ)

)
precisely when

its support is disjoint from U , i.e., is contained in F . But since the representations
of G supported in F coincide (by extension) with the representations of G|F , we
conclude that the quotient C∗(G, λ)/(j(C∗(G|U , λ)) is isomorphic to C∗(G|F , λ),
i.e., that ker(p) = j

(
C∗(G|U , λ)

)
.
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Note that if orbits are closed then by a standard argument using the above lemma
(see, for example, the last part of the proof of [9, Proposition 2.5]) every irreducible
representation of C∗(G, λ) factors through C∗(G|[u], λ) for some u ∈ G(0). Since G|[u]

is equivalent to Au [8, Example 2.2], every irreducible representation of C∗(G|[u], λ)
is induced from a character χ of Au [8, Theorem 2.8]. It is straightforward to see
that the corresponding representation of C∗(G, λ) is Ind(u,Au, χ). Consequently,
we have the following result.

Lemma 2.11. Suppose that G is a second countable locally compact groupoid with
abelian isotropy, closed orbits, and Haar system {λu }u∈G(0) . Then if u ∈ G(0)

and χ ∈ Âu, Ind(u,Au, χ) is irreducible, and every irreducible representation of

C∗(G, λ) is of this form. Furthermore, if χ 6= ψ in Âu, then Ind(u,Au, χ) is not
equivalent to Ind(u,Au, ψ).

3. The Dual Isotropy Groupoid

Proposition 3.1. Suppose that G is a second countable locally compact groupoid

with abelian isotropy and Haar system {λu }u∈G(0) . If (C∗(G, λ))
∧

is Hausdorff,

then the map u 7→ Au is continuous from G(0) to Σ(0).

Proof. If the proposition were false, then there would be a sequence { un } converg-
ing to u in G(0), but with Aun → C with C strictly contained in Au. Clearly, in
view of Proposition 2.8 and Lemma 2.11, it will suffice to show that

Ind(un, Aun , 1) converges to Ind(u,Au, χ)

for any χ ∈ C⊥ = {χ ∈ Âu : χ(c) = 1 for all c ∈ C }. But if χ ∈ C⊥, then χ is

weakly contained in IndAuC (1). Therefore the claim is proved exactly as in the proof
of Proposition 2.8.

Remark 3.2. In the situation of Proposition 3.1, { βu }u∈G(0) is a Haar system for A.
It is useful to keep in mind that the existence of a Haar system on A is equivalent
to the continuity of the map u 7→ Au [16, Lemmas 1.1 and 1.3].

When A has a Haar system { βu }u∈G(0) (note that we can identify A(0)

with G(0)), then C∗(A, β) is a separable abelian C∗-algebra. In particular,

Â = (C∗(A, β))
∧

is a second countable locally compact Hausdorff space. We will

view elements of Â as continuous homomorphisms h : C∗(A, β) → C, and hn → h

in Â if and only if hn(f)→ h(f) for every f ∈ Cc(A).
Recall that there is a homomorphism V : C0(G(0)) → M

(
C∗(A, β)

)
character-

ized by the formula V (φ)f(γ) = φ
(
r(γ)

)
f(γ) [14, 2.1.14]. If follows (cf., e.g., [5,

Proposition 9]) that there is a continuous map p : Â → G(0) characterized by the

equation h
(
V (φ)f

)
= φ

(
p(h)

)
h(f) for each h ∈ Â, φ ∈ C0(G(0)), and f ∈ C∗(A, β).

Using Lemma 2.103, each h ∈ Â is uniquely of the form h = (χ, u) with u ∈ G(0),

χ ∈ Âu, and

(χ, u)(f) =

∫
Au

χ(a)f(a) dβu(a).

3Here we don’t actually need the full power of the disintegration theorem. It suffices to notice
that C∗(A, β) is the enveloping C∗-algebra of the section algebra of a Banach algebra bundle.
Thus, every irreducible representation lives on a fibre.
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It is clear that Â has the structure of a group bundle (with r and s equal to

p). However it is not immediate that Â is a topological groupoid—the groupoid
operations are not clearly continuous. This situation will be remedied by the next
result.

Proposition 3.3. Let A be a second countable locally compact abelian group bundle

with Haar system { βu }u∈A(0) . Then a sequence { (χn, un) } in Â converges to

(χ0, u0) in Â if and only if

(1) { un } converges to u0 in A(0), and
(2) if an ∈ Aun and { an } converges to a0 in A, then {χn(an) } converges

to χ0(a0).

