Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.4

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)
Find the following limit.
$\frac{3x}{3}$
$\lim_{x\to\infty} \frac{1}{x-8}$
2. (1 pt)
Find the following limit.
$\lim \frac{4x}{x}$
$\xrightarrow{x\to\infty} 6x^2 - 8$
3 . (1 nt)
Find the following limit
$4r^2 + 3\sin(r)$
$\lim_{x \to 0} \frac{4x^2 + 5 \sin(x)}{x^2 + 0 \cos(x)}$
$\frac{x \to \infty}{x^2 + 9\cos(x)}$
4. (1 pt)
Find the following limit.
-x+1
$\lim_{x \to -\infty} \frac{1}{ -6x-9 }$
5. (1 pt)
Find the following limit.
$\lim_{x \to 1} \frac{x^{21} + 5}{2}$
$\lim_{x \to \infty} x^{20} + 4$
If it does not exist, is it the limit ∞ ? enter infinity , $-\infty$? enter
-infinity, or neither? enter neither. Do not type quotes in your
answer.
6. (1 pt)
Find the following limit.
$\lim \sec(x)$
$x \rightarrow \pi/2^{-1}$
If it does not exist, is it the limit ∞ ? enter infinity , $-\infty$? enter
-infinity, or neither? enter neither. Do not type quotes in your
answer.
7. (1 pt)
Find the following limit.
$\lim \frac{8\cos(x)}{x}$
$x \to -\infty$ X
δ . (1 pt)
Find the following limit.

9. (1 pt)	
Find the following limit.	
$\sqrt{6x+2}$	
$\lim_{r \to \infty} \sqrt[n]{\frac{1}{5r+5}}$	
x +	
10. (1 pt)	
Find the following limit.	
$\sqrt{6x^2+7}$	
$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{x + 7}$	
$x \rightarrow -\infty$ $x + 7$	
11. (1 pt)	
Find the horizontal and	vertical asymptotes of the function
$8x^2 - 8x - 2$	v 1
$f(x) = \frac{1}{(2x-3)(x+3)}$	
(2x - 5)(x + 5) The horizontal asympt	ote is:
v –	
y =	- tical asymptotos is:
	ical asymptotes is.
$\mathbf{X} = $	_
And the larger is:	
<u>x =</u>	_
12. (1 pt)	
Find the limit.	
$16x^2 - 24x$	
$x \to 2.3 4x - 6 $	
13. (1 pt)	
Evaluate the following lin	nit:
$\sqrt{8x^3 + 5x + 10}$	
$\lim_{x\to\infty} \frac{1x^2}{1x^2}$	

14. (1 pt)

When a spaceship accelerates to speeds close to the speed of light, it appears to contract lengthwise. The formula for their apparent length is

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

where L_0 is the length of the spaceship when it is not moving, v is the velocity of the object, and c is the speed of light.

If the spaceship is 84 meters long at rest, and is moving at v = 0.5c, how long will it appear to be?

____ meters

As the speed of the spaceship approaches c, what is the limit of its length (i.e., what is $\lim_{v \to c^-} \sqrt{1 - \frac{v^2}{c^2}}$)? ______meters

 $\lim_{x\to\infty} 4\sin\left(\frac{1}{x}\right)$

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester