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ABSTRACT. If (G, 8) is a second countable transformation group and the stability 
groups are amenable then C*(G, 8)  is C.C.R. if and only if the orbits are closed 
and the stability groups are C.C.R. In addition, partial results relating closed orbits 
to C.C.R. algebras are obtained in the nonseparable case. 

In several cases, the topology of the primitive ideal space is calculated explicitly. 
In particular, if the stability groups are all contained in a fixed abelian subgroup H, 
then the topology is computed in terms of H and the orbit structure, provided 
C*(G, 8) and C*(H, 8)  are EH-regular. These conditions are automatically met if 
G is abelian and (G, 8) is second countable. 

1. Introduction. This paper grew out of an attempt to determine when a locally 
compact transformation group C*-algebra, C*(G, 3), is C.C.R. Motivated by a 
result of Elliot Gootman [IS] which shows that, for second countable locally 
compact transformation groups, C*(G, 3)  is G.C.R. if and only if every stability 
group is G.C.R. and the orbit space satisfies the Toaxiom of separability, one is led 
to try and prove-an analogous result for C.C.R. algebras. I. Schochetman [28] has 
proved that when G/Sx is compact for every stability group, S,, then C*(G, 3)  is 
C.C.R. if and only if every stability group is C.C.R. We remark that the hypotheses 
implies that the orbits are closed. In this paper, we show that if we require only at 
every point of discontinuity, y, of the map x w Sxthat the stability group S, be 
amenable and that (G, 3)  is second countable, then C*(@, a) is C.C.R. if and only 
if every stability group is C.C.R. and every orbit is closed. The more difficult part 
of the proof involves generalizing a result of Effros and Hahn [9, Theorem 5.111 
which requires that all the stability groups be abelian. Our methods are consider- 
ably different from either Schochetman's or Effros and Hahn's and they are very 
algebraic in nature. Our methods are modeled after and depend heavily upon those 
of heffel and Green [19], [ a ] .  In particular, we make free use of the theory of 
strong Morita equivalence and imprimitivity algebras (cf. [ a ] ,  [24], and [25]). 

In the course of proving the above "C.C.R. Result," we obtain some results 
which allow us to calculate explicitly the topology on the primitive ideal space of a 
large class of transformation group C*-algebras. Namely, we work with transfor- 
mation group C*-algebras which have the property that every primitive ideal is 
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induced in an appropriate sense from a stability group; such algebras are called 
EH-regular. In the second countable case, it is known [17], [19] that C*(G, 3)  is 
EH-regular if G is amenable or if the orbits are locally closed. We are able to 
calculate Prim C*(G, G?) up to homeomorphism when C*(G, 3) is EH-regular and 
either the action is essentially free or the stability groups are contained in a fixed 
abelian subgroup. 

In 92 we make some preliminary definitions and state some of the basic results 
from the literature concerning transformation group C*-algebras. Although none of 
the results or proofs in 92 are new, we have included them for the sake of 
completeness and for the reader's convenience. 

In 93 we state our C.C.R. result and prove the easier half of the theorem. Then 
we introduce the various notions of induced representations of C*(G, G?) which will 
be needed in completing the proof of the C.C.R. theorem. The reader will 
undoubtedly find some familiarity with Marc Rieffel's induced representations of 
C*-algebras helpful [23]. 

In 94 we finish the proof of the C.C.R. theorem and prove some related results. 
In 95 we obtain the results which allow us to calculate Prim C*(G, 3)  in the 

cases mentioned above. 
The reader is assumed to be familiar with the basic theory of C*-algebras as 

presented in the first five chapters of [6]. In addition some knowledge of the 
multiplier algebra of a C*-algebra [4] will be assumed. If A is a C*-algebra, we will 
always denote the multiplier algebra by M(A).  Unless stated otherwise, all ideals 
are assumed to be closed and two-sided. 

This paper is based on part of the author's doctoral dissertation at the Univeristy 
of California at Berkeley. The author would llke to take this opportunity to thank 
Professor Marc Rieffel for his supervision and helpful suggestions during the 
writing of this dissertation. 

2. Preliminaries and notation. Let be a locally compact Hausdorff space. We 
will denote the space of continuous complex valued functions vanishing at infinity 
on 3 by Co(G?). We let Cc(3) be the subspace of functions in Co(3) which have 
compact support. If & is a normed algebra, we denote the analogous spaces of 
&-valued functions by Co(G?, &) and Cc(3, &). 

In addition, we suppose G is a locally compact group with a jointly continuous 
action on 3 ;  more precisely, we have a continuous map G x 3-+ 3, so that 
r . (S .X) = (rs) .x where s .x denotes the image of (s, x). Thus (G, 3)  is a locally 
compact transformation group and we may form the associated transformation 
group C*-algebra, C*(G, 3). For a precise treatment of the construction of 
C*(G, G?) and the basic facts concerning transformation group C*-algebras, the 
reader should consult [5], [7], [9], [19], [29]. For the reader's convenience, we give 
some of the essential details. C*(G, a )  is the enveloping C*-algebra of the Banach 
*-algebra L'(G, Co(3)) of all Bochner integrable Co(3)-valued measurable func- 
tions on G with respect to a fixed Haar measure. Multiplication and involution are 



defined by 

f * g(s, x) = JG f(r, ~ ) ~ ( r - ' s ,  . x) dr, r-' 

f * (s, X) = A(s-')f(s-', S-I . x)-

where f, g E L'(G, Co(Q)), s E G, x E Q, A is the modular function on G, and- 
denotes complex conjugation. 

Notice that if Q consists of a single point, then the above construction is nothing 
more than the group C*-algebra of G. We also remark that C*(G, Q) is the same as 
the covariance algebra C*(G, Co(Q)) where the strongly continuous action of G on 
Co(Q) is given by "+(x) = +(s-' . x )  for + E Co(Q) and s E G. We will often find it 
convenient to work with the subalgebra C,(G x a )  rather than L'(G, Co(Q)) or 
C*(G, Q) itself. To indicate that we are viewing Cc(G x Q) as a subalgebra of 
C*(G, a )  as opposed to a subalgebra of Co(G X Q) will d e n ~ t e  the subalgebra of 

C*(G, a )  by Cc(G, a). 
DEFINITION2.1. A covariant representation L of (G, Q) on a Banach space 3, 

consists of a uniformly bounded strongly continuous representation, VL, of G on 
aLand a norm-decreasing nondegenerate representation, M, of Co(Q) on 3, such 
that VL(s)ML(+) vL(s-') = ML('+) for every s E G and + E Co(Q). If 3, is also a 
Hilbert space we require that VL be unitary and ML be *-preserving. 

For convenience, henceforth all representations will be assumed to be nondegen- 
erate. The next lemma is an immediate consequence of the definitions. 

LEMMA2.2. A covariant representation, L = (VL, M,), gives a representation of 
L '(G, Co(Q)), also called L, defined by 

L( f )  = J M,(f(s,.)) VL(s)
G 

for f E L '( G, CO(Q)). 

For example, the natural representation of L'(G, Co(Q)) on itself by left multipli- 
cation is the integrated form of ( V, M) where 

(V(s)f)(r, X) = f(s-'r, 3- I  . x), (M(+)f)(r, x) = +(xlf(r, X) 
for r, s E G, x E Q,f E L'(G, Co(Q)), and + E Co(Q). These actions induce homo- 
morphisms RG and R, of G and Co(Q) into the multiplier algebra [4] M(C*(G, a)). 
Phil Green (cf. [19, p. 1951) has combined this observation with the basic work in 
[7] to show the following proposition. 

PROPOSITION2.3. If H is a Hilbert space then there is a one to one correspondence 
between *-representations of C*(G, Q) on H and covariant representations of (G, a )  
on H. The correspondence is given in one direction by Lemma 2.2 (recall that 
*-representations of L'(G, Co(Q)) are in one to one correspondence with *-representa- 
tions of its enveloping c*-algebra, C*(G, a)). In the other direction, let L be a 
*-representation of C*(G, Q). Then L has a unique extension to M(C*(G, a)), which 
we also denote by L, and 

vL(s) = L(R,(s)), ML(+) = L(Ra(+>). 
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Again motivated by Green's work, we choose to discuss the continuity properties 
of inducing and of restricting representations in terms of maps between spaces of 
ideals. If & is a C*-algebra, we give the space 4(&) of closed two-sided ideals of & 
the topology having as a subbase for its open sets the family {8J)JE4(Q), where 
8, = { I  E 4(&): I 3 J).Alternately, we may identify an ideal in & with a closed 
subset of & in the usual way. The topology on 4 ( & ) can then be described in terms 
of a subbase for the topology on %(&), the closed subsets of &. This subbase is the 
family of U(8) = { F  E %(&): F n 8 # 0)where 8 runs over all open subsets 
of $. The reader can now see our topology is essentially Fell's "inner hull-kernel" 
topology (cf. [Ill). The following observation will be of great importance in 35. 