Proof. First, suppose that hn = (χn, un) converges to h = (χ0, u0). The continuity
of p implies that un → u0. If condition (2) fails, then there are an ∈ Aun converging
to a0 yet with χn(an) not converging to χ0(a0). Clearly, we may assume that no
subsequence converges to χ0(a0) either. Next we observe that we may assume that
un 6= u0 for all n; otherwise we obtain an immediate contradiction by passing to

a subsequence and relabeling so that un = u0 for all n, and χn → χ0 in Âu0 .
Furthermore, again passing to a subsequence and relabeling if necessary, we can
assume that un 6= um if n 6= m. In particular, we can define an integer valued
function on S = r−1

(
{ un }∞n=0

)
by ι(b) = n when r(b) = un. Now fix f ∈ Cc(A)

with h(f) = 1. Notice that S is closed, and g0 : S → C, defined by

g0(b) = f
(
a−1
ι(b)b

)
(b ∈ S),

is continuous and compactly supported. The Tietze Extension Theorem implies
that there is a g ∈ Cc(A) extending g0. But

hn(g) = χn(an)hn(f) for n = 0, 1, 2, . . . .

We obtain the desired contradiction by noting that hn(f)→ 1 and hn(g)→ χ0(a0).
Conversely, now assume that hn = (χn, un) satisfies conditions (1) and (2) with

respect to h0 = (χ0, u0). Suppose that there is a f ∈ Cc(A) such that hn(f) fails
to converge to h0(f). As above we can reduce to the case that un 6= um if n 6= m.
This time we define g0 : S → C by

g0(b) = χι(b)(b)f(b) (b ∈ S).

Again a few moments of reflection reveal that g0 is continuous and compactly
supported so that there is a g ∈ Cc(A) extending g0. The continuity of the Haar
system on A implies that (1, un)(g) converges to (1, u0)(g). Since (1, un)(g) =
hn(f), we obtain the necessary contradiction.

Corollary 3.4. Let A be a second countable locally compact abelian group bundle

with Haar system { βu }u∈A(0) . Then Â, equipped with the Gelfand topology, is a
locally compact group bundle.

In the sequel we will need to see that p : Â → G(0) is an open map. As we have
noted above, Renault has shown that this is equivalent to the existence of a Haar
system [15, Lemma 1.3]. Unfortunately, it does not seem straightforward to see this
directly, and it takes a bit of work to see that the “obvious” choice does the job.

Our situation is covered by the following set-up. Suppose that r : A → X and

p : Â → X are locally compact abelian group bundle. We will say Â is a dual bundle

for A if there is a continuous map 〈 , 〉 from A∗Â = { (a, χ) ∈ A×Â : r(a) = p(χ) }
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to C such that χ 7→ 〈·, χ〉 is an isomorphism of Âu with the dual of Au. (Of course

the example we have in mind is the maximal ideal space Â of the C∗-algebra of a
locally compact abelian group bundle.) If { βu }u∈X is a Haar system for A, then

there is a natural choice of Haar measures on Â: namely each measure β̂u is chosen

so that the Fourier transform is an isometry from L2(Au, βu) onto L2(Âu, β̂u). We

call { β̂u }u∈X the dual Haar system.

If f ∈ Cc(A), then we can define a function f̂ on Â by taking the Fourier
Transform in the appropriate fibre:

f̂(χ) =

∫
Ap(χ)

〈a, χ〉f(a) dβp(χ)(a).(3.1)

Lemma 3.5. The function f̂ defined in (3.1) is continuous on Â.

Proof. Fix σ ∈ Â. Let K be a compact neighborhood of σ. Let F be the continuous
function on the closed set A ∗ K = { (a, χ) : r(a) = p(χ) } defined by F (χ, a) =

〈a, χ〉f(a). By the Tietze Extension Theorem, there is a F̃ ∈ Cc(A×K) extending
F . Then

φ(χ, u) =

∫
Au

F̃ (a, χ) dβu(a)

is continuous on K ×X . (It suffices to consider F̃ of the form F̃ (a, χ) = h(a)k(χ)
for h ∈ Cc(A) and k ∈ C(K). Then the assertion is immediate since { βu }u∈X is a

Haar system.) This suffices since f̂(χ) = φ
(
χ, p(χ)

)
for all χ ∈ K.

Proposition 3.6. Suppose that r : A → X is an abelian group bundle, and that

p : Â → X is a dual bundle to A. Then if { βu }u∈X is a Haar system for A, the

dual Haar system { β̂u }u∈X is a Haar system for Â.

Remark 3.7. The proof is based on [4, p. 908] and [16, Lemma 1.3].

Proof. Suppose that K is compact in Â. We claim that u 7→ β̂u(K) is bounded
on X . Of course, it suffices to consider only u ∈ p(K). Let ρ ∈ Cc(A) be a
non-negative function such that∫

Au

ρ(a)2 dβu(a) = 1 for all u ∈ p(K).(3.2)

Since p(K) is compact, there is an ε > 0 so that∫
Au

ρ(a) dβu(a) > ε for all u ∈ p(K).(3.3)

By definition, (3.2) implies that∫
Âu
|ρ̂(χ)|2 dβ̂u(χ) = 1 for all u ∈ p(K).(3.4)

Moreover the continuity of ρ̂ and (3.3) imply that U = {χ ∈ Â : |ρ̂(χ)|2 > ε2 } is
an open neighborhood of p(K).

If χ ∈ K, then χ−1χ ∈ p(K). The continuity of multiplication implies that
there is a neighborhood V of χ such that V −1V ⊆ U . Therefore there is a cover
V1, . . . , Vm of K such that V −1

j Vj ⊆ U for each 1 ≤ j ≤ m. In view of (3.4),
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β̂u(U) ≤ ε−2 if u ∈ p(K). Furthermore, if β̂u(Vj) 6= 0, then there is a χ ∈ Vj with
p(χ) = u. Then

β̂u(Vj) = β̂u(χχ−1Vj) ≤ β̂u(χV −1
j Vj) ≤ β̂u(χU) = β̂u(U) ≤ 1/ε2.

It follows that β̂u(K) ≤ m/ε2 for all u ∈ X . This proves the claim.

Now let { ui }i∈I be a net in X converging to u ∈ X . If φ ∈ Cc(Â), then

let β̂(φ)(v) =
∫
Âv φ(χ) dβ̂v(χ). The above argument implies that { β̂(φ)(ui) }i∈I

is bounded. Thus if ω is a generalized limit4 on `∞(I), then we obtain a positive

linear functional µ on Cc(Â) by µ(φ) = ω
(
{ β̂(φ)(ui) }

)
. Suppose that φ, ψ ∈ Cc(Â)

agree on Âu. Then if K is a compact set containing the supports of φ and ψ,∣∣β̂(φ)(ui)− β̂(ψ)(ui)
∣∣ ≤ ∫

Âui

∣∣φ(χ)− ψ(χ)
∣∣ dβ̂ui (χ)

≤ supχ∈Âui

∣∣φ(χ)− ψ(χ)
∣∣β̂ui(K).

Since supχ∈Âv

∣∣φ(χ) − ψ(χ)
∣∣ tends to zero as v tends to u and since v 7→ β̂v(K)

is bounded, it follows that µ(φ) = µ(ψ). Since every function in Cc(Âu) has an

extension to an element of Cc(Â), we can view µ as a Radon measure on Âu.

However, if f ∈ Cc(Â),

β̂
(
|f̂ |2)(ui) = β

(
|f |2)(ui)

which converges to β
(
|f |2

)
(u) = β̂

(
|f̂ |2

)
(u). It follows that

β̂
(
|f̂ |2

)
(u) = µ

(
|f̂ |2

)
for all f ∈ Cc(Au).(3.5)

By density, (3.5) holds for all f̂ in L2(Âu, β̂u). In particular, µ = β̂u on Cc(Âu).
We have shown that if { ui } is any net converging to u in X , then

ω
(
{ β̂(φ)(ui) }

)
= β̂(φ)(u). Therefore limi β̂(φ)(ui) = β̂(φ)(u), and it follows

that { β̂u } is a Haar system.

In view of the above, there is a groupoid action of R (and hence G) on the right

of Â: (χ, u) · γ̇ = (χ · γ, u · γ) (when u = r(γ)). Since R has a Haar system, and

therefore open range and source maps, the quotient map from R to Â/R is always
continuous and open [11, Lemma 1.2]. Notice also that if R acts properly on G(0),

then R must also act properly on Â. In that case, Â/R is Hausdorff and locally
compact. Our next result shows that for the purposes of proving Theorem 1.1, we

may always assume that Â/R is locally compact Hausdorff.

Proposition 3.8. Suppose that G is a second countable locally compact groupoid

with abelian isotropy, and Haar system {λu }u∈G(0) . If (C∗(G, λ))
∧

is Hausdorff,

then Â can be defined as above and Â/R is Hausdorff.

