Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.4

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{3 x}{x-8}
$$

2. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{4 x}{6 x^{2}-8}
$$

3. $(1 \mathrm{pt})$

Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{4 x^{2}+3 \sin (x)}{x^{2}+9 \cos (x)}
$$

4. $(1 \mathrm{pt})$

Find the following limit.
$\lim _{x \rightarrow-\infty} \frac{-x+1}{|-6 x-9|}$
5. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{x^{21}+5}{x^{20}+4}
$$

If it does not exist, is it the limit ∞ ? enter infinity, $-\infty$? enter -infinity, or neither? enter neither. Do not type quotes in your answer.
6. (1 pt)

Find the following limit.
$\lim _{x \rightarrow \pi / 2^{-}} \sec (x)$
If it does not exist, is it the limit ∞ ? enter infinity, $-\infty$? enter -infinity, or neither? enter neither. Do not type quotes in your answer.

7. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow-\infty} \frac{8 \cos (x)}{x}
$$

8. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow \infty} 4 \sin \left(\frac{1}{x}\right)
$$

9. (1 pt)

Find the following limit.

$$
\lim _{x \rightarrow \infty} \sqrt[3]{\frac{6 x+2}{5 x+5}}
$$

10. $(1 \mathrm{pt})$

Find the following limit.

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{6 x^{2}+7}}{x+7}
$$

11. (1 pt)

Find the horizontal and vertical asymptotes of the function $f(x)=\frac{8 x^{2}-8 x-2}{(2 x-3)(x+3)}$

The horizontal asymptote is: $y=$

The smaller of the vertical asymptotes is:
$\mathrm{x}=$
And the inger
And the larger is:
$\mathrm{x}=$
12. (1 pt)

Find the limit.

$$
\lim _{x \rightarrow 2.3} \frac{16 x^{2}-24 x}{|4 x-6|}
$$

13. $(1 \mathrm{pt})$

Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{8 x^{3}+5 x+10}}{1 x^{2}}
$$

14. (1 pt)

When a spaceship accelerates to speeds close to the speed of light, it appears to contract lengthwise. The formula for their apparent length is
$L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$
where L_{0} is the length of the spaceship when it is not moving, v is the velocity of the object, and c is the speed of light.

If the spaceship is 84 meters long at rest, and is moving at $v=0.5 c$, how long will it appear to be?
meters
As the speed of the spaceship approaches c, what is the limit of its length (i.e., what is $\lim _{\substack{v \rightarrow c^{-}}} \sqrt{1-\frac{v^{2}}{c^{2}}}$)?