LEMMA2.4. Let {I,),,, be a net of ideals in $(&) converging to I .  Suppose also 
that I, corresponds to Fa :,E %(a). Then, given any P E F, there is a subnet, 

,,,with {Po) such that there are Pp E Fp ,,,, {Ip) converging to P in Prim &. 

PROOF. By the above remarks, we may assume the Faconverge to F i n  %(&). Let 
U be any neighborhood of P. Then { C  E %(&): C n U # 0)is an open neigh- 
borhood of F. Therefore, given any a, E A there is an a > a, such that Fa n U # 
0 .  Now let A' = {(U, a): U is a neighborhood of F, a E A, and Fa n U # 01 ,  
and pick PC ,,,, E Fa n U ; this will suffice. Q.E.D. 

DEFINITION2.5. Let D' and F be C*-algebras and D an ideal of D'. Suppose P is 
a *-homomorphism of F into D'. Define 

(a) P*: g(F) --!$(D) by 


P,(J) = ideal generated by {P(f)d: f E J ,  d E D ) .  


(b) P*: g(D) -+ g(F) by 

P*(I)  = {f E F: P ( f ) . D  C I ) .  

Note that P*(I) is an ideal of F because I is an ideal of D'. The essential properties 
we need are given by the next lemma. 

LEMMA2.6 (GREEN). (i) P*is continuous from 4 (D) + $ (F). 
(ii) P* preserves arbitraty intersections while P, preserves arbitrary uniom (the 

union of a family of ideals being the ideal they generate). 

PROOF.This is part of [19, Proposition 9(i)]. Q.E.D. 
Let H be a closed subgroup of G. 
DEFINITION2.7. If L is a *-representation of C*(G, a), let ~es;(L) denote the 

*-representation of C*(H, 3)  corresponding to (VLIH, ML). 
Let R, = R,,, and note that R = (R,, R,) is a covariant representation of 

(H, 3) on C*(G, 3). The integrated form of R gives a *-homomorphism of 
L'(H, C,(Q)) into M(C*(G, 3)). Since the latter is a C*-algebra, the homomor- 
phism "lifts" to a *-homomorphism of C*(H, 3) into M(C*(G, 3)). Call thls 
homomorphism C. 

DEFINITION 2.8. Define ~es ; :  g (C*(G, 3)) + 4 (C*(H, Q)) by ~ e s z= C*. 
When H = e we let Res = Res;: 4 (C*(G, 3)) + $(Co(3)). 

Our ambiguous notation is justified by the next lemma. 



LEMMA2.9 (GREEN). If L is a representation of C*(G, a), then ker R~S;(L) = 

Resz(ker L). 

PROOF.This is [19, Proposition 9(ii)]. Q.E.D. 
Let r be the integrated version of the homomorphism R, of G into 

M(C*(G, a)). 

LEMMA2.10. If L = (VL, ML) is a representation of C*(G, a), then T*(ker L) = 

ker VL. In particular, if N = (V,, M,) is another representation and ker L = ker N, 
then ker V, = ker V,. 

PROOF. The second statement follows from the first. Moreover, r*(ker L) = { f 
E C*(G, 3): l?(f)C*(G, 3)  c ker L).  Since L(r(f)g) = VL(f)L(g) and L is non- 
degenerate, the desired result follows. Q.E.D. 

By the orbit space 3/ G we mean the quotient topological space obtained from 3 
by identifying all the points in the same orbit. In many cases Q/ G will not even be 
To. When it is necessary to work with To spaces, we follow [9] and make the 
following definition: 

DEFINITION2.1 1. If X is a topological space denote the quotient topological 
space obtained from X by identifying points with identical closures by X - .  X - is 
called the To-ization of X. Notice that X - is always To and that X - = X if X is 
already T,. 

Recall that S, = { r  E G: re x = x)  is called the stability group at x. Let Z 
denote the spacetof closed subgroups of G endowed with the compact Hausdorff 
topology introduced by Fell [ l l ] .  Also, suppose that fo is a nonnegative, real-valued 
function in Cc(G) which does not vanish at the identity. For the remainder of thls 
paper, let a, be the left Haar measure on H defined by 

Such a choice is called a continuous choice of Haar measures and has the property 
that H +1, f da, is continuous for each f E Cc(G) [14, p. 9081. 

Also, Let A, be the modular function on H and let Y = {(H, t )  E Z x G: t E 

H ) .  Notice that Y is closed in Z x G. The proof of the next lemma is routine, so 
we omit it. 

LEMMA 2.12. (i) Suppose {f,) Cc(G) converges to f in the inductive limit 
topology and H, +H in 2. Then JH7 f, daH7 converges to 1, f da,. 

(ii) A,(t) is continuous on Y C_ 8 x G. 
(iii) Let F E Cc(Y), then 

is a continuous function on 8. 

The reader should be aware that the natural map of 3 to I: defined by x I-+ S, is 
not continuous in general. It is precisely this difficulty that we will need to 
overcome in many of our results. This leads us to make the following definition. 
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DEFINITION2.13. By a point of discontinuity of Q we mean a pointy E Q where 
the map x t-+ Sx fails to be continuous. 

We pause to give two results of Glimm which are related to the above. When G 
is a Lie group, Q is second countable, and the action is smooth, then there is an 
open dense subset of Q on which the map x t+ Sx is continuous [13,Theorem 31. In 
the same paper Glimm also gives an example where x t-+ S, is continuous on no 
open set. 

Suppose that H is a closed subgroup of G. In the following sections, it will be 
convenient to make use of the various methods of inducing representations from 
C*(H, Q) to C*(G, a).For future reference, we outline the basic definitions here. 

In [19] Phil Green described a method for inducing representations of C*(H, Q) 
to C*(G, 8 )  using the techniques developed by Marc keffel in [23].First, Green 
defines C*(G, Q) in terms of a symmetric Haar measure, ~,(s)-'/~da,(s). To avoid 
confusion, we remark that his definitions are mapped onto ours by f t-+ ~:/2f. 
Thus, the C,(H, Q)-valued inner product on the imprimitivity algebra, Cc(G, Q), 
using our definitions is 

where y,(t) = ~ ~ ( t ) ' / ~ ~ , ( t ) - ' / ~  = (v, p) is a represen- [19, p. 2001. Recall that if L 
tation of C*(H, Q) on V,, then the induced representation is denoted by 1nd$(~)  
or Indg(v, p), and acts on the completion of Cc(G, Q) BB0V, with respect to the 
inner product defined by 

(f @ t ,  g @ 77) = w ( ( gt f )B& v)L. (2) 

The action of h E C*(G, Q) on the class off  €3 6 is given by (h * f)B ([19, p. 
2041 and [23, Theorem 5.21). 

Notice that if Q is a single point and if v is a unitary representation of H, then 
the above construction yields the representation of G induced from IT on H, 
~ n d g ( ~ ) ,as defined in $4 of [23]. In this case, the Cc(H) valued inner product on 
C,(G) is denoted by simply ( . ,. ),, and (f, g),(t) = yH(t)g* * f(t). 

Of course, using techniques developed by Mackey and extended to the nonsep- 
arable case by Blattner [2], it is possible to realize the space of the induced 
representation as a set of V,-valued functions on G. When H is normal in G, this 
set has a particularly easy description whlch it will be convenient to use in $5. 

Let y be a Haar measure on G/H such that 

Consider the subspace, 9,of the continuous VL-valued functions f on G, which 
have compact support modulo H (i.e. the support of F is contained in CH for C 
compact in G) and which satisfy 

f(st) = v(t-')f(s). 

Note that 1 1  f(s)ll may be viewed as a continuous function with compact support on 
G/H. More generally, given f and g in %, the function s -+(f(s), g(s)),' is an 



element of Cc(G/ H )  and we can define an inner product by 

Let X denote the completion of B with respect to the above inner product. 
Notice that 5F may be viewed as a subset of the Hilbert space, vL, defined in [2] as 
the space of the representation of G induced by the unitary part of L (since 
AH(t) = A,(t) for H normal and a moment's reflection shows that the norms 
agree). But, [2, Lemma 21 implies 5F is total in v L ;  thus X and vLcoincide. 