Proof. Since Lemma 2.5, Proposition 2.8, and Lemma 2.11 imply that the map

(χ, u) 7→ Ind(u,Au, χ) defines a bijection of Â/R and (C∗(G, λ))
∧

, the argu-
ment is identical to that of Proposition 2.8. One only has to observe, with

our choice of Haar measures and the topology on Â given in Proposition 3.3,
that in analogy with (2.13), { 〈Ind(un, Aun , χn)(f)(g), h〉

(χn,un)
} converges to

4That is, ω is a norm one extension of the ordinary limit functional on the subspace of `∞(I)
consisting of those nets { ai } such that limi ai exists.
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〈Ind(u,C, χ|C)(f)(g), h〉
(χ,u)

provided { (χn, un) } converges to (χ, u) in Â, and

that IndAuC (χ|C) is weakly contained in χ.

4. The Associated T-Groupoid

Throughout this section, we will assume that G is a second countable locally
compact groupoid with abelian isotropy, closed orbits, and Haar system {λu }u∈G(0) .
We will also assume that u 7→ Au is continuous so that there is a Haar system
{ βu }u∈G(0) for the isotropy groupoid A.

We let Â o R = { (χ, u, γ̇) ∈ Â × R : u = r(γ) }. Note that Â o R is closed

in Â × R and therefore locally compact. For convenience, we will hereafter write

elements of Â o R as pairs (χ, γ̇) with χ ∈ Ar(γ). Note that (χα, γ̇α) → (χ, γ̇) if
and only if γ̇α → γ̇ in R, and if aα ∈ Ar(γα) → a, then χα(aα)→ χ(a).

We have chosen the notation ÂoR (rather than Â∗R) to emphasize that ÂoR
is a locally compact groupoid in a natural way. Recall that if χ ∈ Âr(γ), then χ · γ
denotes the element of Âs(γ) given by a 7→ χ(γaγ−1), and that χ · γ depends only
on the class γ̇ = j(γ) of γ in R. The inverse operation

(χ, γ̇)−1 = (χ · γ, γ̇−1)(4.1)

is easily seen to be a homeomorphism. Two elements (χ, γ̇) and (χ′, γ̇′) are com-
posable exactly when χ′ = χ · γ, and then

(χ, γ̇)(χ · γ, γ̇′) = (χ, γ̇γ̇′).

The range and source maps, given by

rÂoR(χ, γ̇) =
(
χ, r(γ)

)
and sÂoR(χ, γ̇) =

(
χ · γ, s(γ)

)
,

define continuous surjections on ÂoR onto a closed subset which can be identified

with Â. (We will normally write simply r, rather than rÂoR, when it is clear from

context with which groupoid r is associated.) It is not hard to verify that ÂoR is

a principal locally compact groupoid with unit space Â.

There is an analogous groupoid structure on Âo G making it a locally compact

groupoid with unit space Â. (The operations are exactly those above, but “without
the dots.”)

Notice that, having fixed a Haar measure βu on each Au, there is no reason to
suspect that (2.12) holds. We do, however have the following.

Lemma 4.1. Suppose that G is a second countable locally compact groupoid with
abelian isotropy and Haar system {λu }u∈G(0) . Suppose also that { βu }u∈G(0) is a
Haar system for the isotropy subgroupoid A. Then there is a continuous A-invariant
homomorphism ω from G to R+ such that∫

Ar(γ)

f(a) dβr(γ)(a) = ω(γ)

∫
As(γ)

f(γaγ−1) dβs(γ)(a) for all f ∈ Cc(A).

Proof. We show only that ω is continuous. Suppose, to the contrary, that
γn → γ0 and |ω(γn) − ω(γ0)| ≥ ε > 0. We can certainly choose f such that∫
Ar(γ0)

f(a) dβr(γ0)(a) = 1. Therefore
∫
Ar(γn)

f(a) dβr(γn)(a) is eventually nonzero

as well. We claim that we may as well assume that s(γn) 6= s(γ0) for all n > 0. Oth-
erwise we can pass to a subsequence, relabel, and assume that s(γn) = s(γ0) = u
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for all n. Then f(γn · γ−1
n ) converges to f(γ0 · γ−1

0 ) in the inductive limit topology
on Cc(Au). Then∫

Au

f(γnaγ
−1
n ) dβu(a)→

∫
Au

f(γ0aγ
−1
0 ) dβu(a),

and

ω(γn)−1 =
(∫

Ar(γn)

f(a) dβr(γn)(a)
)−1(∫

Au

f(γnaγ
−1
n ) dβs(γn)(a)

)
→ ω(γ0)−1,

(4.2)

which is a contradiction.
But if we assume that s(γn) 6= s(γ0) for all n > 0, then passing to a subsequence

and relabeling, we can assume that s(γn) 6= s(γm) for all n 6= m. Then S =
s−1
A
(
{ s(γn) }∞n=0

)
is closed in A, and we can define ι on S by ι(a) = n when

s(a) = s(γn). Then the function

F0(a) = f(γι(a)aγ
−1
ι(a))

is continuous and compactly supported on S and therefore has an extension F ∈
Cc(A). Then, too,∫

As(γn)

f(γnaγ
−1
n ) dβs(γn)(a) =

∫
As(γn)

F (a) dβs(γn)(a)

converges to ∫
As(γ0)

F (a) dβs(γ0)(a) =

∫
As(γ0)

f(γ0aγ
−1
0 ) dβs(γ0)(a).

We now obtain a contradiction just as in (4.2).

The presence of continuously varying isotropy allows a much improved version
of Lemma 2.1.

Lemma 4.2. Suppose that G is a second countable locally compact groupoid with
abelian isotropy and Haar system {λu }u∈G(0) . Suppose also that { βu }u∈G(0) is a
Haar system for the isotropy subgroupoid A.

(1) The formula

Q(f)(γ̇) =

∫
Au

f(γa) dβs(γ)(a)

defines a surjection from Cc(G) onto Cc(R).
(2) There is a Bruhat approximate cross-section for G over R; that is, there is a

non-negative, bounded, continuous function b on G such that for any compact
set K in G the support of b and KA have compact intersection, and∫

A
b(γa) dβs(γ)(a) = 1 for all γ ∈ G.

(3) There is a Haar system {αu }u∈G(0) for R satisfying∫
G
f(γ) dλu(γ) =

∫
R

∫
A
f(γa) dβs(γ)(a) dαu(γ̇).
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Proof. The argument closely parallels that of Lemma 2.1. To see that Q(f) ∈
Cc(R), notice that u 7→ βu is (part of) a Haar system for the canonical group
bundle Σ = { (C, γ) : C ∈ Σ(0) and γ ∈ C } ([16, Corollary 1.4]). Part (2) is [14,
Lemma II.2.2]. The existence of αu follows readily once we show that if∫

A
f(γa) dβs(γ)(a) = 0 for all γ ∈ Gu,(4.3)

then ∫
G
f(γ) dλu = 0.

So if (4.3) holds, then for any h ∈ Cc(G),∫
G
f ∗ h(a) dβu(a) =

∫
A

∫
G
f(aγ)h(γ−1) dλu(γ) dβu(a)(4.4)

=

∫
G

(
ω(γ)

∫
A
f(γa) dβs(γ)(a)

)
h(γ−1) dλu(γ) = 0.

But if h is an appropriately cut down Bruhat approximate section (as in part (2)
above), then (4.4) equals

∫
G f(γ) dλu(γ).

If F ∈ Cc(R), then using b from part (2),∫
R
F (γ̇) dαu(γ̇) =

∫
G
F (γ̇)b(γ) dλu(γ).

It now follows easily that the right-hand side is continuous in u. Since the left-
invariance is easily checked, {αu }u∈G(0) is a Haar system for R.

The next step is to construct a T-groupoid over ÂoR (see [10, §2]). For this it

will be convenient to write Â ∗ G × T as triples

{ (χ, z, γ) : χ ∈ Âr(γ), z ∈ T, and γ ∈ G }.
Our twist is the quotient D obtained by identifying (χ, χ(a)z, γ) and (χ, z, a · γ).

Alternatively, D is the quotient groupoid of Â ∗ G ×T by the closed subgroupoid B

= {
(
χ, χ(a), a

)
∈ Â ∗ G × T : a ∈ A}. Therefore D is a Hausdorff locally compact

groupoid with unit space Â. Note that

[χ, z, γ]−1 = [χ · γ, z̄, γ−1],

r
(
[χ, z, γ]

)
=
(
χ, r(γ)

)
, s

(
[χ, z, γ]

)
=
(
χ · γ, s(γ)

)
,

[χ, z, γ][χ · γ, z′, γ′] = [χ, zz′, γγ′].

We can identify Â × T with a subgroupoid of D:

i(u, χ, z) = [χ, z, u],

and we can define jD : D → ÂoR by

jD
(
[χ, z, γ]

)
= (χ, γ̇).

Evidently, jD is a continuous surjection with kernel Â × T (really i(Â × T)). We
claim jD is open. Indeed if jD

(
[χn, zn, γn]

)
converges to jD

(
[χ, x, γ]

)
, then γ̇n

converges to γ̇. Since j : G → R is open (recall γ̇ = j(γ)), we may assume that
there are an ∈ A such that anγn converges to γ in G. Then (χn, z, anγn) converges

to (χ, z, γ) in Â ∗ G ×T. Since jD
(
[χn, z, anγn]

)
= jD

(
[χn, zn, γn]

)
, this shows that

jD is open. Thus we have proved the following proposition.
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Proposition 4.3. The groupoid D constructed above is a T-groupoid over ÂoR.