LEMMA2.14. Let L = (a, p) be a representation of C*(H, a). Then the map U, 
defined on elementary tensors by 

defines a unitary map from the completion of Cc(G, G) €3) VL onto X .  In particular, 
the unitary part of ~ n d g ( a ,  p) is equivalent to Ind:(a). 

PROOF.The map U is essentially the map defined in Theorem 5.12 of [23], and 
straightforward computations show that it has the required properties. The last 
statement may be verified using Proposition 2.3 and [23,Theorem 5.121. Q.E.D. 

3. Induced representations of C*(G, G). In this section we state the first of our 
main results. We also prove the easier half of thls result and introduce the 
constructions needed to prove the second half. 

In [19], Phil Green defines a covariance algebra to be quasi-regular if every 
primitive ideal lives on a quasi-orbit (cf. [19, p. 2211). In the transformation group 
C*-algebra case, quasi-regularity means that, for every P E Prim C*(G, a), 
hull(Resz(~))=Gfor some x E G. In [9], Effros and Hahn show that if G and 
G are second countable then C*(G, a )  is quasi-regular. More generally, Green 
shows C*(G, G) is quasi-regular whenever (G/G)- is second countable or almost 
Hausdorff [19, Corollary 191. It is not known if every covariance algebra is 
quasi-regular. The question is closely related to the question of whether every 
prime ideal in a C*-algebra is primitive (cf. remark on p. 223 of [19]). 

It will be for the class of quasi-regular algebras that we can prove many of our 
results. However, our results concerning C.C.R. transformation group C*-algebras 
can be stated much more succinctly in the second countable case. The results in the 
nonseparable case are stated in Proposition 3.2 and Proposition 4.17. 

THEOREM3.1. Let G and G be second countable and suppose the stability group at 
every point of discontinuity of G is amenable. Then C*(G, G) is C.C.R. i f  and only i f  
G/  G is T I  and every stability group is C.C.R. 

The first part of Theorem 3.1 follows from the next proposition. 

PROPOSITION3.2. Suppose that G/  G is T I .  If G and G are not second countable we 
also assume that C*(G, G) is quasi-regular and that the natural map of G/S, onto 
G . x is a homeomorphism for each x E 52. Then C*(G, G) is C.C.R. if and on[y if 
every stability group is C. C. R. 
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PROOF. Notice that in the second countable case, all the additional hypotheses 
are automatically satisfied. We have already pointed out that C*(G, 3)  is quasi-reg- 
ular in this case and it follows from a result of Glimm's [13], that Q/G To implies 
that the natural map of G/Sx onto G .  x is a homeomorphism in the second 
countable case. 

Thus, if L = ( V ,M) is an irreducible representation of C*(G, Q), then 
Res(ker L) = I,,, for some x. Here I,., means the ideal of functions in C,(Q) 
vanishing on G .x. But by Lemma 2.9, Res(ker L) = ker Res L = ker M. By [17, 
Lemma 11 we may view C*(G, G .  x) as a factor algebra of C*(G, Q) and L as a 
representation of the former algebra. It follows that C*(G, 3)  is C.C.R. if and only 
if each C*(G, G . x) is C.C.R. However, since the homeomorphsm G/S, + G .x is 
obviously G-equivariant, it is easy to see that C*(G, G .  x) is isomorphic to 
C*(G, G/S,). Moreover, C*(G, G/Sx) is (strongly) Morita equivalent to C*(Sx) 
(cf. [MI). In particular, C*(G, G/Sx) is C.C.R. if and only if C*(Sx) is C.C.R. (see 
for example [23, Corollary 6.241). Q.E.D. 

We remark that the hypothesis that G/Sx +G.  x be a homeomorphism is 
essential in the nonseparable case. Let R, be the real numbers with the discrete 
topology and let R, act on R, with the usual topology, by left translation. Form 
C*(R,, R) and the representation a = (A, p) on L~(R)  where 

Note that a is irreducible. This follows because the analogous representation of 
C*(R, R) is irreducible (cf. [26]) and because any operator whch commutes with 
A(s) for all s E R, commutes with A(g) for any g E C*(R). However, the range of 
a is not just the compact operators. In fact, let cp be any nonzero function in C,,(R). 
Define f E C,(R,, Q) by 

Then a simple computation shows that a(fl = p(cp). Since p(cp) does not have 
discrete spectrum it cannot be compact. 

The method of attack in proving the other direction of Theorem 3.1 is as follows. 
Under suitable hypotheses, we will produce a continuous map a :  Prim C*(G, 3)  + 
Q/G and a cross section. Effros and Hahn [9] have shown ths  cross section is 
continuous when all the stability groups are abelian. Thus, 3 / G  is identified with a 
subset of Prim C*(G, Q) and must be T, when C*(G, Q) is C.C.R. The remainder 
of the proof of Theorem 3.1 involves generalizing the above to require only that the 
stability groups be amenable at points of discontinuity of 3. Since the definition of 
the cross section involves the notion of the representation of C*(G, Q) induced 
from a stability group, it will be necessary to make that notion precise and to 
investigate the continuity properties. It is to that task that we now turn while 
postponing the rest of the proof of 3.1 to $4. 

Suppose that H is a closed subgroup of G, and that H Sx for some x E Q. 
Then, if o is a unitary representation of H on Vu, there is a natural covariant 



representation of C*(H, a), (a, p,), where p, is defined by p,(+)v = +(x)v. Thus, 
each representation of H is associated with an induced representation of C*(G, a), 
Ind$(w, P,). 

It will be convenient to realize the above representation on the space of Ind$(w), 
that is, on the completion of Cc(G) 63, V with respect to the inner product 
described in equation (1) of S2. Towards this end, iff 63 u E C,(G, a )  €3 V, then 
define U( f 63 u) = #(f)63 v, where #(f)(s) = f(s, s . x). The next proposition fol- 
lows from routine calculations. 

PROPOSITION E 2, and that H G S, for some x E a. Then3.3. Suppose that H 
the map U defned above exten& to a unitary map from the space of 1nd$(w, p,) to 
the space of 1nd$(w). Moreover, U intertwines 1nd$(w, p,) with the cmriant 
representation (1nd$(w), p) where 

DEFINITION3.4. Let ~ n d z ,  ,,(w) denote the representation (~nd$(w), p) defined 
above. When H = S,, we call ~ndg,,,(w) the representation of C*(G, a )  induced 
from w on the stability group at x. 

REMARK. andAdopting the point of view of 1231, one may view w H1ndZ(w, p,) 
w H Ind;, ,,(w) as functors from the category of Hermitian C * (H )-modules to 
Hermitian C*(G, a)-modules. These functors are naturally unitady equivalent. 

LEMMA3.5 (GREEN). There is a continuous map, ~ n d z ,  from 4 (C*(H, a)) to 
S(C*(G, a)) such that, if L is a representation of C*(H, a), then 1ndg(ker L) = 

ker(Ind$(L)). 

PROOF. The proof is due to Green [19, Proposition 91. We include it for 
completeness. Let & denote the transformation group C*-algebra 

C*(G, G/H X a) ,  

where the G-action is the diagonal one; s . (rH, x) = (srH, s . x). Thus, & is Morita 
equivalent to C*(H, a )  119, Proposition 31. Recall from [25, Theorem 3.21 that 
Morita equivalent C*-algebras have isomorphic lattices of ideals, and let I' denote 
the ideal of & corresponding to I E S (C*(H, a)). 

Let P denote the natural homomorphism of C*(G, a )  into M(&) (i.e. the 
integrated form of the homomorphisms of G and C,(Q) into M(&)). It is not 
difficult to see that 1nd$(L) is the composition of P with the canonical extension to 
M(&) of the representation of & induced from L via the imprimitivity bimodule 
Cc(G, a )  (cf. [19, Proposition 3 and following remarks]). Since the kernel of the 
representation of & induced from L is (ker L)' 125, Proposition 3.71, it follows that 
ker(~nd$(L))= { f E C*(G, a): P ( f ) . & C (ker L)'}. 

Thus, by Lemma 2.6, it will suffices to define 1nd$(1) = p*(lE). Q.E.D. 

4. C.C.R. transformation group C*-algebras. It is well known that the representa- 
tion induced from a stability group is irreducible. The original proof in the second 
countable case goes back to Mackey ([21, $61; see also [14, pp. 900-9011). The 
proof of this fact given in Proposition 4.2 is for general transformation groups and 
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is based on an idea of Marc Rieffel's and some helpful suggestions from William 
Arveson. However, first we need to establish some notation and prove a pre-
liminary lemma. 