Remark 4.4. Our construction of D is motivated by the usual “push-out” construc-
tion for abelian groups (cf. [18, Lemma 10.10]):

Â ∗ A Âo G ÂoR

Â × T D ÂoR

Recall that C∗(Â oR;D, α) is the completion, as described in [15, §3] and [10,

§3], of Cc(ÂoR;D) which, in turn, consists of functions F̃ ∈ Cc(D) satisfying

tF̃
(
[χ, z, γ]

)
= F̃

(
t · [χ, z, γ]

)
= F̃

(
[χ, t · z, γ]

)
.

We will make use of the fact that such F̃ are determined by their values on classes of

the form [χ, 1, γ], and we will identify Cc(ÂoR;D) with the collection CDc (ÂoG) of

continuous functions F on Âo G that satisfy F (χ, aγ) = χ(a)F (χ, γ) for all a ∈ A
and γ ∈ G, and that are such that the support of F has compact image in ÂoR.5

We’ll write CD∞(Â o G) for the collection of functions on Â o G which satisfy the
same functional equation and which are such that (1) (χ, γ̇) 7→ |F (χ, γ)| vanishes

at infinity on Â oR and (2) there is a compact set K ⊂ R such that F (χ, γ) = 0

for all γ̇ /∈ K. Then there is a ∗-algebra structure on CD∞(Âo G) given by

F ∗G(χ, γ) =

∫
R
F (χ, γη)G(χ · γη, η−1) dαs(γ)(η̇), and

F ∗(χ, γ) = F (χ · γ, γ−1),

such that CDc (Âo G) may be viewed as a ∗-subalgebra.

If f ∈ Cc(G) and (χ, γ) ∈ Âo G, then we can define

Φ(f)(χ, γ) = ω(γ)−1/2

∫
Ar(γ)

χ(a)f(aγ) dβr(γ)(a).(4.5)

Proposition 4.5. Suppose that G is a second countable locally compact groupoid
with abelian isotropy and Haar system {λu }u∈G(0) . Then Φ is a ∗-homomorphism

of Cc(G) into CD∞(ÂoG). If Â/R is Hausdorff, then Φ extends to an isomorphism

of C∗(G, λ) with C∗(ÂoR;D, α).

The proof of Proposition 4.5 is somewhat complicated, and we will require several
preliminary results.

Lemma 4.6. For each f ∈ Cc(G), Φ(f) ∈ CD∞(Âo G).

5Suppose F and F̃ are related by F (χ, γ) = F̃
(
[χ,1, γ]

)
and F̃

(
[χ, z, γ]

)
= zF (χ, γ). If F̃ has

compact support in D, and F (χn, γn) 6= 0 for all n, then we may assume that [χn, 1, γn]→ [χ, z, γ]

in D. Then there are an such that (χn, χn(an), anγn) → (χ, z, γ). Thus (χn, γ̇n) → (χ, γ̇), and

the support of F has compact image in ÂoR.

Conversely, suppose that the support of F has compact image in Â o R, and that

F̃
(
[χn, zn, γn]

)
6= 0 for all n. Then F (χn, γn) 6= 0, and we can assume that anγn → γ and

χn → χ. But [χn, zn, γn] = [χn, χn(an)zn, αnγn]. Since χn(aa)zn ∈ T, we can assume that
χn(aa)zn → ω so that (χn, χn(an)zn, anγn) → (χ, ω, γ). Thus { [χn, zn.γn] } has a convergent

subsequence, and F̃ must have compact support too.
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Proof. First we show that Φ(f) is continuous. Towards this end, suppose that

(χn, γn) → (χ0, γ0) in Â o G. Let un = r(γn). If un = u0 for all n, then fn =
ω(γn)−1f(·γn) converges to f0 in the inductive limit topology on Cc(Au0) and

χn converges to χ in Âu0 . Consequently, Φ(f)(χn, γn) = χn(fn) converges to
Φ(f)(χ0, γ0) = χ0(f0). Otherwise, we may assume that un 6= um for all n 6= m.
Then S = r−1

A
(
{ un }∞n=0

)
is closed and, defining ι(a) = n when a ∈ Aun ,

F0(a) = f(aγι(a))

is continuous with compact support on S. Thus if F is any extension in Cc(A),
Φ(f)(χn, γn) = (χn, un)(F ), and the desired conclusion follows.

This leaves only the question of support. Since f has compact support in G, the
question of support in the second variable is clear and we need only see that |Φ(f)|
vanishes at infinity on ÂoR. But if |Φ(χn, γn)| ≥ ε > 0 for all n = 1, 2, . . . , then
we can assume that γ̇n converges to some γ̇0 in R. Then replacing γn by anγn
for appropriate an ∈ A, we may as well assume from the onset that γn converges
to γ0 in G. As above, we may pass to a subsequence so that either r(γn) = u for
all n, or such that r(γn) = un 6= um = r(γm) whenever n 6= m. In the first case,
fn = ω(γn)−1f(·γn) converges to f0 in the inductive limit topology. Consequently,
we can assume that ‖fn−f0‖L1(Au) < ε/2. Then χn(f0) ≥ ε/2 and {χn } must have

a convergent subsequence in Âu. But then (χn, γn) has a convergent subsequence

in Âo G as required.
In the second case, we can, as above, produce a F ∈ Cc(A) so that

Φ(f)(χn, γn) = (χn, un)(F ). Therefore { (χn, un) } has a convergent subsequence

in Â, and the result follows.

Recall from the proof of [10, Proposition 3.3], that if points are closed in Â/R,

then every irreducible representation of C∗(Â o R;D, α) is of the form L̃(χ,u) as

defined in the beginning of [10, §3]. Let h = (χ, u) and recall that L̃h acts on
the completion Wh of the collection W0

h of bounded compactly supported Borel
functions on Dh such that ξ

(
[χ · γ−1, z, γ]

)
= zξ

(
[χ · γ−1, 1, γ]

)
with respect to the

inner product

〈ξ, η〉
h

=

∫
R
ξ
(
[χ · γ−1, z, γ]

)
η
(
[χ · γ−1, z, γ]

)
dαu(γ̇).(4.6)

As above, we may view elements of W0
h as functions on (Âo G)h such that

ξ(χ · γ−1, aγ) = χ(γ−1aγ)ξ(χ · γ−1, γ),

and we can replace (4.6) by

〈ξ, η〉
h

=

∫
R
ξ(χ · γ−1, γ)η(χ · γ−1, γ) dαu(γ̇).

As observed in [10], we can restrict attention to ξ, η ∈ Cc(ÂoR;D), and therefore

to CDc (Âo G). If f, ξ ∈ CDc (Âo G), then

L̃h(f)ξ(χ · γ−1, γ) = f ∗ ξ(χ · γ−1, γ)

=

∫
R
f(χ · γ−1, γη)ξ(χ · η, η−1) dαu(η̇).

Recall that Ind(u,Au, χ) is equivalent to the representation T (χ,u) on H(χ,u)

given by (2.10).
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Lemma 4.7. Suppose that h ∈ Â and that f ∈ Cc(G). The map S defined by the
formula S(ξ)(γ) = ω(γ)−1/2ξ(χ ·γ−1, γ) is a unitary map of Wh onto Hh such that
for all f ∈ Cc(G),

T h(f) = SL̃h
(
Φ(f)

)
S∗.

Proof. Using Lemmas 2.1 and 4.2, it is not hard6 to see that the Radon-Nikodym
derivative of αu with respect to σu at γ̇ is ω(γ)−1. It then follows easily that S is
unitary. Now we compute

SL̃h
(
Φ(f)

)
ξ(γ) = ω(γ)−1/2L̃h

(
Φ(f)

)
ξ(χ · γ−1, γ)

= ω(γ)−1/2

∫
R

Φ(f)(χ · γ−1, γη)ξ(χ · η, η−1) dαu(η̇)

= ω(γ)−1

∫
R
ω(η)−1/2

∫
Ar(γ)

χ(γ−1aγ)f(aγη)ξ(χ · η, η−1) dβr(γ)(a)αu(η̇)

=

∫
R
ω(η)−1/2

∫
Au

χ(a)f(γaη)ξ(χ · η, η−1) dβu(a) dαu(η̇)

=

∫
R
ω(η)1/2

∫
As(η)

f(γηa)ξ(χ · η, a−1η−1) dβs(η)(a) dαu(η̇)

=

∫
G
f(γη)ω(η)1/2ξ(χ · η, η−1) dλu(η)

= T h(f)S(ξ)(γ).

Lemma 4.8. Suppose that F ∈ CD∞(Â o G), h ∈ Â, and ξ, ζ ∈ W0
h. Then there

is a compact set K in R so that F (χ, γ) = 0 if γ̇ /∈ K. Furthermore, there is a
M ∈ R+, depending only on K, such that

|〈L̃(F )ξ, ζ〉
h
| ≤M‖F‖∞‖ξ‖Wh

‖ζ‖Wh
.