For the moment fix x E Sl and consider the transformation group (G, G/Sx). 
Recall from $1 that we have homomorphisms of Co(G/Sx) and G into 
M(C*(G, G/Sx)), which we denote by Rx and R,. Let the extension of Rx to 
BC(G/Sx), the bounded continuous functions on G/Sx, also be denoted by Rx. 
Since the natural map of G/Sx into Sl defined by rSx + r . x is continuous, we 
obtain a homomorphism of Co(Sl) into BC(G/Sx), and hence, into 
M(C*(G, G/Sx)). Denote this map by R,. It is easy to see that (R,, R,) is a 
covariant representation of (G, Sl) on C*(G, G/Sx). The integrated version of 
(R,, R,) gives a *-homomorphism of C*(G, Sl) into M(C*(G, G/Sx)), whch we 
will denote by Rx. 

LEMMA4.1. Suppose x E Sl and w is a unitary representation of Sx. Then if 
L = Ind;, ,Jw) we have the commutative diagram: 

R 

C*(G, Q) + M(C*(G, G/Sx)) 

L 'li L( U0 

B( V) 
Here, U" is the representation of C*(G, G/Sx) induced from w, V is the space of U" 
defined in $2, and B(V) is the algebra of bounded operators on V. 

PROOF. ~ e c a l ithat U acts on the completion of C,(G) 8, V" with respect to the 
inner product defined in equation (1); thus our diagram at least makes sense. 
Moreover, U" is the integrated version of (T, M), where 

~ ( s ) ( f@ E) = A(s)(f) @ E, s E G, 


f @ 1 = l f @ 2 + E Co(G/Sx), 

and A(s)f(r) = f(s-'r) while M,(+)f(r) = +(rSx)f(r). Let Ll = UW0 Rx be the rep- 

resentation of C*(G, Sl) and R; and R, the homomorphisms of G and Co(Sl) into 
M(C*(G, Sl)). Then VL,(s) = L,(R;(s)) = UU(R,(s)) = ~ ( s )= VL(s), while MLI(+) 
= tl(R,(+)) = UU(R,(+))= ~ ( 6 1 ,where 6 is the function in BC(G/Sx) defined 
by +(rSx) = +(r . x). Thus, MLI(+) = ML(+). Q.E.D. 

PROPOSITION = is4.2. If w is an irreducible representation of Sx, then L ~ndz,,~,(w) 
also an irreducible representation of C*(G, Sl). 

PROOF. Let U" = (T, M) be as in Lemma 4.1. Since C*(Sx) and C*(G, G/Sx) 
are Morita equivalent, U" is irreducible. Thus, the only operators in B(V) commut- 
ing with {n(s), M(+): s E G, + E Co(G/Sx)) are the scalars. Since n(s) = VL(s) 
for each s E G, it suffices by Lemma 4.1 to show that for each + E Co(G/Sx), 
M(+) can be weakly approximated by operators of the form U"(Rx(+)) for 
$J E Co(X). We may also assume that + is real valued. 

Let C be a compact subset of G/Sx. Notice that the map of G/Sx + Sl restricts 
to a homeomorphism of C onto its compact image. Thus, if we fix + E Co(G/Sx), 
we may construct via the Tietze extension theorem, a function $Jcin C,(X) whose 



- - 

image in BC(G/Sx) agrees with + on C and such that I l $ c l l o o  < l l + l l o o .  Thus, the 
{U"(Rx($c))) form a net in B(V), indexed by increasing C, whch we claim 
converges weakly to M(+). Since our net is bounded, it suffices to show the 
convergence on a dense subset, and in particular, on elements of the form f €3 ,$ in 

CJG) €3, v',. 
Let f €3 ,$ and g €3 77 be in C,(G) €3, V with the support of g C_ K. Then, if 

C 2 K, 

since $ c ( ~  .X)= +(sSx) on the support of g. Q.E.D. 
For quasi-regular algebras, we may extend slightly a definition of [9, p. 621 and 

make the following definition. 
DEFINITION4.3. If C*(G, a )  is quasi-regular, then we define n from 

Prim C*(G, a), to (Q/G)- by n(P) = hull(Res(P)). 
Note that we identify orbit closures with the corresponding quasi-orbit (i.e. 

equivalence class) in (Q/G)-. The fact that t h s  identification is appropriate is 
demonstrated by the following lemma of Green's [19, p. 2211. 

LEMMA4.4. For x E S?, let [x] denote the class of x in (Q/G)-. The map from -
(Q/G)" to X(Q) defined by [x] +G. x is a homeomorphism onto its image. 

Notation. If x is a character of G and H E 2, then X, will denote the restriction 
of x to H. 

LEMMA4.5. Suppose C*(G, S?) is quasi-regular: 
(1) n is continuous and surjectiue. 
(2) If w is a representation of Sx, then 

hull(~es(ker(~nd~~,~~)(u))))= 
-

. 
(3) If x is a character of G, n ( k e r ( ~ n d g , ~ ~ , ( ~ ) ) )  = G .x. 

PROOF.In the second countable case, (1) follows from Lemma 5.5 and Corollary 
5.10 of [9], and (2) is a variant of Mackey's induction-restriction theorem (see [12, 
Theorem 3.3 and $41 for the group case and [lo, Proposition 2.11 for covariance 
algebra case). 

In general, continuity follows from the continuity of Res (Lemma 2.6) and the 
previous lemma. Surjectivity will follow from (3), and (3) will follow from (2) 
(recall, ker(~ndz,,~,(&~)) is primitive by Proposition 4.2). 

For the proof of (2), let L =Ind(",,sx,(w). By Lemma 4.1, we may write L = 

U" o Rx. We identify C*(G, \ G. x) with an ideal of C*(G, a) via [17, Lemma 
11. Then Rx(C*(G, Q \ G .x)) = 0. In particular, ker(L) contains C*(G, Q \ G . x). 
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-
Then, by Lemma 2.9, we have Res(ker L) = ker ML _> Res(C*(G, \ G .x)) _> {+-
E Co(Q):+ vanishes on G .x). 

Let U" = (n, M)  and 5 = s .x for some s E G. As we showed in Lemma 4.1, if 
+ E Co(Q) then ML(+) = ~ ( 4 )where 4 is the appropriate function in BC(G/Sx). 
It is clear that M(+) # 0 if + # 0 in BC(G/S,). Thus, if +(() # 0 then ML(+) # 0. 
In particular, ker ML is contained in {+ E Co(Q): +(g. x) = 0 Vg E G). Combin- 
ing this with the above, we see that ker(M,) is the ideal of functions in Co(Q) -
vanishing on G .x. Q.E.D. 

The following lemma will be a fundamental tool in the rest of this paper. 

LEMMA4.6. Let x E and C H c Sx. Suppose that H is amenable and that n 
is an irreducible unitary representation of H. Then Indg,,)(nl,) weakly contains 

IndE,,,(n). 

PROOF.By Proposition 3.3 

which, by [19, Proposition 81, is equivalent to 

~nd;(Ind:(nlc, P,)). 

On the other hand, Ind;(nl,, px) is equivalent to Ind~,,,(nl,). It follows from 
Proposition 3.3 that the latter representation is the integrated form of 
(~nd:(n(,), px). Thus, if 7 = ~ndZ(a(,), it suffices, by Proposition 3.3, to show that 
~ndg , , ) (~ )weakly contains Indg,,)(n). We claim it suffices to show that 7 weakly 
contains n. If so, then US weakly contains U", where Ull and U" are the 
corresponding representations of C*(G, G/Sx). By Lemma 4.1., ~ndg,,,(~)= 

UT o R x  while ~ndZ,,,(w) = U" o Rx; the sufficiency of our claim follows pro- 
vided the canonical extension of U V o  M(C*(G, G/S,)) weakly contains the 
extension of U". But, if g E M(C*(G, G/S,)), then U y g )  = 0 if and only if 
Uygf)  = 0 for every f E C*(G, G/S,). Thus, Un(gf) = 0 for every f E 

C*(G, G/S,), and Un(g) = 0. 
When H is amenable, the fact that 7 weakly contains n is the content of 

Theorem 5.1 of [20]. Q.E.D. 
Let H be a normal subgroup of G. Let s E G and K be a subgroup of H. Also, 

set L = s . fi-' C H. By the uniqueness of Haar measure, there is a continuous 
homomorphism X = A,,,: G +R+ such that 

jHf(srs-')daH(r) = X(s)/ f(r)daH forf E Cc(H). 
H 

Similar considerations allow us to define Haar measures on K and L, say y and v, 
such that 

and 



Now, let (w, p) be a covariant representation of (K, a). Let (a, p)" denote the 
covariant representation of (L, a )  given by 

ws(r) = w(s-h), ps(+) = p(s-l+). 

Recall that "-l+(x) = +(s .x). 
We remark that by [19, p. 1981, (G, C*(H, a))forms a covariant system when H 

is normal in G. The strongly continuous G-action is given on F E Cc(H, a )  by 

"f(h, x) = A,,,(s)f(s-'h, s-' . x). 

The following lemma is certainly well known. In the second countable case, a proof 
appears in [14, Theorem 2.11. 

LEMMA4.7. If a = IndH(w, p) and a = Ind:((w, p)"), then a is unitarily equivalent fC

to as,  where as(f) = a('-fl (the G-action is described above). Moreover, the class of 
asdepends only on the class of s in G/H. 

PROOF.The space of a ,  V., is the completion of Cc(H, a )  BBKV, with respect to 
the inner product given by 

where ( . is the C*(K, a)-valued inner product defined in [18] (cf. equation 
(1) of this paper). The space of a, Va, is fhe completion of Cc(H, a )  €3,' V, with 
respect to the ihner product given by 

where ( . ,.)BL is the C*(L, a)-valued inner product. 
Define U from Cc(H, a )  €3 V, to Cc(H, a )  €3 V, by U(f €3 t )  =f €3 6 with 

f(h, x) = h(s)-'/2f(s-'hs, s-' .x). Using the definitions of p and v, it is not hard to 
see that U extends to a unitary map of V,, onto Va which intertwines the two 
representations. Another routine computatiion verifies that for all r E G and 
t E H  

where V is the unitary part of a .  Q.E.D. 


COROLLARY is
4.8. If x is a character of G, K c S,, and s E G, then ~ n d $ , ~ ( ~ ~ )  
unitarily equivalent to ~nd~.,, ,)(~,) where L = skY1. 

PROOF.Recall that the stability group at s . x is SS,S-'. Thus, by Proposition 3.3, 
it suffices to apply the last lemma with H = G. Q.E.D. 

Let 6 denote the set of characters of G endowed with the topology of uniform 
convergence on compact sets. If w E 6 and x E let ~ ( x ,  W) denote the represen- 
tation of C*(G, a )  induced from w on the stability group at x (i.e. ~nd;,~,(w,~)). 
We define + from X 6 to Prim(C*(G, a)) by 

+(x, W) = ker(.r(x, a)). 
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LEMMA4.9. If the stability groups are amenable at each point of discontinuity of 3, 
then + is continuous. 

PROOF. Let F = { I  E Prim(C(G, 3)):I > J )  be an arbitrary closed subset of 
Prim(C*(G, 3)).Moreover, suppose that (x,, a,) converges to ( x ,  a) in 3 X 6 and 
that +(x,, o,) 2 J for each a.  We need to show +(x, o)1 J .  For convenience we 
will denote Sxaby S, and ~ ( x , ,o,) by simply 7,. 

Now since I: is compact, we may assume that S, + C.  As is shown in [9], 
c L s,. 

Let a = Indg,c,(toc). The space of 7, can be identified with the completion of 
Cc(G) with respect to the inner product defined in equation (2); namely, for 

g> h E Cc(G) 

Using Lemma 2.12(ii) we see that the integrand may be viewed as a continuous 
function on Y = { ( t ,  H )  E G €3 Z: t E H ) .  Therefore, by part (iii) of that lemma, 
( g ,  h ) ,  converges to 

We claim it suffices to show that, for all F E C*(G,3)and f ,  g E Cc(G), 

(7 , (F) (g) , f ), converges to (.rr(F)( g), h),. ( 4 )  

Let F E J.As 7,(F) = 0 for every a ,  we have a ( F )  = 0 since Cc(G)is dense in the 
completion. Thus, J ker a.  If x is a point of continuity of 3, then C = S,. 
Otherwise the sufficiency of the claim follows from Lemma 4.6. 

Also, it suffices to show the above only for F i n  a dense subset. Since elements of 
the form F = f .  +, where f E Cc(G)and + E Cc(Q),span a dense subset, we need 
only show (4) for elements of this form. However, if 7, = (V,, Ma) and a = 

( V ,  M ) ,  then 

(.,(f. +)h> g ) ,  V , ( f ) (h ) ,  g ) ,  = (M,(+)f * h, g),. = (Ma(+) 

It follows that it will be enough to show that (M,(+)g, h ) ,  converges to 
(M(+)g, h ) ,  for all g, h E C,(G). As above, it suffices, by Lemma 2.12, to show 
that h* * M,(+)(g)(t)ysa(t)~,(t)converges to h* * M(+)(g)(t)ysx(t)w(t)in the in- 
ductive limit topology. Clearly, we need only show h* * M,(+)(g) converges to 
h* * M(+)(g),or more simply, that M,(+)(g) converges to M(+)(g) in the inductive 
limit topology. Since M,(+)(g)(t) = +(t . x,)g(t), the supports are all contained in 
the support of g. If M,(+)(g) did not converge uniformly to M(+)(g), then there 
would exist t in the support of g such that 

I + ( &  . x,)g(t,) - +(t, . x)g(t,)l ) E > 0 
for every a.  Since we may assume the t, + t ,  we get a contradiction. Q.E.D. 
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Using the above lemma, we obtain a generalization of [9, Theorem 5.111 and [9, 
Corollary 5.131. Note that we continue to identify orbit closures and quasi-orbits. 

LEMMA4.10. Suppose that C*(G, 3)  is quasi-regular and that the stability groups 
are amenable at each point of discontinuity of 3. If x is a character of G, then T (see-
Definition 4.3) admits a continuous cross section, s,, with the property that s,(G. x) 

= ker(Ind,G,,,,(xs,>). 

PROOF. AS in [9], we define a map $ from 3 to Prim C*(G, X) by $(x) = 

k e r ( ~ n d & , ( ~ ) ) .$ is continuous by the previous lemma. 
To complete the proof, we need to show that I) factors through (3/ G)-. Suppose 

that G .x = G .y. Then, in particular, there is a net s, .x y in a. By Corollary 
4.8, $(s,. x) = $(x). Since $ is continuous, we must have $(y) C {$(x))-. We 
obtain the desired result by symmetry. Q.E.D. 

THEOREM4.1 1. If C*(G, 3)  is quasi-regular and i f  the stability group at evety point 
of discontinuity of 3 is amenable, then a admits a continuous cross section. 

PROOF.There is always at least one character of G, namely the trivial one. Now 
apply the previous lemma. Q.E.D. 

In [9] Effros and Hahn conjectured that, when G is amenable, every primitive 
ideal of a transformation group C*-algebra is induced from a stability group. To be 
more precise, we borrow the following definition from Phil Green [19, p. 2231. 

DEFINITION4.12. We say that C*(G, Q) is EH-regular if 
(a) C*(G, 3) is quasi-regular, 
(b) for every P E Prim C*(G, a), there is a x E 3 and an irreducible representa- 

tion w of Sx such that P = ker 1ndZx(w, p,). 
A number of special cases of the conjecture have been worked out by Effros and 

Hahn [9], Gootman [16], Green [19], and Sauvageot [27]. Recently, Jon Rosenburg 
and Elliot Gootman [17] were able to prove the conjecture in the second countable 
case, for general amenable G. In fact, their theorem holds for covariance algebras. 
In [19, Proposition 201, Green was also able to show that if each G .  x is locally 
closed and the natural map of G/S, to G .x is a homeomorphsm for each x E 3, 
then C*(G, 3) is EH-regular whenever it is quasi-regular. For example, in the 
second countable case, if C*(G, Q) is type I, then it is EH-regular (cf. [8] and [15]). 

THEOREM4.13. Suppose G is abelian. If G and 3 are not second countable, we 
assume that C*(G, 3)  is EH-regular. Then, i f  P E Prim C*(G, a), there is a 
continuous cross section for a with P in its range. 

PROOF. By [17j we may assume that C*(G, Q) is EH-regular and thus P = 

ker(~nd:~(~,px)) where x is a character of Sx.Let be an extension of x to G. We 
complete the proof by applying Lemma 4.10. Q.E.D. 

Notice that if C*(G, 3)  is C.C.R. and G and 3 are second countable then 31G is 
To by [15]. Thus, (3/G)- = 3 / G  and Theorem 4.11 and Proposition 3.2 imply 
Theorem 3.1 (see the remarks following Proposition 3.2). If we replace the assump- 
tion that (G, 3)  be second countable by assuming that the stability groups are 
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amenable at points of discontinutity of 3, then we can get the same result. To 
prove this, two lemmas are needed. 

Let x E 3. There is a continuous real-valued function, p in G such that p(s) > 0 
for all s E G, and 

p(s t )  = ~ ~ , ( t ) ~ , ( t ) - ' ~ ( s )for all s E G, t E S,. 