Proof. Fix a compact set K in R so that F (χ, γ) = 0 if γ̇ /∈ K. Since Â/R is Haus-
dorff, it follows that [u] is closed. Thus R|[u] is a transitive second countable locally
compact groupoid. It follows from [8, Theorem 2.2B] that R is homeomorphic to
Ru×Ru via the obvious map: (γ, η) 7→ γη. In particular, there is a compact set C
in R such that C = C−1, and such that γη ∈ K implies that both γ, η ∈ C. We let
M = supu∈G(0) αu(C). Then M <∞ and depends only on F .

6Just compute∫
Gu/Au

ω(γ)−1F (γ̇) dσu(γ̇) =

∫
G
ω(γ)−1F (γ̇)b(γ) dλu(γ) =

∫
G
ω(γ)F (γ̇−1)b(γ−1) dλu(γ)

=

∫
R

∫
As(γ)

ω(γ)F (γ̇−1)b(aγ−1) dβs(γ)(a) dαu(γ̇)

=

∫
R

∫
Au

F (γ̇−1)b(γ−1a) dβu(a) dαu(γ̇) =

∫
Gu/Au

F (γ̇) dαu(γ̇).
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|〈L̃(F )ξ, ζ〉
h
| =

∣∣∣∫
G

∫
G
F (χ · γ−1, γη)ξ(χ · η, η−1)ζ(χ · γ−1, γ) dαu(η̇) dαu(γ̇)

∣∣∣
≤ ‖F‖∞

∫
C

∫
C

|ξ(χ · η, η−1)ζ(χ · γ−1, γ)| dαu(η̇) dαu(γ̇)

= ‖F‖∞
(∫

C

|ξ(χ · η−1, η)| dαu(η̇)
)(∫

C

|ζ(χ · γ−1, γ)|αu(γ̇)
)

≤ ‖F‖∞M1/2‖ξ‖Wh
M1/2‖ζ‖Wh

,

where the last inequality follows from the Hölder inequality.

Proof of Proposition 4.5. It now follows from Lemma 4.6 and a routine computa-

tion that Φ is a ∗-homomorphism from Cc(G) into CD∞(Â o G). As a consequence

of Lemma 4.8, we see that CDc (Âo G) is dense in CD∞(Âo G) in the pre-C∗-norm

induced by the { L̃h }h∈Â. Therefore we may view CD∞(ÂoG) as a dense subalgebra

of C∗(ÂoR;D, α), and Φ defines an injection of C∗(G, λ) into C∗(ÂoR;D, α).

Since Â/R is Hausdorff, this implies that G(0)/R is Hausdorff, and hence that
orbits are closed in G(0). As remarked in the discussion preceding Lemma 2.11,
each irreducible representation Ind(u,Au, χ) factors through C∗(G|[u], λ) for some

orbit [u]. Since C∗(G|[u], λ) is Morita equivalent to C∗(Au), it follows that T (χ,u),

and hence L̃(χ,u), is a CCR representation for each (χ, u) ∈ Â. It follows that

C∗(ÂoR;D, α) is a CCR algebra, and it is fairly clear that Φ
(
C∗(G, λ)

)
is a rich

subalgebra of C∗(Â o R;D, α) (as defined in [2, Definition 11.1.1]). Thus, Φ is
surjective [2, Proposition 11.1.6].

Now Theorem 1.1 follows almost immediately.

Proof of Theorem 1.1. It is straightforward to check that R acts properly on G(0)

if and only if Â o R acts properly on Â. If C∗(G, λ) has continuous trace, then

(C∗(G, λ))
∧

is Hausdorff. We have already noted that this implies that the stabilizer
map is continuous (Proposition 3.1). Furthermore Proposition 3.8 implies that

Â/R is Hausdorff, and Proposition 4.5 applies. We may therefore conclude that

C∗(ÂoR;D, α) has continuous trace. It follows from [10, Theorem 4.3] that ÂoR
acts properly on Â, and, as pointed out above, this implies that R acts properly
on G(0). This proves the necessity of conditions (1) and (2).

If, on the other hand, conditions (1) and (2) are satisfied, then as pointed about

above, ÂoR acts properly on Â so that Â/R is Hausdorff. Again Proposition 4.5

applies, and it suffices to observe that C∗(Â oR;D, α) has continuous trace. But
that follows from [10, Theorem 4.2].

Remark 4.9. It is a consequence of the above proof that if G has abelian isotropy
and if C∗(G, λ) has continuous trace, then C∗(G, λ) is isomorphic to to the re-
stricted groupoid C∗-algebra of a T-groupoid over an equivalence relation: namely,

C∗(ÂoR;D, α).
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