Then there is a unique quasi-invariant regular measure, p, on G/Sx such that, for 

allf E Cc(G), 

The existence of p and p follows from [3, Theoreme 21. The uniqueness follows 
from [3, Thtoreme 1 and Theoreme 21. The following lemma is certainly well 
known, but we were unable to find a reference in the literature. 

LEMMA4.14. If p is a measure on G/Sx such that equation ( 5 )  holdrr and x is a 
character of G, then a = Ind;,, ,(x,) is unitarily equivalent to the representation, 
L = (V,, M,), of C*(G, 3 )  on L 2 i G / x ,  p) where 

PROOF. We day  identify the space of a with the completion of C,(G) with 
respect to the inner product 

(f ,  g>, = x((  g,  f ),I. 
We then define U from Cc(G) into VL = L2(G/sX,  p) by 

Once we show that U maps Cc(G) onto a dense subset of L'(G/s,), it is an easy 
matter to check that U extends to an unitary map of the space of a onto L2(G/sX)  
which provides the desired equivalence. The fact that U is onto follows from the 
existence of Bruhat approximate cross sections. That is, there is a real-valued, 
positive, continuous function, b ,  on G such that 

b(s t )da,  ( t )  = 1 for all s E G, 
Jsx 

and the support of b has compact intersection with the saturant of every compact 
set C c G (i.e. CS,). The existence of such functions is shown in [3, Proposition 81, 
for example. Q.E.D. 

The next lemma will provide the essential step in circumventing the separability 
problems in Proposition 4.16. The lemma and its proof were shown to me by Marc 
Rieffel. Since the measure theory in arbitrary locally compact spaces can be tricky, 
we will use a set-up exactly as in [21, $9 11 and 121. We let Y and Z be arbitrary 
locally compact spaces together with nonnegative linear functionals I and J on 



TRANSFORMTION GROUP C*-ALGEBRAS 351 

Cc(Y)  and Cc(Z)  respectively. We let p and v be the regular bore1 measures 
obtained from the Riesz representation theorem [21, 11.37 and 11.341. For example, 
let Y = G / S ,  and I the functional defined as follows: for f E C,(G/S,) let 
f" E C,(G) be such that f ( i )  = Is=f"(st)da, ( t )  and set I ( f )  = 1, f (~)~(s )da , (s ) .  
Then, the corresponding measure is the quasi-invariant measure p defined above. 

LEMMA4.15. Let X be a locally compact space with Y ,  Z ,  p, and v as above. Let i 
and j be continuous injections of Y and Z into X and let M ,  and M2 denote the 
representations of Co(X)  on L2 (Y ,  p) and L ~ ( z ,  i and j. Then, ifv) coming from 
i ( Y )  n j ( Z )  = 0,M ,  and M2 have no equivalent subrepresentations. 

PROOF. We first show that the image of Co(X)generates L m ( Y ,  p) and Lm(Z ,  v). 
To do this, it will suffice to show that we can weakly approximate any element of 
Co(Y)c L m ( Y )  by elements of the form MI(+) for + E Co(x) (the proof for 
L m ( Z ,  v) being exactly the same). However, this follows in much the same way as 
in the proof of Proposition 4.2. 

Now, we show that nonzero invariant subspaces, H, of M,, and hence also of 
L m ( Y ) ,are of the form H = L2(&,  p) for G measurable (as in Definition 11.28 of 
[21]). Moreover, & must contain a nonnull measurable subset of finite measure, 
and by regularity of p, a compact subset of nonzero measure. (For a nonnull 
measurable subset of a locally compact group without the latter property, see [21, 
1 1.331.) 

Let CH = { F .c Y :  F is measurable and xFE H ). Also, let P be the orthogonal 
projection on H. If g E H, we set 6,= { x  E Y :  Ig(x)l > l / n ) .  Since xE , /g (x )  
E L m ( Y ) ,  we have xG,E H. Moreover, the Lebesgue dominated convergence 
theorem implies gn = x6" .g converges to g in L2(Y) .  Thus, if F 2 6 ,  then 
llxF g - gll < 1 1  gn - gll. Therefore, {x~),,,-- converges strongly to the identity 
on H as F increases. On the other hand, if p E Hi then xF.p  = 0 for all F E CH. 
In fact, if p > 0 and xF(x)p(x)# 0 a.e., then I, x,(x)p(x)dp(x) # 0 and ( x F , p )  
# 0. 

Thus, if f E L 2 ( Y )and we let fo E H and f ,  E H I  be such that f = fo + f,, 
then 

In particular, {&) converges strongly to P.This implies P E L m ( Y ,  p), and since 
P is a projection, P = xFfor some measurable set & .Our assertions now follow. Of 
course, similar results hold for invariant subspaces on L 2 ( z ,  v). 

Finally, we suppose some subrepresentation, say corresponding to & Y is 
equivalent to a subrepresentation on L 2 ( z ,v). By the remarks above, there is a 
compact set, C C G ,  such that p(C) > 0. Thus, the representation on L 2 ( c )  is 
equivalent to a subrepresentation on L ~ ( F )for some F C Z .  Let K C F be 
compact with v(F)  > 0. Of course, the representation on L ~ ( K )is equivalent to 
some subrepresentation on L 2 ( c ) .  

Since i ( C )  and j ( K )  are disjoint compact sets, there is a f E Co(X)  with f 
identically one on i ( C )  and identically zero on j (K) .  In particular f is the zero 
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operator on L ~ ( K )  and the identity on L~(c). This contradiction finishes the proof. 
Q.E.D. 

The next result extends part of a result of Elliot Gootman's [IS,Theorem 3.31 to 
nonseparable algebras when the stability groups are amenable at points of discon- 
tinuity. 

PROPOSITION4.16. Suppose that C*(G, 3)  is G.C.R. and that the stability groups 
are amenable at points of discontinuity of 3, then 3/ G is To. 

PROOF. If D/ G is not To, then there are x and y in 3 such that G .x n G - y =0 
and G - x = G . y .  By Lemma4.10, 

where 1 denotes the trivial representation. If the above representations were 
equivalent, then using the notation of Lemma 4.14, Mx and My would be equiva- 
lent representations of Co(3). However, t h s  is impossible by the previous lemma. 
Therefore, C*(G, 3 )  is not G.C.R. Q.E.D. 

The following proposition now follows immediately from the above and the 
remarks following Proposition 3.2 and Theorem 4.13. 

PROPOSITION4.17. Suppose that C*(G, 3)  is C.C.R. and that the stability groups 
are amenable at points of discontinuity of 3,  then the orbits are closed. 

After having worked out a proof of Proposition 4.17, the author learned that 
Elliot Gootman had worked out such a proof in the separable case several years 
ago, but had never published it. In fact, the proof given in this paper is simpler 
than the author's original proof and was influenced by suggestions of both 
Gootman and Rieffel. 

The reader should notice that the trivial character played no special role in the 
proof of Propositions 4.16 and 4.17. In fact, if x is a character of G and either 
y HSy is continuous at x or Sx is amenable, then in order for ~ n d & ( ~  ) to be a 
C.C.R. representation, G .x must be closed. Similarly, "local" versions of Theorem 
3.1 and Proposition 3.2 follow immediately. 

Unfortunately, we do not know whether the hypothesis on the stability groups is 
a necessary one in either Proposition 4.16 or the above. In fact we are unable to 
decide the necessity of this hypothesis in Theorem 4.1 1. However, Lemma 4.6, the 
essential lemma on which Lemma 4.9 depends, and hence on whch all the above 
results depend, is false in general without an amenability assumption as can be 
seen in the case where D is a single point. 

5. The topology of Prim C*(G, 3). In this section, we will study the structure of 
the primitive ideal space of a variety of classes of transformation group C*-alge- 
bras. To obtain detailed information we will eventually have to assume that we 
know all of the primitive ideals in terms of the stability groups and the orbit 
structure. This is, we will have to assume our algebras are EH-regular (cf. 
Definition 4.12). For the moment, we assume only that C*(G, 3) is quasi-regular. 

We start our investigation by assuming that G is abelian. The following lemma 
must be well known, and since the proof is straightforward, we omit it. 

http:Lemma4.10
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LEMMA5.1. Suppose that G is abelian and that o E 6. Then, if we identtfy C*(G) 
with c0(6),  the kernel of a = 1ndf(w,) f vanishes OM wH I ) , ,  where is {f E ~ ~ ( 6 ) :  
HI= {a E 6 :  a(h)= 1 forh E H ) .  

Now we define a map # from C2 x 6 to Prim C*(G, 8 )  by 

#(x, a )  = so(-), 

where s, is defined in Lemma 4.10. 
Suppose #(x, o) = #(y, a). Since a ( # ( ~ ,  a)) = a ( # ( ~ ,  a)), we have G .x = G .y 

by Lemma 4.5. Recall from the proof of Lemma 4.10 that G .x = G .y implies that 
Ind~,sx,(asx)has the same kernel as Ind&,,,(osy). Thus, #(x, w) = #(y, a) implies 
+(x, a)  = #(x, a). If then we have ker L" = ker Lo. Then if L o  = ~ndg ,~~) (a ,~ ) ,  
L o  = (Vo, Ma), it follows from Lemma 2.10 that ker Vo = ker V". However, by 
definition, Vu = ~ n d ~ ~ ( w ~ ~ ) .  = US:.By Lemma 5.1, we have US: 

This leads us to make the following definition. 
DEFINITION5.2. Let A be the quotient topological space obtained from the 

product 8 x & where (x, w) is identified with (y, a) if and only if G .x =G .y and 
as; = aSyL. 

The identification makes sense since G .x = G .y implies S, = S, for abelian 
groups. Notice that A may also be viewed as a quotient of (8/G)- x 6. 

THEOREM5.3. If C*(G, 0) is EH-regular, then # factors through A and defines a 
homeomorphism of A onto Prim C*(G, 8). 

PROOF.From the above discussion, rC/ factors through A and defines a one to one 
map of A into Prim C*(G, 0). Since 6 = 6 , #  is continuous by Lemma 4.9. 

Notice that rC/ is onto by Theorem 4.13. Finally, let F be closed in 8 x 6 and 
saturated with respect to the equivalence relation (Definition 5.2). Now, we need 
only show that #(F) is closed in Prim C*(G, 0). 

Suppose that {Pa} G # ( F )  and let La  = ~ n d g ~ , ~ ~ ~ , ( w , ~ ~), where (s,, w,) E F and 
ker La  = Pa. Suppose also that Pa -+ P. By virtue of ?he fact that C*(G, 0 )  is 
EH-regular, we may assume that P = ker ~ndg,,~,(w,~). By Lemma 4.5, a(Pa) + 
a(P), and therefore, G .  xa+G. x in (8/G)-. Since the natural map of 0 onto 
(8/G)- is open [19, p. 2211, we may assume that there are ya E 8 such that 
G .ya = G . xa and they, converge to x. 

On the other hand, Lemmas 2.6 and 2.10 imply that T*(P,) +r*(P), and hence, 
that ker Va +ker V, where Va is the unitary part of La. By Lemma 5.1, was: + 
US) in X(6). In particular by Lemma 2.4, there is a net %ab -+ w in 6 ,  where 
up E s$.Thus, (yb, wbab) converges to (x, w) in 8 X 6 .  Since F is saturated and 
closed, we have (x, w) in F. Q.E.D. 

We remark that the above proof shows that the natural map of 8 x 6 onto A is 
open (since convergent nets in A can be "lifted" to 8 X 6) .  In particular, the 
topology on A, and hence the topology on Prim C*(G, a), can be easily computed. 
In fact, a base for the topology on A can always be obtained as the forward image 
of a base for the topology on 8 x 6. 

For the remainder of this section, we drop the assumption that G be abelian and 
assume that H is a normal subgroup of G. As was pointed out in the discussion 
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preceding Lemma 4.7, (G, C*(H, 0)) forms a covariant system. Also, if L = (a, M) 
is a representation of C*(H, 0 )  on V then, for s E G, we defined Ls to be the 
representation of C*(H, 0)  such that Ls(f) = ~("tf).  

Let 9be the space of V-valued functions on G described in $2 and X the 
completion with respect to the inner product defined in equation (3). For f E 

C*(H, Q) and F E '3, define R(f)(F)(s) = Ls(f)(F(s)). Recall from the proof of 
Lemma 4.7 that L"( f )  = ~ ( t - ' ) ~ " ( f ) a ( t ) .Thus, R(f)(F)(st) = a(t-')R(f)(F)(s). 
In particular, R(f)(F) E 9. 

LEMMA5.4. R extendr to a representation of C*(H, 0)  on X with kernel equal to 
f l  s,Gker(Ls). 

PROOF. Since G acts by *-automorphisms on C*(H, 0)  and L is a representation 
of C*(H, a), to show that R extends to a representation, it suffices to show that R 
is norm decreasing. But 1 1  ~ ( f )F1 l 2  is equal to 

L,,<L("S)F(~), ~ ( " - f ) ~ ( s ) ) v d ~ i  1 ~ l .( Ilf 1 1 2  1 l ~ 

On the other hand, R(F) = 0 if and only if R(f)(F) = 0 for every F E 9.Since 
s + IIR(f)F(s)ll is continuous and positive, we see that R( f )  = 0 if and only if 
IILs(f)F(s)ll = 0 for every s E G and F E 9.That is, R(f) = 0 if and only if 
L y f )  = 0 for every s E G. Q.E.D. 

When G and 0 are second countable, the next proposition is a special case of 
Takesaki's generalization of Mackey's subgroup theorem to covariance algebras 
[29, Theorem 7.11 and a theorem of Fell's [12, Theorem 3.21. Since the unitary 
defined in Lemma 2.14 intertwines ~ e s g1nd$(~)  and the representation, R, 
defined above, our proposition follows from the previous lemma. 

PROPOSITION a G and L a representation of 5.5. Let H be normal subgroup of 

C*(H, 0). Then 


For the remainder of this paper we will assume that both C*(H, a )  and C*(G, a )  
are EH-regular. In addition, we assume that all the stability groups of (G, a )  are 
contained in H. As a consequence of these assumptions, we may now make the 
following definition. 

DEFINITION5.6. Let r = Prim C*(H, 0)  and define + from l- into Prim C*(G, Q) 
by 'k(P) = i n d g ( ~ ) .  

This definition requires some comment. First, 1nd;(~) is defined in Lemma 3.5. 
In fact, by that lemma, if L is a representation of C*(H, 0)  with kernel P, we have 
Indg(P) = ker 1nd$(~).  Now, since we have assumed that C*(H, Q) is EH-regu- 
lar, P = ker Indg(o, px) for some o E g,. Thus, + ( P )  = 1ndg(ker 1nd;(o, p,)), 
which by Lemma 3.5 is equal to ker(~nd$ 1nd:(o, p,)). Thus, by Proposition 8 of 
[19], +(P) = ker 1ndgX(o, p,), which is primitive by Proposition 4.2. 

By [14, Lemma 1.31, (G, l-) is a topological transformation group via the 
G-action, 'P = {(S: f E P ). 



-- 
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DEFINITION the To-ization of I'/ G (cf. Definition 2.1). 5.7. Let T denote (I'/G)-, 

THEOREM5.8. Let (G, 0 )  be a IocalIy conrpact transformation group. Suppose that 
H is normal in G, that all the stability groups are contained in H, and that both 
C*(H, 0)  and C*(G, 0) are EH-regular. Then $ factors through T, and defnes a 
homeomorphism of 'Y onto Prim C*(G, Q). 

PROOF. 1nd$ is continuous from I' into Prim C*(G, 0) by Lemma 2.6. By the 
above discussion $ maps I' into Prim C*(G, a), and since C*(G, 51) is EH-regular, 
$ is surjective. 

Fix P E r and let L be a representation of C*(H, Q) with kernel P. By Lemma 
4.7, 1nd:(LS) is equivalent to 'Ind;(~). Again by Lemma 4.7, "Ind$(L) is 
equivalent to Ind$(~) .  In particular, ker(~nd$(L") = ker(Ind:(L)), or by Lemma 
3.5, $(P) = $("P). 

Suppose G .  J=G . P. Then there is a net "aJ +P. Since $ is continuous and 
constant on G-orbits, $(P) > $(J). By symmetry, $(P) = $ ( J ) .  Thus, $ factors 
through T. 

Now consider Res$$(~)  = Res$(ker Indg(L)). The latter is equal to 
ker(Res$ Ind$(L)), which by Proposition 5.5 equals 

n ker L" n 'P. 
s € G s € G  

It follows that the hull(Res$($(~))) = G P .  In particular, $(P) = $(J) if and only 
if G . P = G .J. In other words, the map of 'Y onto Prim C*(G, Q) in a continuous 
bijection. 

To complete the proof, we only need to show that $(F) is closed in 'Y provided 
that F is a closed G-invariant subset of I?. 

Let J, = $(Pa) for {Pa) F and suppose that J, -+J. We may assume that 
J = $(P) for some P E I'. Since ~ e s $  is continuous (Lemma 2.6), we have 
R~s$($(P,)) converging to Res$($(~)) in $(C*(H, Q)). By the remarks preceding 
Lemma 2.4, we have ?%, converging to TPin x(I'). By Lemma 2.4, we have 
subnet { G P )  and IPE GPwith IPconverging to P. Let U be any neighborhood 
of P. We eventually have an IPoin U. Hence, there is a sPU E G such that S@uPPUis 
in U. In short, S~uPp, is a subnet which converges to P; thus, P E F. 

-
COROLLARY r to 'Y is open. In fact, if a net { G .  P,) -5.9. The map $ from -

converges to G . P then there is a subnet {G . PP) and sP E G such that "@PP+P. 

PROOF.The first assertion follows from the second. The second follows from the 
fact that 'Y is homeomorphic to Prim C*(G, 0) and the proof of the last theorem. 
Q.E.D. 

We remark that the first assertion is a special case of a result by Phil Green 
which shows that the natural map of Prim A onto the quasi-orbit space is open for 
any covariant system (G, A) @. 221 of [19]). 

Suppose now that all the stability groups are contained in a fixed, but not 
necessarily normal, subgroup K. Then there is a normal subgroup, H, of G 
contained in K which contains all the stability groups. Thus, if all the stability 
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groups are contained in a fixed abelian subgroup, we can assume H is abelian. By 
Theorem 5.3, r is homeomorphic to A,, the quotient of Q X I? as in Definition 
5.2. Recall that the homomorphism is implemented by the map 9 from 52 X I? to 
A, where + is defined by +(x, o) = ker(~nd$(a, p,)). We have ' ~ ( x ,  o) = 

ker('(~ndf(o, p,))) which, by Lemma 4.7 is equal to ker(1ndFI .= (or, pp,)) = 

+(r . x, or). Thus the G-action on r is carried over to the following action on T: 
for r E G, '[x, a ]  = [ r  . x, or], where [x, o] denotes the class of (x, a )  in AH. 

We summarize the above in the following corollary to Theorem 5.8. 

COROLLARY a5.10. Suppose all the stability groups of (G, Q) are contained in 
normal abelian subgroup, H. If C*(G, 51) and C*(H, 51) are EH-regular then 
Prim C*(G, 51) is homeomorphic to (A,/G)-. 

The reader may find the following alternate description of Prim C*(G, a )  more 
descriptive. Let A be the quotient topological space obtained from 51 x I? by 
identifying (x, o) and (y, a) if and only if x = y and US: = US:. Notice that we 
have a well defined G-action on A where the s-action on the class of (x, w) gives the 
class of (s . x, us). 

COROLLARY5.11. In the situation of Corolla9 5.10, Prim C*(G, 51) is homeomor- 
phic to (A/G)-. 

PROOF.It will suffice to show that (A/ G)- is homeomorphic to (AH/ G)-. Let a 
be the natural map of 51 X I? into (A,/G)-. We remark that a is continuous and, 
since a is the composition of the natural maps of 51 x I? onto AH and the natural 
map of A, x r into ( r /  G)- xT,a is open by the discussion following Theorem 
5.3 and Corollary 5.9. It will suffice to show a factors through (A/G)- and is 
injective on (A/ G)-. 

It is clear that a factors through A. Since a is obviously G-equivariant, it factors 
through A/  G. Since (A,/ G)- is To, an argument similar to those in Lemma 4.10 
and Theorem 5.8 shows that a factors through (A/ G)-. 

Suppose that (x, a )  and (y, 6) belong to the same class in (A,/ G)-. Then, there 
are r, in G such that [r, . x, or-] converges to [y, S] in A,. Since the natural map of 
51 x I? to (A,/G)- is open, there are yp E 51 and up E fi with H .yg = Hr, . x 
and up E Sk such that (yp, up or^) converges to (y, S) in 51 X I?. 

Now let U be a neighborhood of y in 51. Since yg is eventually in U and 
yp E Hrp . X, there is a tgU E H such that tsUrsU. x is in U. In particular, there is a 

A 

net (t,r,. x, u,or*) converging to (y, 6) in 51 x H. Moreover, since H is abelian, 
StYr7,,= SYy.,and or. = o'yry. Therefore, (y, 6) E G .  (x, o)  in A. By symmetry, 

G . (y,  S) = G . (x, o)  . Q.E.D. 

As a final example of Theorem 5.8, we consider essentially free actions. That is, 
we suppose that all of the stability groups of (G, a) are equal to the same subgroup, 
say H. Notice that H must be normal and that C*(H, 51) is isomorphic to 
C*(H) €3 Co(Q) or Co(Q, C*(H)). Thus, Prim C*(H, 51) = I? is homeomorphc to 
51 X Prim(H). The G-action of r transforms to the following action on X 

Prim(H): "x, P )  = (s . x, 'P), where 'P denotes the natural action of G on 



Prim(H) coming from the strongly continuous action of G on C*(H). We have 

COROLLARY5.12. If (G, Q) is an essentially free transformation group with stability 
group H and if C*(G, Q) is EH-regular then Prim C*(G, Q) is homeomorphic to 
(Q X Prim(H)/G)-. 

We conclude this section with several examples of the use of Theorem 5.3. We 
first consider the transformation group of the multiplicative positive reals acting on 
R~ by '(a, b) = ( a l l ,  b/t). The orbits are rays originating from the origin together 
with the origin which is a fixed point. Note that the action is free everywhere but at 
the origin. The orbit space may be identified with the unit circle, T, union the 
origin, 0. The primitive ideal space of C*(R+, R') is, by Theorem 5.3, easily 
identified with T union R+. The topology may be computed easily since the map 
from R~ x R+ onto T u R+ is open; the open sets are { U  cT: U is open in 
T)  u {T u V: Vis open in R+) .  

Notice that the picture is changed dramatically if we alter the action. Now, let 
R+ act on R' by '(a, b) = (a/ t, tb). The orbits now consist of the origin, the four 
remaining branches of the coordinate axes, and the set of hyperbolas given by 
{(x, y): xy = b) for b E R - (0). Note that each b E R - (0) corresponds to two 
orbits. Thus, the orbit space may be identified as a set with the union of the two 
lines y = x and y = -x (denoted A) together with the four points: a ,  = (1, O), 
a, = (0, l), a, = (-1, 0), a, = (0, -1). We let Q, be the right angle which is formed 
by A and which contains a, in its interior. That is, Q, = {(x, y) E A: x > O), 
Q2 = {(x,Y):Y 5 O), Q3 = { ( x , ~ ) :x < 01, and Q4 = { ( x , ~ ) :Y < 0). A, Q,, Q,, 
Q,, and Q, have the relative topology coming from R ~ .  Using the openness of the 
natural map of R~ into the orbit space, we see that every neighborhood of (0, 0) 
must contain a,, a,, a,, and a,. Also, every neighborhood of a, must contain a 
neighborhood of (0, 0) in Q, ('possibly with (0, 0) deleted). We will denote the orbit 
space by F. The open sets of Fa re  as follows: 

{ U  c A: (0,O) 6? Uand UisopeninA) 

together with 

{ U C F: U n A is open in A, (0,O) E U, and a, E U for i = 1, 2, 3, 4) 

and 

{ V c Q, u a,: a, E V and V n Q, is a neighborhood of 

(0, 0) with (0, 0) deleted fo r j  = 1, 2, 3, 4). 

Since the action is free everywhere but at the origin, we may identify 
Prim C*(R+, R ~ )  with F where the origin is replaced by R. The open sets are 
{U: U c F \ (0, 0), U open in F )  u { U  u V: U is an open neighborhood of 
(0, 0) in F with (0, 0) deleted and V is open in R). 

We can also use Theorem 5.3 to compute the topology of the primitive ideal 
space of the group C*-algebra of groups which are the semi-dnect product of two 
second countable abelian groups. Suppose N and K are abelian subgroups of G 
such that G = KN, K n N = {e), and N is normal in G. Since (K, g)is a 
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topological transformation group with respect to the K-action given by " ~ ( a )  = 

X(sas-'), we may form C*(K, fi).  Using the fact that a left Haar measure on C is 
given by 

one may show without difficulty that 

defines a *-isomorphism between C*(G) and C*(K, fi). Thus, Theorem 5.3 applies. 
In particular, one can use the above remarks to work out the topology on the dual 
spaces of such classical examples as the "ax + b" group or the Heisenberg group; 
although when the action of K on fi is smooth (as in the two examples mentioned), 
Larry Baggett has already done this (cf. [I, Theorem 3.31). 
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